
Journal of Computing and Information Technology - CIT 8, 2000, 3, 167–180 167

State of the Art and Open Research
Topics in Embedded Hard Real-Time
Systems Design

Wolfgang A. Halang
FernUniversität, Faculty of Electrical and Computer Engineering, Germany

The most important and necessary properties of embed-
ded real-time systems, and the ways to achieve them,
are explored. The basic and most prominent domains of
real-time systems design are discussed, starting with pro-
cessor and system hardware architectures, ranging over
operating systems, tasking and scheduling, high level
real-time programming languages, worst case execution
time and schedulability analysis, to application design
engineering and safety related applications. Common
misconceptions,which are still strongly present in control
systems design, are identified. Guidelines for consistent
implementation are proposed, and sample solutions in
certain areas presented. Finally, directions for future
research are indicated.

1. Introduction

More and more computers can be found con-
trolling common everyday utilities, such as mi-
crowave ovens, washing machines, video re-
corders, all kinds of industrial processes and,
increasingly, car subsystems. They are often
called embedded computer control systems. By
definition, they operate in the hard real-time
domain, i.e., they must be permanently ready
to respond to requests from their environments
within pre-determined time frames; hence their
other names, responsive or reactive systems.
Failing to meet the temporal requirements has
the same consequences as if their functional be-
haviour would be wrong.

With its first applications dating back to the
1940s �24�, some thirty years ago the discipline
of real-time systems began to gain wider inter-
est. All pertaining topics received considerable
attention from computer scientists all over the

world as well as from most major domains of
computer science. The fundamental guidelines
for their design have changed from fast to fast
enough: it is of utmost importance that systems
meet their pre-set deadlines, which is not guar-
anteed by mere speed of control systems them-
selves. To be able to achieve that, determinism
and predictability of the temporal behaviour of
program executions is necessary: these proper-
ties essentially imply other requirements.

Unfortunately, although undisputed among sci-
entists, the state of the art in implementing prac-
tical applications is still far away from meet-
ing — or even proving — these requirements:
in general, program execution and system re-
sponse times are usually unpredictable and not
consistently analysed. Hence, the state of affairs
in performance verification of control systems
is

Hope and Pray!

The main reason for this sad situation is that the
�commercial off the shelf� hardware and soft-
ware commonly employed in control applica-
tions is optimised towards high average perfor-
mance, whereas it is necessary to consider the
worst case behaviour if the meeting of deadlines
is to be guaranteed. In execution time analy-
sis, necessarily a certain amount of pessimism
is involved, diminishing estimated average per-
formance considerably.

In order not to employ more powerful hardware
platforms due to such pessimistic estimations,
designers tend to develop and test control ap-
plications in ways not much different from the

168 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

ones employed for non-real-time systems, re-
sulting in the risk that deadlines will be missed.
The consequences can be severe in many cases,
like massive material losses or even endanger-
ment of human safety. This is a situation that
must be overcome. The gap between academic
research results and practical implementations
must be removed in order to provide for much
more consistent and safer computer control sys-
tems.

This paper is organised as follows. First, the
basic properties of real-time systems will be
summarised. Then, some domains explicitly in-
volved in the design of embedded systems will
be considered: hardware architectures, operat-
ing system issues, languages, compilers, and
worst case execution time analysis. A special
section is dedicated to safety related systems,
bearing in mind that most control systems are
safety critical to a certain extent. Although in-
teresting and relevant to some more sophisti-
cated computer control systems, higher level
issues like more advanced software engineering
topics, real-time data bases or artificial intelli-
gence, will not be dealt with here.

A word on the references cited in this paper:
deliberately not the latest, but the original ref-
erences on certain topics are quoted. This way,
we intend to show when these topics were ad-
dressed first and where the general solutions
can be found �cp., e.g., papers on scheduling
�16, 11��. The development of research is thus
revealed, and it becomes obvious that the wheel
was re-invented many times.

2. Basic Properties of Embedded
Real-Time Systems

Real-time operation is an operating mode of a
computer system in which programs for pro-
cessing data arriving from outside are perma-
nently ready, so that their results are available
within pre-determined periods of time. The ar-
rival times of the data can be randomly dis-
tributed or be already a priori determined de-
pending on different applications �5�. Although
functionally correct, results produced beyond
the pre-determined time frames are wrong.

In computer control systems, there is a dis-
tinction between hard and soft real-time re-
quirements. Whereas in soft real-time cases
the penalty of missing deadlines increases with
time, in hard real-time cases overdue results are
useless with any consequences that may bring.
The general optimisation criterion in soft real-
time matters is average performance, while in
hard real-time environments it is necessary to
consider the worst case behaviour. Most con-
trol systems, however, are hybrid: hard and soft
real-time tasks usually co-exist in applications
with, as a rule, hard real-time tasks executing
with higher priority, and soft real-time tasks run-
ning within the performance reserve of the for-
mer.

There are two different comprehensions of pre-
dictability: layer-by-layer �microscopic� and
top-layer �macroscopic� predictability �20�.

Layer-by-layer predictability requires each of
the layers considered in real-time application
design to behave deterministically and predic-
tably, thus providing the necessary basis for the
next layer. This approach is suitable for embed-
ded control systems with moderate complexity.
It has been shown that their temporal behaviour
can be guaranteed a priori �14, 8�.

Top-layer predictability only considers the be-
haviour on the highest �application� layer, and
provides handlers to deal with the cases when
deadlines are missed. This concept is suit-
able for sophisticated and complex applications,
where it is impossible to deal with time in de-
tail. However, in embedded systems, especially
thosewith high integrity requirements for safety
critical applications, it is necessary to strive for
microscopic predictability.

Beside timeliness and predictability, an impor-
tant property of control systems is dependabil-
ity. The hardware part of these systems has
already reached a high degree of dependability;
methods and techniques for their verification
have been well established for a long time al-
ready.

In this sense, some extremely dependable hard-
ware platforms were developed some time ago.
An example thereof is the VIPER, a simple

State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design 169

microprocessor for safety critical applications
�13�. Its design has been formally specified and
mathematically rigorously proven correct �de-
spite rumours on an error in its model.�

Dependability of software, however, is still lag-
ging far behind. The reason for this phe-
nomenon is its inherent complexity. Unfortu-
nately, software engineering has not made much
progress in this specific field, yet. For the time
being, the most important principle to be fol-
lowed, when designing a system with severe
dependability requirements, is simplicity.

Simple solutions, however, are the most diffi-
cult ones to attain. They require high innova-
tion and complete intellectual penetration of the
issues involved:

Progress is the road from the primitive via the
complicated to the simple [1].

Easy understandability is the most important
precondition to prove the correctness of a sys-
tem.

3. Hardware Architectures

In common state of the art control computers, ei-
ther programmable logic controllers �PLCs� or
generic conventional microprocessors are used.
The former are cyclically repeating control al-
gorithms. Since the iterations must terminate
within certain periods, temporal predictability
is intrinsically guaranteed. However, static state
observation-based operation is less flexible, and
does not match the inherently dynamic nature
of most environments controlled. Often, the
paradigm of dynamic event observation must
be implemented.

Commercial of-the-shelf microprocessors are
optimised Commercial of-the-shelf micropro-
cessors are optimised for best utilisation in the
average case. This, however, contradicts the
hard real-time optimisation criterion, viz., the
worst case performance.

Processor utilisation itself is a thinking category
of the early days, now being obsolete due to the
achievements in solid state technology and,con-
sequently, the wide availability and low prices
of hardware components. Sub-optimal utilisa-
tion is a cheap price to be paid for simplicity
and dependability.

3.1. Undesirable Properties of Conventional
Architectures

Undesirable properties of conventional archi-
tectures are thosewhichmake a system’s tempo-
ral behaviour �1� unpredictable or�and �2� diffi-
cult to estimate. A common counter-productive
characteristic of their design is excessive com-
plexity, which renders their verification difficult
or unfeasible with justifiable effort.

The increase in microprocessor performance
through the years was mainly influenced by two
factors, viz., technological advances and new
ideas employed in architectural design. Such
new ideas were, e.g., the RISC philosophy, par-
allel processing, pipelining and caching. While
RISC ideas are also very suitable for architec-
tures employed in hard real-time systems be-
cause of their simplicity and the implied verifi-
ability, pipelining and caching �although always
present, especially in RISC processors� present
a hazard to determinism and predictability of
temporal behaviour.

Independent parallel operation of internal com-
ponents. In order to fully exploit inherent par-
allelism of operations, the internal units of pro-
cessors are becomingmore andmore autonomo-
us resulting in highly asynchronous operation.
By this development the average performance of
processors is increased. However, it is a com-
plex task to analyse corresponding sequences of
machine instructions in order to determine their
execution times. For the time being, verification
of such complex processors and their program
execution behaviour is practically impossible.

The most common way to improve the through-
put of a processor by exploiting instruction level
parallelism is pipelining. Various techniques
are used to cope with the well-known pipeline
breaking problem due to the dependence of in-
struction flow control on the results generated
by previous instructions. They are, however,
all based on the optimisation of average perfor-
mance.

To predict execution times, complex machine
code analysers would be needed, requiring de-
tailed information about instruction execution,

170 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

which is often proprietary and, thus, inaccessi-
ble. Owing to its complexity, a processor with
pipelined operation is also very difficult to ver-
ify.

Caching. Fetching data fromoff-processor so-
urces represents a traditional bottle-neck, espe-
cially in the von Neumann processor architec-
ture. To avoid it, cache memories were intro-
duced. Since instruction fetching from memory
consumes a considerable amount of execution
time, the latter thus highly depends on whether
an instruction is found in cache or not. To pre-
dict this, complex analysers would be neces-
sary, emulating the caching operation. Even the
most sophisticated ones would fail in the case
of multiprogramming, where caches are filled
with new contents on every context switch.

The worst case consideration is, thus, to always
count on cash misses and to design applications
in a way that deadlines are met anyway — if this
is possible, however, caches are not needed!

Similar to processor architecture considerations,
in classical systemarchitecture design some fea-
tures were implemented to improve average per-
formance. Again, these features may lead to
undesirable consequences which make process
execution time prediction difficult or even im-
possible. Some of them are listed in the sequel.

Direct memory access. Since general proces-
sors are ineffective in transferring blocks of
data, direct memory access �DMA� techniques
were devised. With respect to the delays caused
by DMA transfers, there are two general modes
of DMA operation, viz., cycle stealing and burst
mode. A DMA controller operating in the cy-
cle stealing mode is literally stealing bus cycles
from the processor, while in the other mode
the processor is stopped until the DMA transfer
is completed. Although the processor has no
control over its system and context switching is
disabled during data transfer, this mode is more
appropriate when predictability is the main is-
sue. If block length and data transfer initiation
instant are known at compile time, the delay
can be calculated and considered in the pro-
gram execution time estimation. Furthermore,
block transfer is faster, because bus arbitration
is required only once.

Data transfer protocols. Data transfer via mi-
crocomputer busses also deserves some consid-
eration. Synchronous data transfer protocols by
definition ensure predictable data transfer times.
Asynchronous ones are more flexible, however,
their behaviour is very difficult to control, espe-
cially in shared-bus systems.

In the case of multi-master busses, access con-
flicts and, consequently, arbitration is another
issue that could jeopardise the temporal pre-
dictability of program execution. It has to be
performed so that even in a case of heavy traf-
fic it is assured that the bus is granted to each
requester within a certain time frame.

Similar conclusions hold for local area networks
as well. For distributed control systems ap-
propriate network protocols with deterministic
and predictable behaviour must be chosen. The
widely used CSMA�CD �Ethernet� is — like
many others — inappropriate because of non-
deterministic resolution of collisions. A spe-
cific implementation problem is also the com-
plexity of standard protocols: for instance, the
standard document DIN 19245 on the field bus
Profibus comprises some 750 pages.

Dealing with hardware interrupts. The prob-
lems discussed in the previous paragraphs could
either be prevented, or the measures potentially
causing non-deterministic or unpredictable be-
haviour could be renounced. However, in pro-
cess control computers operating in the dynamic
mode, i.e., immediately responding to events
in their environments, interrupts are unavoid-
able. Since these events occur asynchronously
to program executions, the latter are necessar-
ily delayed. This problem cannot be solved in
classical single processor architectures.

A possible solution is to employ a dedicated
asymmetrical multiprocessor architecture, in
which one processor is handling such events
as signals from the environment, time events,
changes of synchronisers etc., and performing
functions of the operating system kernel �7�.

When such an event occurs, an associated task
is put into the ready state and all ready tasks are
re-scheduled. All this takes place in parallel to
the execution, on another processor, of the run-
ning task without interrupting or pre-empting it.

State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design 171

Knowing the �residual� execution times of ap-
plication programs, the run-time schedulability
analyser checks whether there exists a feasible
schedule of the new set of tasks. If so, the tasks
are re-scheduled accordingly.

Apart from provision for predictability, also
the inherent parallelism of task execution and
operating system administration routines is ex-
ploited by this concept, thus considerably im-
proving systems performance. Also, the counter-
productive overhead of context switching is
minimised.

This solution is known for 15 years now, and
was implemented in several academic prototype
platforms �e.g., �2, 19, 3��, while no reportswere
found on industrial implementations.

4. Operating Systems, Tasking and
Scheduling

The domain of real-time operating systems and
related issues was well covered by both aca-
demic research and industrial implementation
of commercial systems. Hence, in this section
only a coarse overview of the domain is given.

According to nature, scale, purpose, implemen-
tation etc., in embedded real-time control sys-
tems different design alternatives are pursued.

In smaller applications real-time executives are
sufficient, providing basic functions such as
task and time management, interrupt and er-
ror handling. Often, these functions are custom
designed and incorporated into the application
program code. In very small applications, there
is even no need for that: the program itself
handles control algorithms, input�output data
exchange and event administration.

In larger scale and complex control applica-
tions, usually complete operating systems are
employed: they can be either Unix-like �e.g.,
QNX, Real-Time Unix, Real-Time Linux� or
other commercial systems �e.g., VRTX�. For
the former, standardisation has been achieved
by the POSIX standard.

Common functions of real-time operating sys-
tems for embedded applications are �22�:

� interrupt handling: lowest level routines, di-
rect hardware support;

� process management: multiprogramming is
supported by the concept of processes and
tasks, which are supervised by process and
task management;

� inter-process communication and synchroni-
sation: means for interaction between asyn-
chronously operating processes and tasks;

� time management: administration of time,
actions on processes and tasks at specified
instants of time;

� input�output drivers: support for communi-
cation with peripheral devices;

� man-machine communication: support for
the interaction between system and operator;

� file management: not obligatory in embed-
ded systems;

� memory management: storage administra-
tion supporting robustness and safety of con-
trol systems �As virtual memory is jeopar-
dising predictability by varying access times
to data residing in memory or on mass stor-
age media, it is obsolete due to the very large
semiconductor memories available today.�;

� error handling: necessary for robust fault tol-
erant systems; its implementation must allow
for the consideration of delays in error situa-
tions;

� exception handling: one of the most severe
obstacles to the predictability of execution
times of tasks; a good solution is to handle
exceptions off-line, in parallel on a dedicated
processor �see above�.

Application programs controlling the processes
in embedding environments are organised in
form of tasks. Tasks embody application pro-
grams whose worst case execution times are
analysed and thus known. An important pa-
rameter of each task is its deadline, usually ex-
pressed as an interval from the task’s invoca-
tion until the instant when it needs to be con-
cluded. If not, the deadline is violated with
consequences depending on whether the task is
a hard or a soft one. In the former case the task
has failed, the results are meaningless, and the
system is in a fault condition.

Computer control systems can be of either static
or dynamic nature. The operation of static sys-
tems is controlled synchronously by programs,
i.e., it can be prepared in advance. There are no

172 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

interrupts or other events. Tasks are scheduled
at design time, allowing to analyse, test and ver-
ify such systems a priori. Hence, they are much
safer and more robust than dynamic systems.

However, in most cases it is not possible to
assume the behaviour of a system in advance.
Then, it is necessary to consider dynamic events
at run time. Verification of such systems is
much more demanding.

In dynamic multi-tasking systems, scheduling
algorithms capable of generating appropriate
schedules must be implemented. The ones
which guarantee to fulfill the requirement that
all tasks meet their deadlines �provided the sys-
tem’s performance is sufficient� are referred to
as feasible. In the literature, several such algo-
rithms were reported. Actually, scheduling of
real-time tasks is a very popular research area,
although the most adequate basic policies are
known since the early 1970s. The issues con-
sidered in the research on scheduling policies
include resource contention, precedence rela-
tions, synchronisation, maximum system utili-
sation, prevention of deadlocks, relationship be-
tween soft and hard real-time tasks, task priority
issues, overload handling, fault tolerance and,
last but not least, a priori or run-time schedula-
bility analysis.

The usual means to introduce asynchronous dy-
namic events into microprocessor-based con-
trol systems are interrupts. Handling them by
generic microprocessors is, as a rule, priority-
based, and this policy can usually be found in
real-time executives, too. However, it is not
possible to guarantee schedulability �21� of a
set of ready tasks by assigning static priorities
to them. Although this technique is temptingly
simple and broadly used, it is highly inappro-
priate for hard real-time applications.

In dynamic systems, tasks can be activated pe-
riodically or sporadically. A suitable schedul-
ing policy for periodic tasks is rate-monotonic
scheduling �16�: the task with the highest fre-
quency of invocations is assigned the highest
dynamic priority.

The situation generally prevailing in industrial
real-time data processing, however, is that at
any point in time there is a number of runnable
tasks competing for the assignment of a proces-
sor, regardless whether the tasks are aperiodic
in nature or the cyclic incarnations of periodic

tasks. This task state is entered by explicit acti-
vation, continuation, or after releasing synchro-
nizers. For scheduling such ready task sets, the
most suitable policy is the earliest-deadline-first
scheduling algorithm: the task with the closest
deadline is executed first �a modified version
is described in �2��. It was shown to be fea-
sible and optimal on single processor systems
�11�. With the so-called throw-forward exten-
sion it is also feasible on homogeneous mul-
tiprocessor systems. However, this extension
leads to more pre-emptions, is more complex
and, thus, less practical. It is characteristic for
the state of the art to note that the two major
scheduling methods, viz., the first-come-first-
served and the static priority-based disciplines,
which are widely supported by contemporary
high level languages and implemented in com-
mercially available real-time operating systems,
are both not feasible.

When the due dates and execution times of tasks
are a priori available, using simple necessary
and sufficient conditions �11�, one is able to de-
tect whether a ready task set given at a certain
instant can be executed meeting the specified
deadlines. Thus, the problemof optimumsingle
processor scheduling for real-time applications
has been already fully solved by the earliest-
deadline-first algorithm. This scheme is char-
acterized by an impressive list of advantageous
properties �8�, which make it extremely well-
suited for industrial practice. This schedul-
ing scheme can be extended to not fully pre-
emptable tasks retaining all the advantageous
properties just at the insignificant price of re-
duced maximum processor utilisation �9�.

The practical relevance of scheduling tasks on
homogeneous multiprocessor systems is rather
low, as in process control applications the pro-
cess interfaces are usually physically hard wired
to sensors and actuators establishing the con-
tact to the environment. Thus, it is natural to
implement either single processor systems or
dedicated multiprocessors.

5. Programming Languages and Worst Case
Execution Time Analysis

Real-time applications on generic computer sys-
tems can be programmed using one of the fol-
lowing programming languages:

State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design 173

� Programmable logic controllers are program-
med using a variety of vendor specific pro-
gramming means; there is a good and well
established standard IEC 61131-3.

� Assembly languages: unfortunately, a con-
siderable part of applications based on generic
microprocessors is still programmed in as-
sembly language resulting inmuchmore error-
prone programs and less productive applica-
tion program development.

� Implementation languages: the general pur-
pose languages C or C��, FORTRAN, Ba-
sic, Modula �already with support for task-
ing� are commonly known and compilers are
readily available; however, they lack support
for most important real-time features, like
scheduling, process hardware access or mul-
titasking.

� Genuine real-time languages:
– Universal: Ada, LTR, PEARL
– Proprietary: Atlas

5.1. High Level Real-Time Programming
Languages

A high level programming language to be use-
ful in a real-time environment should fulfill the
following properties:

� It should support the predictability of tempo-
ral behaviour of program executions. Most
of the commercially available and broadly
used languages do not fully meet this require-
ment. It is thus left to the programmer to use
for the sensitive parts of an application only
those constructs which do not jeopardise pre-
dictability, to analyse and, at run time, super-
vise the temporal behaviour of the program.

� It should be secure to allow for reliable pro-
grams. This can be achieved by strong type
checking and provisions for exception han-
dling.

� Support formultiprogramming should include
tasking and good synchronisation concepts.

� Asperipheral device drivers are very common
and important parts of real-time applications,
easy access to non-standard hardware is re-
quired.

� Programming in the large is to be supported
by modularity and the possibility for separate
compilation.

� As real-time software has a long life ex-
pectancy, its maintainability is to be fostered
by easy readability, understandability, and
modifiability.

High level programming languages for pro-
gramming generic computer systems used in
control applications can be divided into two
categories: implementation languages and real-
time languages.

Implementation languages do not provide much
support for real-time programming. Applica-
tion programmers have to call certain library or
operating system kernel routines,which provide
the real-time capabilities to a certain extent. By
far the most common among implementation
languages is C or C��. Its advantages are good
availability, connectivity with, and support for,
program development tools; most programmers
are familiar with it. The disadvantages are poor
readability and maintainability, and the lack of
almost any of the above mentioned features re-
quired in real-time programming.

For programming real-time applications, proper
real-time programming languages ought to be
used. There are not many such languages com-
mercially available. Many of them were either
academic prototypes or proprietary languages
of certain large companies or institutions.

Two well established and broadly used real-
time languages are mentioned here, Ada and
PEARL.

Ada is probably the most widely used genuine
real-time language. It has a number of good
properties includingmost of the ones mentioned
above. One major disadvantage, however, is
that it is very large and complex. Including al-
most any feature of all other modern languages,
it is, thus, hard to learn and use, and tends to
produce inefficient code.

PEARL �6� was designed and standardised by a
group of German scientists in the early 1970s
and was re-defined in 1998 �PEARL90�. It also
fulfillsmost of the above requirements: it iswell
understandable, and much simpler and closer to
the control engineer than Ada. Unfortunately,
it is not broadly used outside of Germany and
Europe, and does not have much support by
commercial program development tools.

174 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

In recent years, object orientation is also en-
tering the real-time programming domain. The
classical programming languages are being ada-
pted to this paradigm, and new ones are emerg-
ing. The one to be mentioned in this context
is Real-Time Java. Although the common Java
is originating from the process control domain,
there are still some obstacles to its consistent
applicability, the most serious one being the
temporal impact of garbage collection. More-
over, the current draft of the real-time extensions
to Java reveals that the design committee lacks
knowledge on other real-time languages.

5.2. Industrial Controller Programming

Vendors of programmable logic controllers usu-
ally provide their ownprogramming tools. Most
of their properties were incorporated into the
standard IEC 61131-3 �12�with the goal to unify
program design in this application area. They
may be grouped into five categories:

� Instruction List: a low level assembly-like
language;

� Ladder Diagram: logic functions expressed
in a form of relay logic;

� Function Block Diagram: standard and com-
monly used routines are represented by blocks
which are then “wired” together;

� Structured Text: a structured high level tex-
tual language;

� Sequential Function Chart: graphic represen-
tation of programs structured in form of Petri
nets, including parallel and alternative execu-
tion.

While the first two are merely meant for com-
patibility with some older systems, the latter
three represent powerful tools for application
design. They could even be used for pro-
gramming generic control computers: standard
procedures �e.g., some 70 as defined for the
control of chemical processes in the guideline
VDI�VDE 3696 �23�� are programmed, ver-
ified, and placed in a library. Application
programmers only need to invoke them and
to “wire” them together for specific applica-
tions. This way, the complexity of designs
could be greatly reduced, and the verification
of programs composed out of standard program
blocks would turn extremely simple.

5.3. Worst Case Execution Time Analysis

For schedulability analysis, execution times of
programs must be known in advance. This is
only possible if the language provides for pre-
dictability of the programs’ temporal execution
behaviour. Unfortunately, no existing program-
ming language guarantees that. It is, therefore,
necessary to introduce certain restrictions:

� GOTOs are not allowed: their use can result
in unstructured code being difficult to man-
age. Instead, EXIT and LOOP statements
should be introduced. The former is used to
leave innermost structures, and the latter is
used in loops for immediate initiation of the
next loop iteration. As a consequence, labels,
except for procedure and task declarations,
are obsolete and therefore renounced.

� Each loop block must be tightly bounded:
lower and upper counts of iterations must be
present and defined by compile-time-constant
expressions, so that the longest execution
time of a loop can be estimated. The “while”
or “repeat” conditions should be replaced by
explicit IF-EXIT statements within loops.

� Pointers and recursion are not allowed: their
use can result in severe memory management
problems. They can produce temporally non-
deterministic actions, and cannot be consid-
ered in a priori timing analysis.

� Each synchronisation construct must be tem-
porally bounded: synchronisation constructs
�for example critical regions or semaphores�
may take arbitrarily long times for their ex-
ecution. This must be bounded in real-time
systems. Each such command must be tem-
porally guarded, and an explicitly defined ac-
tion must be given for the case that a time-out
occurs.

� Explicitly asserted execution times: in some
cases, estimation may yield very pessimistic
execution times. To resolve this problem, ad-
ditional execution information must be given
by the programmer. To this end, new con-
structs �pragmas� may be inserted into the
program code, as proposed in �17, 18�. How-
ever, this method requires complex analy-
sis, and is not feasible in all situations. To

State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design 175

overcome this problem, the explicit execu-
tion time of a part of the code can be asserted
by the system developer, overriding the esti-
mated results with the asserted ones. How-
ever, for safety reasons, such a block must be
guarded by time-out control, and a time-out
action must be present.

� Task scheduler support: the scheduling algo-
rithm in the operating system kernel proces-
sor relies on the residual execution time of
tasks. This parameter is computed from the
maximum execution time of a task minus the
accumulated running time. However, the ac-
tual execution time is expected to be shorter
than the estimated one. To achieve a more re-
liable and realistic estimation of the residual
time, it can be updated explicitly, whenever
possible, by asserting the information about
the residual execution time which is gradu-
ally more precise as the task approaches its
end.

To estimate the execution times of programs
written in high level programming languages,
the following three steps are necessary:

1. The HLL source code is parsed and anal-
ysed for constructs such as straight line
code blocks, alternatives, condition evalu-
ations, loops etc.

2. The execution time of each straight line
portion of assembly language �ormachine�
code is calculated. In further analysis, the
straight line blocks are not considered any
more.

3. The nested structures in the compiled sour-
ce code are searched recursively until the
innermost ones are located. These are
then reduced by their worst case execution
times: alternatives are reduced to the ex-
ecution time of the longest one; execution
times of loop bodies are multiplied by the
maximum number of iterations; subrou-
tine calls are reduced to the correspond-
ing execution times. Then, the same pro-
cedure is performed on the next enclos-
ing nested structure. Finally, the recursive
application up to the outermost structures
yields the execution time of the program.

6. Safety Critical Applications

It appears to be easier to assure dependable
hardware architectures than dependable soft-
ware. The reason is that verification methods
and techniques for hardware designs are well
established for quite a long time. Hardware
can be safety licensed for critical applications
by licensing authorities �like TÜV in Germany�
using these procedures.

Software is much more complex, taking into ac-
count the whole life cycle, from specification,
design, coding and compilation into machine
code which is actually the final result. There
is a number of hazards to its integrity, from the
common faults and errors in specifications and
in all levels of design, to implementation prob-
lems like arithmetic precision �cp. the Ariane 5
disaster�, to mention just a few.

Licensing of software-based systems is extreme-
ly difficult. Although considerable research ef-
forts have been invested into the area of for-
mal specification and verification of programs,
the techniques are generally applicable to rela-
tively simple cases, only. Also, they are not for-
mally accepted by licensing authorities, since
they themselves rely on complex computer tools
which are inherently unsafe.

The only method officially recognised by Ger-
man licensing authorities is diverse back-transla-
tion �15�. It consists of re-gaining a require-
ments specification for a software under inves-
tigation by several, independently working li-
censors or groups. To eliminate possible effects
of error-prone compilers, this process must be
based on the machine code read out of the target
system. It is obvious that this method is only
feasible for very limited applications like, e.g.,
emergency shut-down systems. It is not usable
for most industrial applications.

For that reason, in extremely critical applica-
tions and systems, like safety backup systems in
nuclear power plants or avionics, where safety
is crucial and formal licenses are necessary,
usually only hardwired or trivially simple pro-
grammed systems can be licensed for the time
being. However, for economic reasons, it is
necessary to provide methods and techniques
to safety license also program-based systems
of reasonable complexity. Therefore, some al-
ternative approaches to control system design

176 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

were elaborated �10�, allowing to rigorously
prove correct systems with realistic complex-
ity involving only reasonable effort.

7. Main Topics of Future Research

In this section, we want to identify and shortly
discuss a number of topics, which are or will be,
in our estimation, the major areas of research
activities on real-time systems.

Conceptual foundations of real-time computing.
Academic real-time systems research has to be
based on a solid, realistic model derived from
the application domain incorporating the think-
ing categories and optimality criteria as outlined
above. Computer science has no well devel-
oped concept of time. As a matter of fact, time
even appears to be systematically suppressed.
Therefore, it is necessary to reflect on the rôle
the time is playing. A clear understanding of
the reasons why and the manner in which time
is involved in the design of real-time systems is
needed as a prerequisite for a sound methodol-
ogy. We expect that the systematic exploration
of common sense notions about time and of
analogies with everyday life solutions for time
related problems will yield principles for the
design of real-time systems.

Utilisation of domain specific knowledge. In
general, real-time systems research must be
much more application-oriented than other ar-
eas of computer science. The employed meth-
ods are generally process-specific, because the
process is part of the control loop closed by
and in the computer. This holds, e.g., for over-
load handling and error recovery procedures,
which can be designed by exploiting the pro-
cesses’ inertia and their corresponding typical
time constants. A real-time system is subjected
to variable time conditions in dependence on
the process speed. There may be the possibility
for their relaxation in the overload case, e.g., by
reducing the speed of a robot arm. Adaptive,
self-correcting systems with carefully designed
graceful performance degradation behaviour in
response to error occurrences can only be con-
structed by full utilisation of the process char-
acteristics. The comparison of two different de-
signs or systems is, analogously, only possible

on the basis of application specific benchmarks
— mere MIPS figures do not say anything.

Predictability and techniques for schedulability
analysis. A time metric must be introduced
to realise the predictability requirement. To
achieve temporal predictability and full deter-
minism of system behaviour will be a major
effort, in the course of which many features
of existing programming languages, compilers,
operating systems, and hardware architectures
will have to be questioned. To this end, real-
time systems must be designed in all aspects
as simple as possible, for simplicity fosters un-
derstandability and enhances dependability and
operational safety. As far as possible, paral-
lelism is to be implemented physically in order
to prevent problems.

Requirements engineering and design tools.
Over the past decade, there has been a pro-
liferation of formal specification methods that
incorporate some notion of time. But while
these methods may have some use in verifying
qualitative timing properties, they are of little
value in reducing complexity. �Electrical� en-
gineers designing real-time systems do not yet
have requirements engineering and design tools
at their disposal, which are oriented at their way
of thinking and which allow them to precisely
express all timing constraints they encounter.
Absolute timing or temporal supervision of ac-
tivities, expressed in a system independent lan-
guage, are still not possible. Graphical meth-
ods are best suited to express concurrency, co-
operation, and temporal behaviour of real-time
systems in a fully predictable way, because they
take advantage of the inherent capability of pic-
tures to effectively convey complex informa-
tion. Moreover, they allow for straightforward
formalisation, being a prerequisite of their use
for program specification and verification.

Reliability and safety engineering with special
emphasis on the quality assurance of real-time
software. Whendeveloping real-time programs,
not only the software correctness, in the sense
of mathematical mappings as in sequential pro-
cessing environments, has to be proven; also,

State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design 177

their intended behaviour in the time dimen-
sion, and the interaction of concurrently ac-
tive processes, need verification. Although not
fully developed yet, there is already a host of
methods available to carry out the former task.
Working in close co-operation with the require-
ments engineering and design tools, analytical
methods are required which perform an a pri-
ori check if the specified time conditions can
be met �“schedulability analysis” �21��. Such
new verification procedures must be quantita-
tive and time-oriented, and should utilise the
partial synchronisation of tasks implied by the
timing constraints.

High level languages and their concepts of par-
allelism, synchronisation, communication, and
time control. The guiding principle for the de-
velopment of the next generation of high level
real-time programming languages should be the
support of predictable system behaviour and of
inherent software safety without impairing un-
derstandability. Language constructs for the
formulation of absolute time conditions and
for controlling the operating system’s resource
scheduling algorithms must be provided. The
latter feature will enable the compiler to already
perform, to a large extent, checks for feasi-
ble executability of task sets. New languages
should further support the re-usability of mod-
ules, distributed software, various time depen-
dent fault tolerance mechanisms, and the pro-
gramming of PLCs. New, user-oriented, syn-
chronisation methods must be devised and pro-
vided, which employ time as an easily conceiv-
able and natural control mechanism. The next
generation languages should try to combine the
advantages of PEARL90 �6� and Real-Time Eu-
clid �14�, and should, for safety purposes, in-
corporate as many ideas from NewSpeak �4� as
practically feasible.

Real-time operating systems. It will be ex-
pected of future real-time operating systems that
they guarantee the deadlines and precedence re-
lations holding between tasks under observation
of fault tolerance measures on the basis of an
integrated resource scheduling. The common
deadlines of several co-operating tasks have to
be met in distributed systems taking the trans-
mission overhead into account. Frequent tem-
poral supervision measures must be taken dur-

ing program execution to guarantee timely sys-
tem behaviour or to initiate a graceful degrada-
tion of performance. The arrival of tasks ready
for execution and requesting resources can no
longer be considered as a random process. For
the sake of predictability, a more deterministic
proceduremust be applied, which utilises the in-
formation about the future instants when tasks
will enter the ready state being available in real-
time systems. Thus, future resource conflicts
can be detected and possibly resolved at a very
early stage. It is expected of a real-time oper-
ating system, that it can predict at any point in
time, if all active tasks will meet their deadlines.

Distributed, fault tolerant, language and/or op-
erating system-oriented innovative computer ar-
chitectures. A uniform theory of correctness,
timeliness, and dependability is urgently needed
as foundation for the design of large distributed
and fault tolerant systems. The research into
fault tolerance should yield effective, time-boun-
ded methods for error handling and administra-
tion of redundancy. The effect of system load
on the fault susceptibility of real-time systems
has not been investigated, yet. When devel-
oping new architectures for real-time comput-
ers, the main objective must be the support of
programming languages, operating systems and
scheduling algorithms, of fault tolerance and
time management, as well as of error handling
and time-bounded communication. This con-
tributes to increased speed and to narrowing the
semantic gap between hardware and software.

Hardware and software of process interfacing.
Favourable interconnection topologies and spe-
cialised components with inherently low inter-
nal data transmission requirements are needed
for distributed architectures. For predictability
reasons and to meet the applications demands,
new process peripherals with accurately user-
timed behaviour must be developed in connec-
tion with the realisation of time-based synchro-
nisation primitives.

Communication systems. With respect to real-
time communication systems, future research
shouldmainly emphasise predictably timely net-

178 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

work behaviour, integrated scheduling algorit-
hms for communication channels and other re-
sources, as well as dynamic routing for message
transmissions with guaranteed deadlines.

Distributed data bases with guaranteed access
times. In order to meet the high speed require-
ments of distributed real-time data base sys-
tems, amaximumdegree of parallelismhas to be
realised for the transaction processing. A the-
ory of the integrated control of this parallelism
and of the corresponding resource scheduling
is needed, which, at the same time, aims to
maximise parallelism and to minimise the worst
case transaction processing time under obser-
vation of the boundary conditions data consis-
tency, transaction correctness, and meeting the
transaction deadlines.

Artificial intelligence with special emphasis on
real-time expert and planning systems. In real-
time systems, artificial intelligence methods ba-
sed on heuristic knowledge are mainly applied
for the control and scheduling of time-bounded
processes. The best possible solution of a prob-
lem is to be found within dynamically given
time limits. It is an open research problem to
develop symbol processing methods observing
such time limits in a predictable way. Among
others, new storage management techniques,
different from garbage collection, need to be
devised to this end.

Global cost minimisation. Scheduling has an
economical raison d’être: the utilisation of re-
sources is to be optimised in order to minimise
costs as the ultimate objective. Therefore, re-
search on real-time scheduling ought to address
problems significant to industry and to society
at large. The optimum to be achieved is ut-
most simplicity, which is a precondition to con-
struct highly dependable systems with easily
predictable behaviour. Thus, new scheduling al-
gorithms should support the search for low com-
plexity task execution schedules featuring inher-
ent prevention of deadlocks and, minimisation
of the need for explicit resource access synchro-
nisation, minimisation of context switches �also
to meet the characteristics of RISC processors
with their large register banks and caches�, and

incorporation of inter-task and network com-
munication. Such new algorithms should be
accompanied by calculation procedures allow-
ing to determine the processor capacity required
to feasibly, i.e., timely, execute a given task set.

When it comes to costminimisation, the “bottom-
line approach” should be taken. This means that
only the overall costs of an automation project or
a computerised technical process are economi-
cally relevant leaving room for many trade-off
decisions allowing to reduce the cost of one
component if a more expensive other one is em-
ployed. Following this approach, one will learn
that a processor running idle once in a while
leads to great benefits with respect to the costs
of other system elements. Here scheduling re-
search can draw on the methods of operations
research, i.e., that area of science it emanated
from some decades ago.

A new instrumentarium is required to address
the most pressing question in the optimisation
of real-time computing systems, which consti-
tutes, at the same time, the largest potential for
cost reductions: to minimise complexity and
cost of software.

8. Conclusion

To achieve the properties which are necessary
in the real-time systems domain, the methods
and techniques common in all areas of em-
bedded control systems design need to be re-
considered. This consolidation effort must be
centred around the quest of fulfilling the timeli-
ness, predictability, and dependability require-
ments, because they have not satisfactorily been
met, yet. The price to be paid for better consis-
tency and, consequently, better safety, usability,
availability etc., is just worse processor utilisa-
tion. This is easily tolerable in the light of the
state of the art in solid state technology, and the
availability and prices of hardware components.

Even in extremely safety critical systems, eco-
nomical reasons require to replace relay logic
and hardware-based systems by programmed
ones. In their development, however, it is neces-
sary to follow the generally known, but usually
neglected, principles of hard real-time systems
design. One has begun to realise the inher-
ent safety problems associated with software.
Since the utilisation of software in automation

State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design 179

systems is growing at a rapid pace, the prob-
lem of software dependability will exacerbate
severely. Future embedded systems will only
be able to meet the demands of society if they
will be safety licensable.

The principle guideline for the design of embed-
ded control systems must be simplicity: consid-
ering the state of the art in all areas of design,
and especially in verification, this is the only
way to guarantee consistency of functional and
temporal behaviour of embedded control sys-
tems.

Real-time systems research must, much more
than other areas of computer engineering, be
based on and oriented at a profound understand-
ing of the application domain. The employed
methods are generally process specific, because
the process is part of the control loop closed by
and in the computer.

9. Acknowledgements

I wish to thank Professor M. Colnarič for many
of his ideas which are included in this paper,
and for his continuous co-operation. The work
of his colleagues in the Real-Time Systems
Laboratory of the University of Maribor, Dr.
Domen Verber, Dr. Roman Gumzej and Dipl.-
Ing. Stanislav Moraus, for the implementation
of some of the ideas outlined in this paper, is
highly appreciated.

References

�1� K. BIEDENKOPF, “Komplexität und Kompliziert-
heit”, Informatik Spektrum 17, 82–86, 1994.

�2� M. COLNARIČ, W. A. HALANG AND R. M. TOL,
“Hardware Supported Hard Real-Time Operating
System Kernel”, Microprocessors and Microsys-
tems 18, 10, 579–591, 1994.

�3� J. COOLING, “Task Scheduler for Hard Real-Time
Embedded Systems”, Proc. IEE Intl. Workshop on
Systems Engineering for Real-Time Applications,
pp. 196–201, London: IEE 1993.

�4� I. CURRIE, “NewSpeak”, In High Integrity Software,
C. T. Sennett �Ed.�, pp. 122–158, London: Pitman
1989.

�5� DIN 44 300 A2: Informationsverarbeitung, Berlin-
Cologne: Beuth Verlag 1972.

�6� DIN 66 253-2: Programmiersprache PEARL 90,
Berlin-Cologne: Beuth Verlag 1998.

�7� W.A. HALANG, Definition of an Auxiliary Processor
Dedicated to Real-Time Operating System Kernels,
University of Illinois at Urbana-Champaign, Report
UILU-ENG-88-2228 CSG-87, 1988.

�8� W. A. HALANG AND A. D. STOYENKO, Constructing
Predictable Real-Time Systems, Boston-Dordrecht-
London: Kluwer Academic Publishers 1991.

�9� W. A. HALANG, “Load Adaptive Dynamic Schedul-
ing of Tasks with Hard Deadlines Useful for
Industrial Applications”, Computing 47, 199–213,
1992.

�10� W. A. HALANG AND M. COLNARIČ, “Outsourcing
the Development of High Integrity Software”, in
Software Quality — The Way to Excellence, W.
Wintersteiger �Ed.�, pp. 495–501. Vienna: Arbeits-
gemeinschaft für Datenverarbeitung 1999.

�11� R. HENN, Deterministische Modelle für die Prozes-
sorzuteilung in einer harten Realzeit-Umgebung,
PhD Thesis, Technical University of Munich, 1975.

�12� IEC 61131-3: Programmable Controllers, Part 3:
Programming Languages, Geneva: International
Electrotechnical Commission 1992.

�13� J. KERSHAW, The VIPER Microprocessor, Royal
Signal And Radar Establishment, Malvern, Worcs.,
Report 87014, London: Her Majesty’s Stationery
Office 1987.

�14� E. KLIGERMAN AND A. D. STOYENKO, “Real-Time
Euclid: A Language for Reliable Real-Time Sys-
tems”, IEEE Transactions on Software Engineering
12, 9, 941–949, 1986.

�15� H. KREBS AND U. HASPEL, “Ein Verfahren
zur Software-Verifikation”, Regelungstechnische
Praxis rtp 26, 73–78, 1984.

�16� C. L. LIU AND J. W. LAYLAND, “Scheduling Algo-
rithms for Multiprogramming in a Hard Real-Time
Environment”, Journal of the ACM 20, 1, 46 –61,
1973.

�17� C.-Y. PARK, “Predicting Program Execution Times
by Analyzing Static and Dynamic Program Paths”,
Real-Time Systems 5, 1, 31–62, 1993.

�18� P. PUSCHNER AND CHR. KOZA, “Calculating the
Maximum Execution Time of Real-Time Pro-
grams”, Real-Time Systems 1, 2, 159–176, 1989.

�19� K. RAMAMRITHAM AND J. A. STANKOVIC,
“Overview of the SPRING Project”, Real-Time
Systems Newsletter 5, 1, 79–87, 1989.

�20� J. A. STANKOVIC AND K. RAMAMRITHAM, Edito-
rial: What is Predictability for Real-Time Systems.
Real-Time Systems 2, 4, 246–254, 1990.

�21� A. D. STOYENKO, A Real-Time Language With A
Schedulability Analyzer, PhD Thesis, University of
Toronto, 1987.

�22� VDI�VDE 3554: Funktionelle Beschreibung von
Prozeßrechner-Betriebssystemen, Berlin-Cologne:
Beuth Verlag 1982.

180 State of the Art and Open Research Topics in Embedded Hard Real-Time Systems Design

�23� VDI�VDE 3696: Manufacturer Independent Con-
figuration of Digital Control Systems, Berlin-
Cologne: Beuth Verlag 1995.

�24� K. ZUSE, Foreword to the book Constructing Pre-
dictable Real-Time Systems by W. A. Halang and A.
D. Stoyenko, Boston-Dordrecht-London: Kluwer
Academic Publishers 1991.

Received: April, 2000
Revised: June, 2000

Accepted: July, 2000

Contact address:

Wolfgang A. Halang
FernUniversität,

Faculty of Electrical and Computer Engineering
D-58084, Germany

e-mail: wolfgang�halang�fernuni�hagen�de

WOLFGANG A. HALANG born in 1951 in Essen, Germany, received a
doctorate in mathematics from Ruhr-Universiẗat Bochum in 1976, and
a second one in computer science from Universiẗat Dortmund in 1980.
He had worked both in industry �Coca-Cola GmbH and Bayer AG� and
academia �University of Petroleum & Minerals, Saudi Arabia and Uni-
versity of Illinois at Urbana-Champaign�, before he was appointed to the
Chair of Applications-Oriented Computing Science and became head
of the Department of Computing Science at the University of Gronin-
gen in the Netherlands. Since 1992 he holds the Chair of Computer
Engineering at the Faculty of Electrical Engineering, at FernUniversiẗat
Hagen in Germany.

His research interests comprise all major areas of hard real-time sys-
tems with special emphasis on safety licensing. He is the founder and
European editor-in-chief of Real-Time Systems, member of editorial
boards of 4 other journals, co-director of the 1992 NATO Advanced
Study Institute on Real-Time Computing, has authored 7 books and 1
CD-ROM, edited 11 books, written some 240 refereed book chapters,
journal publications and conference contributions, given some 60 guest
lectures, and is active in various professional organisations and tech-
nical committees as well as involved in the programme committees of
some 100 conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

