Journal of Computing and Information Technology - CIT 8, 2000, 2, 115-130 115

PAGELEARN: Learning Semantic
Functions of Attribute Grammars

in Parallel

Gyongyi Szilagyi! and Aggelos M. Thanos?

I Hungarian Academy of Sciences, Research Group on Artificial Intelligence, Szeged, Hungary
2 National Technical University of Athens, Athens, Greece

Attribute Grammars (AGs) are a generalization of the
concept of Context-Free Grammars (CFGs). The for-
malism of AGs has been widely used for the specification
and implementation of programming languages. On the
other hand there is an intimate relationship between AGs
and Logic Programming. The paper presents a paral-
lel method for learning semantic functions of Attribute
Grammars (AGs) based on AGLEARN [2], using PAGE
system [12]. The method is more efficient in both
execution time and interaction needed than the sequential
one. The method presented is adequate for S-attributed
grammars and for L-attributed grammars as well.

Keywords: attribute grammar, parallel evaluation of at-
tribute grammars, machine learning, attribute value
learner.

1. Introduction

In the framework of compilation-oriented lan-
guage implementation, attribute grammars [3]
are the most widely applied semantic formal-
ism. The notion of an attribute grammar is
an extension of the notion of a context-free
grammar. The idea is to decorate parse trees
of a context-free grammar by additional labels
which provide a “semantics” for the grammar.
Every node of a parse tree labeled by a nonter-
minal is to be additionally decorated by a tuple
of semantic values called attribute values. The
number of attribute values is fixed for any non-
terminal symbol of the grammar. Their names
are called attributes of nonterminal. Since the
definition of an attribute grammar usually re-
quires much work it would be a useful tool for
inferring semantic rules in attribute grammars
from examples.

In the case of inductive learning from exam-
ples, the learner is given some examples from
which general rules or a theory underlying the
examples can be derived. An inductive con-
cept learner is given by a set of training exam-
ples, some background knowledge, a hypothe-
sis description language, and an oracle willing
to answer questions (in the case of interactive
learner). The aim is to find a hypothesis such
that the hypothesis is complete and consistent
with respect to the examples and background
knowledge.

To express efficiently the examples, the back-
ground knowledge, and the Hypothesis to be
induced we need to use a language L with suffi-
cient expressive power. Many systems were de-
veloped for learning logic programs, using first
order predicate logic language tools (Inductive
logic Programming (ILP)). Attribute Grammars
merge the declarative power of predicate logic
with the flexibility of a predefined interpretation
of its terms. Complex objects and relations can
be described in the framework of AGs. Intro-
ducing an AG-based description language L in
ILP implies the definition of an Attribute Gram-
mar learner.

In the following sections we will see how this
integration is carried out using the AGLEARN
[2] methodology and we will give the descrip-
tion of an innovative technique for a parallel
implementation.

AGLEARN is a method for learning semantic
functions of attribute grammars, which infers

116

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

semantic rules of attribute grammars from ex-
amples. This is an interactive system, so dur-
ing the execution the oracle has to answer a
lot of questions, which needs a lot of work
and much time. The parallel implementation
of AGLEARN makes possible to decrease the
number of oracles, so it is more efficient in both
execution time and interaction needed. We no-
tice that the execution time depends on the num-
ber of the user queries. Our method uses the
PAGE system that is a general purpose paral-
lel parser, augmented with a powerful semantic
evaluator. We notice that this parallel method
can be implemented using any general purpose
parallel parser that has the appropiate facilities
to store and handle the necessary information.

This paper is organized as follows. Section
2 gives an introduction to the concepts of At-
tribute Grammars. Section 3 provides a brief in-
troduction to the AGLEARN method, and gives
a typical example. Then Section 4 presents the
computational model of PAGE in order to rep-
resent the necessary facilities to the paralelliza-
tion. In Section 5 the PAGELEARN method
is presented. We give a detailed description of
the parallel method for S-attributed grammars,
explaining how we can handle the circuity prob-
lem, and giving an illustrative example. Finally
we show how the parallel method works for L-
attributed grammars.

2. Preliminaries

2.1. Attribute Grammars

Attribute Grammars have been proposed by
Knuth [3, 4] as an extension of context-free
grammars. The original motivation was to fa-
cilitate compiler specification and development
procedure.

While compilers were the initial area of re-
search for AGs, they can also be used in a
very wide research spectrum, where relations
and dependences among structured and inter-
preted data are very valuable. Areas like soft-
ware engineering [7, 5], visual programming
[10], logic programming [1], distributed pro-
gramming [15, 8], functional logic program-
ming [6], pattern recognition [9] and signal pro-
cessing are some notable examples.

Definition 2.1. A context-free grammar G is a
quadruple such that G =< N, T, P, D >, where
N is a finite set of nonterminal symbols, T is
a set of terminal symbols, P is a finite set of
productions, and D € N is the start symbol of

G.
O

An element in V = N U T is called grammar
symbol. The production in P are pairs of the
form X — o, where X € N and o € V*, i.e.
the left hand side symbol (LHSS) X is a nonter-
minal, and the right hand side symbol (RHSS)
o is a string of grammar symbols. An empty
RHSS (empty string) will be denoted by &.

Definition 2.2. An Artribute Grammar con-
sists of three elements, a context-free grammar
G, a finite set of attributes A and a finite set of

semantic rules R. Thus AG =< G, A, R >.
O

A finite set of attributes A(X) is associated with
each symbol X € V. The set A(X) is partitioned
into two disjoint subsets, the inherited attributes
I(X) and the synthesized attributes S(X). Thus
A = UA(X).

The production p € P, p : X9 — X1---X
(n > 1) has an attribute occurrence X;.a, if
a € A(X;),0 < i < n. A finite set of se-
mantic rules R, is associated with the produc-
tion p, with exactly one rule for each synthe-
sized attribute occurrence Xp.a and exactly one
rule for each inherited attribute occurrence X;.a,
1 <i<n.

Thus R), is a collection of semantic rules of the
form X;.a = f(y1, -+, yx)> kK > 1, where

1. eitheri = 0and a € S(X;),or1 <i<n
and a € 1(X;)

2. each y;, 1 < j < k, is an attribute occur-
rence in p and

3. f is a function called semantic function,
that maps the values of yy, ..., y; to the
value of X;.a. In a semantic rule X;.a =
f(y1, ..., k), the occurrence X;.a depends
on each occurrence y;, 1 <j < k.

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

117

Thus R = UR,. By definition, synthesized
attributes are output to the LHSS of the pro-
ductions while inherited attributes are output to
the RHSS. In other words synthesized attributes
move the data flow upwards and inherited at-
tributes move the data flow downwards in the
derivation tree during the attribute evaluation
procedure.

Remark: Notice that each semantic rule of an
attribute grammar can be seen as a definition of
the relation between local attribute values of the
neighboring nodes of the parse tree. This rela-
tion is defined for a production rule and should
hold for every occurrence of this production rule
in any parse tree. In the original definition of
AG (definition 2.2) the definition of the relation
takes the form of the equation. It is possible to
generalize the concept of semantic rules and
allow them to be arbitrary formulae (not neces-
sarily equalities) over a language L.

Definition 2.3. A Conditional Attribute Gram-
mar (CAG) is an attribute grammar having the

concept of the semantic rules extended. Thus a
CAG is a5-tuple < G, §, A, @, I > where:

e G is the underlying context-free grammar

e Sis a set of sorts (i.e. of domains where the
attributes take values)

e A is a finite set of attributes. Each attribute a
has a sort s(a) in S.

e ® is a map function of a logic formula ®,
written in terms of an S-sorted logic lan-
guage L to each production rule p € P. The
variables of a formula ®,, include all output
attribute occurrences of A(p) = UxepA(X).
The allowed form of the function ®,, is either
a function f or a relation c.

- in the case of a function, f has the form
f 1 X ka4 = f(ijkl.al, ceey ijkm.am)
where f 1 (X}, g,.a1) X ... x I(Xp, ,,-Gm)
— I(Xpr-a).

- in case of relation, ¢ has the form
¢ c(Xph, a1y - - s Xp oy-Gm)
where ¢ : (X, .a1) X ...
— {true, false}.

X I(Xp,km.am)

e [is an interpretation of L in some S-sorted

algebraic structure A. -

Semantic rules induce dependences between at-
tributes. These dependences can be presented
by a dependency graph, from which partial or-
dering relations are implied. From these partial
orderings the evaluation order of the attribute
occurrences can be determined. A decorated
tree s a derivation tree in which all the attribute
occurrences have been evaluated according to
their associated semantic rules. The depen-
dency graph characterizes all restrictions on the
control of computations. The actual sequence
of attribute evaluation must preserve this order-
ing which is called attribute evaluation strategy.
Attribute grammars can be classified according
to the attribute evaluation strategy used . A
special class, introduced by Knuth [3], is the
S — attributed grammars in which only synthe-
sized attributes are allowed.

Due to the restrictive form of S-attributed gram-
mars, L — ordered grammars are used in prac-
tice.

Definition 2.4. An attribute grammar is said
to be L-attributed if and only if each inherited
attribute of X),; in the production p : X, o —
Xp1, - -+, Xpn, depends only on the attrributes

in the set Uke{l,---,j—l} Inh(Xp, k) USyn(Xp,o0) for

J=L....np -

Example 2.1. We now present a typical ex-
ample for the type checking of arithmetic ex-
pressions [16]. Consider the following attribute
grammar:

e Nonterminals: N={Expression, Term,
Factor, AddOp, MulOp}

e Terminals: T = {Real, Integer, +, —, X,
/5 ()}

e Start Symbol: D = Expression

e Sorts:

S = {Smode, Soperator} where

- Smode = {int, real}

= Soperator — {add7 Sl/lb, mul, diV}

® = {add, sub, mul, div, int, real, id, fi, >}

where

118

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

- add, sub, mul, div, int and real are con-
stants

-id 1 Spode — Smode denotes the identity
function

- fi

. Smode X Smode — Smode

fi(opy, op2) := if op) = real or op; =
real then real
else int

- f2 : Soperator X Smode X Smode — Smode

falopi, opa, op3) == if op; = mul and
op> = int and opz = int
then int
else real

o Attributes: A = Syn = {mode, operator}
so that
Syn(Expression) = Syn(Term)

= Syn(Factor) = mode
Syn(AddOp) = Syn(MulOp) = operator

e Productions and Semantic Rules:

1. Expressiong — Expressiony AddOp Term
R(1) : Expressiony.mode :=
fi(Expression;.mode, Term.mode)

2. Expression — Term
R(2) : Expression.mode := Term.mode

3. Termg — Termy MulOp Factor
R(3):Termg.mode:=f>(MulOp.operator,
Term).mode, Factor.mode)

4. Term — Factor
R(4) : Term.mode := Factor.mode

5. Factor — Real
R(5) : Factor.mode = real

6. Factor — Integer
R(6) : Factor.mode := int

7. Factor — (Expression)
R(7):Factor.mode:=Expression.mode

8. AddOp — +
R(8) : AddOp.operator := add

9. AddOp — —
R(9) : AddOp.operator := sub

10. MulOp — x
R(10) : MulOp.operator := mul

11. MulOp — |
R(11) : MulOp.operator = div

3. The AGLEARN Method

AGLEARN |[2] is a method for learning se-
mantic functions of attribute grammars. The
method uses background knowledge for learn-
ing semantic functions of S-attributed and L-
attributed grammars. The given context-free
grammar and background knowledge allow one
to restrict the space of relations and give a
smaller representation of data. The basic idea
of this method is that the learning problem of
semantic functions is transformed to a propo-
sitional form and the hypothesis induced by a
propositional learner is transformed back into
semantic functions. This approach is motivated
by the fact that there is a close relationship be-
tween attribute grammars and logic programs
[1].

AGLEARN uses the same concept as Inductive
Logic Programming (ILP) but has a different
representation. The background knowledge and
the concepts are represented in the form of at-
tribute grammars. An example contains a string
which can be derived from the target nontermi-
nal. We suppose that the underlying context-
free grammar is given. The task of AGLEARN
is to infer the semantic functions associated with
the production rule. In the learning process the
grammar, the background semantic functions
and the examples can be used.

The input :
e The AG in which :

- The set of productions P is partitioned
into two disjoint sets P (The background
rules) and Pr (the target rules). The set
of semantic functions R is fully defined
for the rules belonging to Pp and there are
no semantic functions in R associated with
the rules belonging to Pr.

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

119

class word target U Fycr Fycr Fur

To.m U U, Us R Ry R3 Ry Rs R¢ F F> Cq Cy

+ 3%2.5 real int* mul real | T F T F F T F T F T
+ 5%3 int int* mul int T F T F T F T F T T
+ 1.5%x4 real real* mul int F T T F T F F T T F
+ 2.5/3 real | real* div int F T F T T F F T T F
+ 2/3 real int* div int | T F F T T F F T F F
+ 6/3.4 real | int* div real | T F F T F T F T F T
- 2%3.2 int int* mul real | T F T F F T T F T F
- 4.3/2 int real* div int F T F T T F T F F T
8/3 int int* div int | T F F T T F T F T T

Table 1. The generated propositional table

- A partially defined set of semantic condi-
tions C. C is fully defined for Pp and there
is no condition for any rule in P7.

e For each p € Pr and for each synthesized
attribute occurrence X), o.a a set of examples
E,(a), which is partitioned into two disjoint
sets, the set of positive E;; (a) and negative

examples E, (a), respectively. Let us sup-

pose that p has the form of p : X,0 —

Xp1s -+ Xpn,- An example e € Ey(a) is

givenin the form: e=(w, (ay, v1), ..., (am, Vim)s
(@mt1s Vimg1)), Where w € T*, X, 0 =" w,

{ar, .., am} = Inh(X,0), and a1 = a. A

pair (aj, vj)(1 <j < m+ 1) in the example e

denotes that the attribute X), 9.a; has the value

v; in the evaluated attributed tree built for the

word w.

The aim is to find a set of functions F; and for
each production p € Pr a definition of the sets
R(p) and C(p) such that the semantic functions
and conditions in R(p) and C(p) are defined by
the elements of F; U F;. The resultant attribute
grammar must be complete and consistent with
the examples.

3.1. Learning Semantic Functions of
S-attributed Grammar

The method is based on the idea that the se-
mantic functions of the background rules can
introduce new columns in the table correspond-
ing to the transformed learning problem.

Consider the production p : X,0 — X1, ...,
Xp,n, € Pr, and suppose that the symbols in this

rule can possess only synthesized attributes. We
would like to learn the semantic function associ-
ated with X), g.a. For X), g.a, atable T (a) must be
constructed. Each row of this table corresponds
to an example from Ej(a). The table has a set
of columns. The key part is the computation
of the column U (see Table 1) which contains
columns corresponding to the attribute instances
Xpj-b € Syn(X,;),j=1,...,n, Therefore we
build the tree for the actual example from Ej,(a),
and if the subtree derived from X, ; contains a
node corresponding to a rule instance belong-
ing to Pr then the values of the attributes in
Syn(Xp,j) are asked from the user for the given
derivation. The if-rules are constructed from
the table T'(a), and the semantic functions are
generated from a set of accepted if-rules. (For
a detailed description see [2]).

3.2. Learning L-attributed Semantic
Functions

Suppose that the symbols in the rule p can pos-
sess synthesized and inherited attributes. The
task of an attribute learner is to define seman-
tic functions for the set of defined occurrences
Ukeqt,np} InP(Xp, k) USyn(Xp,0). The learning
process of these attributes can be summarized
as follows:

1. Learning sematic functions for
acInh(Xp;),j=1...,np.

The user is asked to provide examples. For
the attribute X, j.a a table T(a) must be con-
structed. The columns in the part U of
the table are all the attribute occurrences

120

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

on which the value of X, ;.a depends on
Inh(Xp,0) U Ugeqr, .. jo1y Syn(Xpi). After-
wards the propositional part can be con-
structed in the same way as that presented for
S-attributed grammars. When sematic func-
tions for all a € Inh(X), ;) have been learned,
the attributes of Syn(X), ;) can be computed
by using the background rules.

2. Learning semantic functions for
a € Syn(Xp,0)

The semantic functions for a can be deter-
mined in the same way as presented for S-
attributed grammar.

Example 3.1. Example of AGLEARN method
(taken from [2]).

Apply the above procedure to our example:

Py = {R(1), R(2), R(3), R(4)}

Pg = {R(5),...,R(11)}.

We demonstrate the learning of the semantic

function of R(3).

- EJ (mode) = {(3%2.5, real), (53, int), (1, 5%
4, real), (2.5/3, real), (2/3, real), (6/3.4,
real)}

- E5 (mode)
int)}

={(2%3.2, int), (4.3/2, int), (8/3,

Step 1.

Table 1 shows the generated propositional
table+ where:

x : we have to ask this value from the user
Uy : Termy.mode,

U, : MulOp.Operator,

Us : Factor.mode,

Ry : Termy.mode = int,

R> : Termy.mode = real,

R3 : MulOp.Operator = mul,

R4 : MulOp.Operator = div,

Rs5 : Factor.mode = int,

Re : Factor.mode = real,

F\ : Termg.mode = int,

F> : Termg.mode = real,

C| : Termg.mode = Term;.mode,

Cy : Termg.mode = Factor.mode,

T : true, F : false

Step 2.
The if-rule :

if Ry = true & R3 = true & R5 = true & then

F1 = true else Fr = true

Step 3.
The transformed semantic function R(3) takes
the form of

if Term|.mode = int & MulOp.operator =
mul & Factor.mode = int
then Termgy.mode = int

else Termgy.mode := real 0

4. The Computational Model of PAGE

One of the objectives of our research was to
implement a tool which is portable and inde-
pendent of the underlying system architecture.
PAGE [11] is built on top of ORCHID kernel
[13, 14] which encapsulates the machine depen-
dencies providing a layer with parallel program-
ming primitives. In PAGE a supervisor process
maintains a pool of messages, and is responsible
for supplying the processors with computational
load (i.e. processes to execute). Each slave pro-
cess handles a grammar production along with
its semantic rules. It collects messages corre-
sponding to the RHSS (body) of the produc-
tion in which it is the head, and produces new
messages which correspond to the head of the
production in which it is a RHSS. All the static
information of the grammar (grammar produc-
tions, semantic rules, atomic productions) is
broadcast and kept in the network processors
for faster access. All the information generated
from the slave processes (i.e. partial solutions)
is stored locally in the network processors, in
a caching hierarchy, inducing an incremental
attribute evaluation and achieving a controlled
grained parallelism.

Example 4.1. Let us assume we have to eval-
uate the following grammar:

1. S(x,y,z) :- A(x,y), E(y,2).
2. A(x,y) :- B(x), C(y).
3. E(y,z) := B(y), D(=2).

where S is the start symbol

The Supervisor assigns to a new slave (for ex-
ample slave s7) the evaluation of rule (1). Slave

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel 121

Processor 1

Processor 2

52, A(i II e

s B "85, C)

Processor 3

EsLS(x | 2

Processor n

e 53|ii,z)

$6,B(y) e S1D@

Fig. 1. Slave Processes generation.

s1 asks the Supervisor for solutions for the
RHSS A and E along with their corresponding
inherited attributes. Supervisor checks if there
exist already solutions for A(x,y) and E(y,z).
If not, it assigns the evaluation of A(x,y) and
E(y,z) to s/ two new slaves (say s2 and s3),
respectively. This scheme achieves AND paral-
lelism. If there already exist solutions for some
or for all of the RHSSs, then there is no need
for new slaves corresponding to these RHSSs.
As a result PAGE achieves controlled grained
parallelism, because no unnecessary slaves are
generated. Similarly, slave s2 asks the super-
visor for solutions for the RHSS B and C along
with their inherited attributes (i.e., x and y re-
spectively). The Supervisor checks if there al-
ready exist solutions for B(x) and C(y). If not,
it assigns the evaluation of B(x) and C(y) to two
new slaves (say s4 and s5), respectively. The
procedure goes on in the same manner unfold-
ing a proof tree over the network. If we add one
more rule to our example

Process Results Grammar Input
Allocation String

Table

Supervisor

Fig. 2. Network Supervisor Structure.

4. S(x,y,z) :- A(y,x), E(z,y).

then another similar proof sub-tree will be gen-

erated, establishing OR parallelism. -

Fig. 1 illustrates the above example. Each slave
may be located in different processors or in the
same processor with another slave.

Fig. 2 shows the Network Supervisor processor
structure in which the AG is stored. The AG
is decomposed and broadcast to the network
nodes along with the input string, which is sent
to the network nodes. Moreover the network
Supervisor process maintains a Process Alloca-
tion Table in order to prevent an explosion in
the number of processes. The results of all the
rules evaluated in the network are stored in a
special-purpose structure.

Fig. 3 depicts the Node Processor Structure.
There is a Node Supervisor Process controlling
the underlying slave processes, which handles
the grammar rules. In addition, the Node Pro-
cessor keeps a list of the AG terminals, in or-
der to prevent the communication overhead we
would have if this list was maintained by the
Network Supervisor Processor. The supervisor
process handles local requests for solutions of
rules evaluated in remote processes in a special-
purpose queue. Besides this, every slave pro-
cess keeps a similar queue of remote requests.
The solutions are kept in a caching hierarchy
in which every generated or remote accessed
solution is stored in a special structure.

122

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

Pending
Facts Local

Terms AskForResult
Messages

Node Supervisor

Local
Results

Local
Results

Remote
Requests

Remote
Requests

Syntax Syntax

Rule Attributes Rule Attributes

Slave Process Slave Process

Fig. 3. Node Structure.

In general the data-flow style of execution of
PAGE assimilate to the computational model of
Conery’s AND/OR process model, however it
differs in the following important aspects: We
use the above-mentioned structure sharing ap-
proach when referring to these structures, so
there is no need for stack copying, which is a
major source of overhead in the latter model.
Solution caching for incremental attribute eval-
uation greatly improves our model. Moreover,
PAGE tries to keep processes belonging to the
same OR-branch locally in the same proces-
sor. Finally, we use an interleaved unification
scheme where more than one solution of each
AND parallel branch are unified at the same
time [11].

5. PAGELEARN: A Parallel Approach to
AGLEARN, using PAGE Technology

In this section a parallel method is presented
for the implementation of AGLEARN using the
PAGE general purpose multi-paradigm attribute
grammar evaluator. The method is adequate for
S-attributed and for L-attributed AGs as well.
Parallel learning leads to a more efficient exe-
cution time and reduces the oracles that may be
needed. In the following section a description
of the method of using S-attribute grammars is
supplied. We show how the circuity problem
can be handled and give a detailed example.
A description of the method using L-attribute
grammars is also presented.

5.1. Parallel Learning of S-attribute
Grammars

Description of the Method

Let AG = < G, §, A, @,] > the given Attribute
Grammar, Pp the set of background rules, Pr
the set of target rules, and E the set of the train-
ing examples. The target nonterminals possess
only synthesized attributes. We would like to
learn the semantic functions of each P € Py in
parallel using PAGE.

In this case the Supervisor processor and the
processors have the AG. The rules of Pr are
decomposed, and each processor handles one
part of the target rules. Every process (slave)
learns one semantic function of a rule R. So ev-
ery rule and every attribute of the rules in Pr is
learned in parallel. The process has to build the
table T' (given in example 3.1). This means that
for every example the corresponding process
must compute the columns class, word, target,
U, Fygr, Fucr, Fur, Fycr. Itis clear from this
procedure that the main issue is the computation
of U, since other columns can be derived from
the column U or target or from the examples.

Let us suppose that R has the form of R :
—4p,0 — Xp71, .. -aXp,k .

To compute U, in the previous section, we have
to know the value of X, ;.b € Syn(X,;),j =
l,...,k (AGLEARN method). For this we
build the tree for the actual example, and if
the subtree derived from X, ; contains a node
corresponding to a rule instance belonging to
Pr, then the values of the attributes of Syn (X))
are asked from the user for the given derivation.
Now we have the possibility of asking the other
processes if the rule belonging to P7 is already
learned or not (because of parallelism). If this
is the case, we can use these semantic functions
and we do not need an oracle. If it hasn’t been
learned yet, we have again a possibility of wait-
ing until it is learned (or we can ask the user).

At this point we have to handle a difficult prob-
lem. If we decide to wait for these semantic
rules to be learned, we may face a circuity sit-
uation where two processes wait (perhaps tran-
sitively) for one another to produce a semantic
rule.

In Fig. 4 we give the general procedure of
PAGELEARN.

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel 123

Every process does the following
for each example e € E,(a) do

else
for every R; € Py do

if learned then

wait...

end {for}
end {for example }

broadcasts it to the processes.
end {for}

for each grammatical rule p € Pr and for each synthesized
occurrence X, o.a do spawn a process in parallel

build the attributed tree for the actual example on the input string w
using grammar G and semantic functions R
if the subtree contains only nodes corresponding
to rule instances R; belonging to Pp then
the attributes of this subtree can be evaluated
so the columns of the table T can be computed

the process that evaluates R; asks the Supervisor if the
unknown rule R has already been learned

the process can evaluate R;
using the learned semantic rules
else if there isn’t any circuit in the waiting processes then

else ask the user for an oracle and kill the waiting rules
belonging to this tree. (These rules are different from the other
that are being learned. Moreover, the rules belonging to the tree
are used only for their operational semantics, while the rules
at the other processes may be used for inferring the semantics)

As soon as every column and row of table T has been computed,

T is sent to the Supervisor, which sends it to an attribute value learner
(to C4.5 in our case). When the Supervisor gets from the

attribute value learner the learned semantic rules

Fig. 4. General Algorithm of the PAGELEARN Method.

Handling the Circuity Problem

The problem can be summarized as follows:
Every process learns the semantic rule for an
attribute (R;.q;) in parallel. When the process
creates the column U for the given training ex-
ample, it has to build the derivation tree for this
example, and evaluate this tree. If this tree has
arule that belongs to P, then the process has to
wait for the semantic rules of this rule. We want
to avoid the circuity problem, that is, when two
or more processes are waiting one for another.

Example 5.1. Assume that we have the pro-
cesses Py, Py, P3, P4 learning the semantic rules

Rl.a, R2.a, R3.a, R4.a respectively. Fig. 5 de-
picts the circuity problem when the processes
are waiting for the learning of the following se-
mantic rules:

M [RI|R2|R3 | R4 |

RI| O0O]0]1]O0
R2(O | 1 |01
R3{j 1]00]1
R4 1107} 07]O0

Table 2. The circuity problem: Neighbouring Matrix M.

124

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

AN /o

Py P

Py Py

Fig. 5. The circuity problem: the waiting processes.

e P1 is learning R1.a and in the subtree for
the given example R3 and R4 are used.
(It means that we need the semantic rules
R3.a and R4.a to evaulate the value of the
attributes of the derivation tree built for the
actual example.)

e P2 is learning R2.a and in the subtree for
the given example R2 is used.

e P3is learning R3.a and in the subtree for
the given example R1 is used.

e P4 is learning R4.a and in the subtree for
the given example R2 and R3 are used.

O

In the above example we saw that each learn-
ing process of a semantic rule may depend on
the learning process of another semantic rule of
another grammatical rule. These dependences
form a dependency graph G. Let G = (V, E)
a directed graph, where V = (Ry, ..., Ry),
R € Pr,j=1,...,k,

E = { (R, Rj) : There is an edge from R; to R;
if and only if R; is waiting for R;}

D)

R1 R3

\/

Fig. 6. The circuity problem: the dependency graph.

R4

In Fig. 6 the dependency graph of the exam-
ple 5.1 is shown. In this graph we have three
circuits:

e Rl — R3 — R4 — R1
e R2 — R2

e Rl — R3 — R1

In the general algorithm of PAGELEARN (see
Fig. 4) we have to check for the circuity prob-
lem. For this purpose a neighbouring matrix M
is used, situated in the Supervisor, and is similar
to that of the Table 2. Using this matrix it is
easy to detect when a circuity problem is being
faced or not. If a circuity problem is being faced
then it is enough to cut the circuit only at one
point (one rule) and ask the user. The check
algorithm is listed in Fig. 7.

A Detailed Example

This section presents a detailed example de-
scribing the proposed parallel method using
PAGE. Some processes belonging to a proces-
sor, which have been assigned the task of learn-
ing the semantic rules of a target rule. Other
processes belonging to the same processor work
on the learning of the semantic rules of another
target rule. Every process has to build a table
Tij (from which the if-rules are generated). The
Supervisor as well as the slave processors know
the whole AG specification. To be more pre-
cise, each one of the PAGE processes has the
following tasks assigned.

The Supervisor:

e Handle the table M that is used for dealing
with the circuity problem.

e Decompose the target rules P € Pr.
o Store the learned semantic rules

e Serve the requested messages for the se-
mantic rules or the circuits

The slave processors:

e Spawn and delete processes for the rules
and for its attributes

e Forward the requests and the learned se-
mantic functions to the Supervisor

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel 125

to wait for Rk then

if there is a circuit then

else

functions

Set Row (M) =0

Initialize matrix M: fill all elements with O.
if Pj (which is learn a semantic function of Rj) have

Ask the Supervisor if there is a circuit or not
(check if the addition of the new edge
(Rk, Rj) in the neighbouring matrix may cause a circuity problem.

the Supervisor sends a message informing that a circuit exists

Set Mk, j| = 1 and the Supervisor sends a message that no circuit
exists, so the process can wait for Rk to learn the semantic

if all semantic rules for Rk have been learned then
they are sent to the waiting processes

Fig. 7. Checking Algorithm for the Circuity Problem

e Handle the requests of the processes for
the AGs rules

The processes:

e compute the table Tj;.

e Build the derivation tree for the actual ex-
ample { this is automatic in the PAGE sys-
tem }

e Ask the Supervisor or other processes or
the user for the unknown semantic rules if
it is necessary

e Transform the table T;; to the Supervisor

The Supervisor decomposes the target rules and
broadcasts them along with the corresponding
training examples over the network. The pro-
cessors spawn processes (slaves) for every se-
mantic rule corresponding to each one of the
synthesized attributes of the target rules. The
processes start to learn the target semantic rules
from the given examples. The core tasks of
PAGELEARN are: creation of the table T;;,
building of the derivation tree for each of the
given corresponding examples, and, if it is nec-
essary, asking the Supervisor for the target rules
for evaluation of the parse tree, or waiting for
other processes to produce target semantic rules.
When the table T; j is computed then the process
generates the if-rules, transforms them into se-
mantic rules, and sends them to the Supervisor.

Example 5.2. We demonstrate how the method
works in parallel by continuing the previous ex-
ample. Recall that Pr={R(1), R(2), R(3), R(4)}.

e Processor 2 handles R(1) and R(2),
e Processor 3 handles R(3) and R(4).

e Processor 2 spawns 2 processes P, for
R(1) and Py; for R(2).

e Processor 3 spawns 2 processes P31 for
R(3) and Ps3; for R(4).

Fig. 8 shows the mapping of the processes in
the processor network.

The rules R(1) - R(4) are learned in parallel.
The positive and negative examples are :

- E{ (mode) = {(2.5 + 3. real), (5 + 3, int),
(1.5—4, real), ...}

- E{ (mode) = {2+3.2, int), (432, int), ...}

- ES (mode) = {(2,int), (3.5, real), ...}
- E5 (mode) = {(1.3, int), (2, real), .. .}
- Ef (mode) = {(3 % 2.5, real), (5 = 3, int),

(1,5 %4, real), (2.5/3, real), (2/3, real),
(6/3.4, real)}

- E5 (mode) = {(2 % 3.2, int), (4.3/2, int),
(8/3, int)}

126 PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

Processor 1

Slave|® ® ® Slave
-~

Processor 2

By By By

R(1Y R(2) R(3)

Supervisor

Slave|® ® @ Slave :
: = eo0

Processor 3

...
ne s

Processor n

By

R(4)

Fig. 8. Processes mapping for the Example 5.2.

- EJ (mode) = {(2,int), (3.5, real), ...}

- E; (mode) = {(1.3, int), (2, real), ...} -

Table 3 shows the table T'(mode) which is com-
puted in parallel.

| Class | Word | Target | U | ... [...]
+ 2543 | Real |int |.
I

Table 3. The table T(a) for the example 5.2

To compute the element of the column U an at-
tributed grammar tree is built on the input string
w of each example. Fig. 9 shows the attribute
tree for the rule R(1). Recall that the rules R(2)
and R(4) are evaluated in parallel.

e R(2)and R(4) € Prare used in this deriva-
tion tree.
If we build the derivation tree for the given
examples we find that

e To learn R(2) we need to use R(4)
e To learn R(3) we need to use R(4)

e To learn R(4) we don’t need to use rules
from Pr

The corresponding dependency graph for the
detection of circuity problem is given in Fig. 10.
We do not have a circuit in this graph so P>, and
P31 can wait until R(4) is learned, and P;; can
wait until R(2) and R(4) are learned. So we
needn’t ask the user, but when we had to learn
sequentially we had to ask the user for every
example in R(1), R(2) and R(3).

Example 5.3. We give an example to show
how there can be a circuit in the dependency
graph. Let Pr = {R(3), R(7)}. Ef = {(3.2 x
(4.143), real)} and ET = {((4.1x1.2), real)}.
When the process builds the attributed tree for
e3, then we have to wait for R(7) to be learned,
and when the other process builds the attributed
tree for e; then we have to wait for R(3) to be

learned. So we have the circuity problem. -

5.2. How the Method Works for L-attributed
Grammars

We suppose that a target nonterminal can pos-
sess inherited attributes. Consider the produc-
tion: p : Xp0 — Xp1---Xpn, € Pr. The
symbols in this rule may possess synthesized
and inherited attributes. We have to learn the

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel 127

R(2)

Expression 4
{mode}

R@#)

Expression g
{mode}

R(4)

Fig. 9. Derivation tree for the Example 5.2.

R(2)

/

R(1) R@3)

\ | /

Fig. 10. Dependency graph for detecting circuity
problem for Example 5.2

semantic functions for the set of defined occur-
rences U0<k§np Inh(X, 1) USyn(X,0) .

In our method we learn the semantic functions
for every X, ;, j = 1,....np, and then learn
the semantic functions for X, o sequentially.
However, we can learn in parallel the seman-
tic functions for the attributes of a given X, j,
J=1,...,np, and for X, o as well since both
are independent.

The whole task of process mapping and decom-
position of the rules is similar to the parallel
learning of S-attributed grammar. The only
difference is that we have to spawn processes
for every inherited attribute € Inh(X,;),j =
L,...,n, when their semantic functions are
learned, and we have to spawn processes for
every synthesized attribute € Syn(X,) when
we learn the semantic functions of X), .

The procedure can be summarized as given in
Figure 11.

So we learn in parallel the rules in Pr (the set
of the target semantical rules).
For a givenrule p : X,,0 — X, 1 ..
we learn

1. first semantic functions for the inherited at-
tributes of X), 1 in parallel

2. then semantic functions for the inherited at-
tributes of X), » in parallel

-Xp,np € Pr

ny,. finally semantic functions for the inherited
attributes of X, ,,, in parallel

n, + 1. and then the synthesized attributes of
X0 1n parallel

For steps 1 — n,, to create table T; , we have
to know the value of Uke{l,.-.,i—l}Syn(Xp,k) U

Inh(X, o) of which semantic functions are learned
in the previous steps.

We learn in parallel the rules, so for a non-
terminal both the inherited and the synthesized
attributes are learned parallelly, because

e If it is in the right hand side, its inherited
attributes are learned in the actual rule, and
its synthesized attributes are learned in an-

128 PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

for every rule in parallel do
{p : Xp70 — Xp71 .. .Xp’np € Pr }
1.forj=1,...,n,do {sequential }
for every inherited attribute € Inh(X), ;) in parallel do spawn and run Process2
2. forevery synthesized attribute € Syn(X),o) in parallel do spawn and run Process|1
end {for}

Processl

for each grammatical rule p € Pr and for each synthesized
occurrence X, o.a do
spawn processes in parallel which do the following
for each example e € E,(a)
build the attributed tree for the actual example on the input string w
using grammar G and semantic functions R
if the subtree contains only nodes corresponding
to rule instances R; belonging to Pp then
the attributes of this subtree can be evaluated,
and the columns of the table T can be computed
else
for every R; € Py do
the process that evaluates R; asks the Supervisor if the unknown rule R
has already been learned
if learned then the process can evaluate R; using the learned semantic rules
else if there isn’t any circuit in the waiting processes then wait...
else ask the user for an oracle and kill the waiting rules
belonging to this tree.

end {for}
end{ for example }
end {for}
Process2

for every example do
1. ask the user to give the example for the target attribute X), j.a
2. build the attributed tree for the actual example on the input string w
3. evaluate the part of the tree in order to get the value of Uy ... j— 1y Syn(Xp,x) U Inh(Xp.0)
end {for}
5.generate the if rule
6.generate the semantic rule

Fig. 11. General algorithm for L-attributed grammar

other rule of which it is the left hand side side (or this rule belongs to Pp).
symbol (or this rule belongs to Pg).

e Ifitis in the left hand side, its synthesized ~ 5.3. Analysis of the Method
attributes are learned in the actual rule,
and its inherited attributes are learned in ~ Our method learns semantic functions of At-
an other rule in that it is on the right hand tribute Grammars. During the execution an or-

PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

129

acle has to answer questions about the learning
problem. So the execution time depends on both
the oracles needed in the procedure and the ex-
ecution time itself of the program.

Our program is parallelized according to three
aspects:

1. Every semantic rule of the target rules is
learnt in parallel.

2. The PAGE system is a parallel parser, so
the attributed tree built for the acutal exam-
ple is handled in parallel. Moreover, this
facility makes it possible to learn many
semantic rules concurrently.

3. The concurrent learning of many seman-

tic rules gives tha possibility to reduce the
oracles needed in the procedure. The total
elimination of oracles is possible in cases
when no circuity situation occurs.
While the main problem of the sequen-
tial system was the large number of the
user queries, this method improves the ef-
ficiency of the previous method from this
aspect too. The elimination’s percent of
the user queries depends (on the training
examples) on the number of the circuits
appearing among the waiting rules during
the learning method.

6. Discussion

The method presented here is based on the
AGLEARN method described in [2]. Paral-
lelism improves the efficiency of the previous
method both in execution time and in interaction
needed. PAGE is capable to handle the learn-
ing of many semantic rules concurrently. OR
parallelism PAGE explores gives the ability of
reducing the oracles needed in the procedure.
The total elimination of oracles is possible in
cases when no circuity situation occurs.

Moreover, behind parallelism a “dual nature” of
the proposed method is hidden. The concept of
the method described is to give the user the ca-
pability of handling smaller specifications of the
grammar describing the problem the user deals
with. The natural order to do this is, firstly to
learn the semantic rules from the given exam-
ples and secondly to execute the program. Now
we can have both steps interleaving each other
in the following fashion:

Evaluate the grammar — if a semantic rule is
needed, try to learn it — continue the execution.

References

[1] PIERRE DERANSART AND JAN MALUSZYNSKI, A
Grammatical View of Logic Programming, The
MIT Press, 1993.

[2] TIBOR GYIMOTHY AND TAMAS HORVATH, Learning
Semantic Functions of Attribute Grammars, Nordic
Journal of Computing, accepted.

[3] DONALD E. KNUTH, Semantics of Context-Free
Languages, Mathematical Systems Theory, 2(2),
127-145, 1968.

[4] DONALD E KNUTH, Semantics of Context-Free Lan-

guages, correction, Mathematical Systems Theory,
5(1), 95-96, 1968.

[5] J. LEwlL, K. DE VLAMINCK, E. STEEGMANS AND J.
VAN HOREBEEK, Software development by LL(1)
syntax description, John Wiley & Sons, New York,
1992.

[6] J. MALUSZYNSKI, S. BONNIER, J. BOYE, F. KLUZ-
NIAK, A. KAGEDAL AND U. NILSSON, Logic Pro-
grams with External Procedures, In K.R Apt, J.W
de Bakker and J.J.M.M Rutten, editors, Logic Pro-
gramming Languages - Constraints, Functions, and
Objects, pages 21-48, The MIT Press, 1993.

[7] GEORGE PAPAKONSTANTINOU AND PANAYOTIS
TSANAKAS, Attribute grammars and dataflow com-
puting, Information and software technology, 30(5),
306-313, 1988.

[8] THOMAS REPS, Scan Grammars: Parallel Attribute
Evaluation via Data Parallelism, In Proceedings of
the 5th ACM Symposium on Parallel Algorithms and
Architectures, ACM, Velen, Germany, June 1993.

[9] P. TRACHANIAS, AND E. SKORDALAKIS, Syntactic
Pattern Recognition of the ECG, IEEFE transactions
on Pattern Recognition and Machine Intelligence,
12(7), 648-657, 1990.

[10] BRADLEY VANDER ZANDEN T., Constraint Gram-
mars in user interface management systems, In

Proceedings of the Graphics Interface Conference,
LNCS, Edmonton, Canada, June 6 —10, 1988.

[11] C. VOLIOTIS, A. THANOS, N. SGOUROS AND G. PA-
PAKONSTANTINOU, Daffodil: A Framework for In-
tegrating AND/OR Parallelism, In 5th Hellenic
Conference on Informatics, Athens, Dec 1995.

[12

COSTANTINOS VOLIOTIS, NIKITAS M. SGOUROS AND
GEORGE PAPAKONSTANTINOU, Attribute Grammar
Based Modeling for Concurrent Constraint Logic
Programming, International Journal on Artificial
Intelligence Tools, 4(3), 383 — 411, 1995.

130 PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel

[13] K. VOLIOTIS, G. MANIS, H. LEKATSAS, P. TSANAKAS
AND G. PAPAKONSTANTINOU, ORCHID: A potrable
platform for parallel programming, Euromicro Jour-
nal of Systems Architecture.

[14] K. VOLIOTIS, G. MANIS, A. THANOS, G. PAPAKON-
STANTINOU P. TSANAKAS, Facilitating the Devel-
opment of Portable Parallel Applications on Dis-
tributed Memory Systems, In Proc. Massively Par-
allel Programming Models MPPM-95 conference,
Berlin, 1995., IEEE Computer Society Press.

[15] ZARING ALAN K., Parallel Evaluation in Attribute
Grammar-Based Systems, PhD thesis, Department
of Computer Science, Cornell University, Ithaca,
NY 14853-7501, August 1990.

[16] R. WILHELM, Attributierte Grammatiken, Infor-
matik Spektrum, 2, 123 — 130, 1979.

Received: November, 1997
Revised: December, 1999
Accepted: January, 2000

Contact address:

Gyongyi Szilagyi

Hungarian Academy of Sciences
Research Group on Artificial Intelligence
Szeged

Hungary

Aggelos M. Thanos

National Technical University of Athens
Athens

Greece

GYONGYI SZILAGYI is a research assistant at the Research Group of Ar-
tificial Intelligence of the Hungarian Academy of Sciences. From 1995
till 1998 she was a Ph.D. student in computer science at Jozsef Attila
University. Her research interests include Logic Programming (LP),
Inductive Logic Programming (ILP), Constraint Logic Programming
(CLP), Learning of CLP, Attribute Grammars (AG), Learning of AG’s
and Slicing of Logic Programs.

AGGELOS M. THANOS received his M.S. degree (1993, in Computer
Science) from the University of Crete at Heraklion. In 1993 he entered
to the National Technical University of Athens Greece PhD. Program.
His research interest focuses on Distributed Memory Systems, Declara-
tive Languages, Parallel Programming, Parallel Logic, Constraint Logic
Programming, Distributed O.S. and Telemedicine.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

