Journal of Computing and Information Technology - CIT 8, 2000, 3, 181-195 181

An Experiment in Design and Analysis
of Real-Time Applications

Roman Gumzej*, Domen Verber*, MatjaZz Colnaric¢*,
Jean-Philippe Babau™, Jacques J. Skubich™

*University of Maribor, Faculty of Electrical Engineering and Computer science, Slovenia

*INSA de Lyon, France

In the paper some experiences of joining two method-
ologies, which were originally independently developed
in different institutions, with the goal to overcome the
possible discrepancies due to the separate design of the
hardware and the software part of an embedded real-time
application are presented.

Based on Multiprocessor PEARL, Specification PEARL
has been developed in FERI, Maribor. Hardware and
system architecture of an application can be described
and gradually refined. Application software can be
designed using LACATRE tool, developed at INSA,
Lyon. Decisions about the application design taken in
each tool have influence to the ones taken in the other,
thus allowing for parallel design of both parts.

Both designs are subsequently verified and eventually
joined for feasibility estimation by co-simulation. The
application program is coded using the ObjectPEARL
language. The real-time system design cycle is closed
by the execution time analysis and measurements upon
which it is then considered about further program and/or
hardware part reconfiguration. This feature is supported
by the specific compiler, which includes the execution
time analyser.

The article reports on the work that was done in the
framework of the PROTEUS project in co-operation of
the teams from FERI Maribor, Slovenia, and INSA de
Lyon, France.

1. Introduction

Real-time systems have traditionally been built
using specialized concepts and tools. They have
been handcrafted and tuned through many iter-
ations of different tests. Their dependability
has most often been assured by multiple redun-
dancy and over-scaled components. In order

to change this, different modeling techniques
have been used. Only a few of them reached
a de facto standardization level, and even those
were sometimes outvoted by practitioners with
addictions to specific tools and/or p ages which
“served the purpose”.

Real-time systems are expected to conform to
safety restrictions beside the real-time imposed
limitations. It is necessary to design them in a
way that will enable early reasoning about their
structure and timing as well as effective verifi-
cation of their correctness.

A number of formal descriptions have been
devised to cope with this feature: differential
equations supported formalisms which describe
the systems’ functional and temporal behaviour
[10], formal languages and timed automata [1,
6], combinations of conventional CASE meth-
ods and state charts have been used [34]. Graph-
ical techniques with the same expressing power
as their formal language counterparts have been
defined [9]. While enabling formal verification,
most of these methods lack the versatility of ba-
sic constructs and user friendliness. Therefore,
graphical formalisms with a larger set of basic
constructs have been defined (e.g.: CSR/CCSR
[19], TTM/RTTL [28], LACATRE [31]), while
keeping enough strictness to enable verification.

The developers of CASE methods and tools
have also identified this gap in embedded sys-
tems design and are developing methods for
unified representations of common purpose and

A previous short version of the paper appeared in Proceedings of the IEEE International Symposium on Industrial Electronics,

Bled, Slovenia, July 12-16, 1999.

182

An Experiment in Design and Analysis of Real-Time Applications

embedded systems design issues (e.g.: HRT-
HOOD [5], ObjecTime [27], Shlaer-Mellor [33],
LIMITS [26], UML [3, 35]). The possibility of
an error in the specifications or design is being
reduced and introducing controlled changes is
made easier and less error prone. This should
also supplement higher quality of the resulting
systems.

Research in hardware and software co-design
deals with the optimization of the processor
load by distributing it among hardware and
software or the minimization of hardware cost.
The most useful advantage is that the designer
has the ability to easily and quickly trade-off
hardware against software realisations for in-
dividual function blocks. Usually a known
hardware specification language (e.g.: VHDL,
HDL) is combined with a high-level program-
ming language (e.g.: DFL, C) for multiproces-
sor programming (e.g.: VULCAN [14], COW-
ARE [23]). Some used a unified programming
language to specify behaviour and structure,
describing processors, peripheral devices and

communication interfaces (e.g.: CHINOOK [4]).

Dedicated state transition automata [32] are of-
ten used as the basic computation model (e.g.:
POLIS [2]). Co-designing systems with time
limitations led to the introduction of scheduling
algorithms into co-design and simulation (e.g.
24)).

The research presented in this paper is dealing
with the domain of generic computer control
systems. Usually, there is not much room for
the real HW-SW co-design: most of hardware
solutions are given and the only choice the de-
signer has is to select the most appropriate ones
and design the application based on those. Thus,
the main contribution we see in

o the possibility of designing the HW and the
SW part in parallel, thus allowing early inter-
ference and adaptations on both sides to suit
the needs and possibilities of the other, and

e the possibility of validating the functional and
the temporal properties of the design in a
holistic way, considering properties of both
parts and in all stages of the design.

Because of the fact that already existing and
very diverse tools were taken for different tasks
in real-time application design, it is obvious
that that introduced certain limitations. In the

conclusion the main discrepancies are listed to-
gether with the suggestions for their solution,
which will be considered in the next versions of
the tools.

Further, at this stage only a part of the applica-
tion design process was covered by the proposed
approach. Although necessary and challenging,
the early phase of requirements analysis has not
been covered yet.

In the paper, first the overall concept of the
merged methodology will be outlined. Then,
the tools will be presented separately and fi-
nally, the suggestions for changes to allow for
more successful integration will be enumerated.

2. Merging the Approaches

Development cycle of the application as pro-
posed in this paper is shown in Figure 1.

As already mentioned, for the time being, early
stages of the development cycle like require-
ments analysis are not supported. Also, to
come to the first outline of the top-level over-
all design, some preliminary decisions must be
made, which can be re-considered and certainly
refined during the design process.

The design can then start in parallel on both
software and hardware architecture levels. Us-
ing Specification PEARL (SPEARL) [7, 11]
basic description of hardware and system ar-
chitecture is elaborated. The designer first sets
up the coarse structure of the system as well
as implementation parameters, which are then
gradually detailed with time. When at least the
outline of the hardware architecture is set up,
software units (collections) may be associated
with it. To allow for that, during the develop-
ment this model is detailed by information from
LACATRE (e.g. number and basic structure of
tasks and other objects). Specification PEARL
enables early reasoning about the system inte-
gration, but at the same time the hierarchical
structure of the corresponding design tool also
enables top-down stepwise refinement.

At the same time, program specific model of the
application can already be developed by LA-
CATRE. The application is first represented by
abstract elements such as tasks, semaphores etc.
During the development process these elements
are further refined with additional details and

An Experiment in Design and Analysis of Real-Time Applications

183

attributes. The LACATRE tool also performs
structure and behaviour verification of the pro-
gram model by checking whether the tasks are
well formed and trying to avoid possible dead-
locks and bottlenecks. In the early phases, prob-
ably a lot of detailed algorithms will be replaced
by placeholders and will be gradually more and
more detailed during the forthcoming iterations.

During that time, both processes can have im-
pact on the overall design, thus allowing for op-
timal implementation. Direct interference be-
tween the LACATRE and SPEARL, however,

is not possible in this implementation, and will
be subject of the forthcoming versions of the
tools.

When the design on a certain level is complete,
the system and the application descriptions are
merged. As programs in standard PEARL con-
sist of system and problem parts, the problem
part of the PEARL program is a result of LA-
CATRE and the system part is produced by
SPEARL. The bold arrows represent that this
activity is automated while, e.g., the evaluation
is done manually.

Requirements analysis
{not supported)

v

General
specifications

General decisions
{not supported)

v

P
—W

Overall
design

evaluation /
| LACATRE

¥

SW design:
Problem part

~,

Verification

~N
SPEARL

Y

System and HW
architecture design:
System part

e

evaluation

Simulation

Schedulability
analysis

Enhanced and
annotated PEARL

code

(not supported)

/

OPEARL Anglyzer

v

\

OPEARL Compiler

\

Target
System structure 1‘_ platform] Generated
Task WCET measurement object code
Legend: l
Automated activity ———P
Manual activity _— >

Not yet supported activity

Fig. 1. Development Cycle of the Application.

184

An Experiment in Design and Analysis of Real-Time Applications

The PEARL code is then input into the Ob-
jectPEARL (OPEARL) compiler with a built-
in execution time analyser. In early phases only
coarse design analysis is done in order to ob-
tain a rough estimation of system’s structure
and behaviour. During the design process, the
estimation becomes gradually more precise and
reliable until finally the object code for the tar-
get platform can be generated.

At that stage already a good estimation of task’s
execution times can be done, thus providing re-
liable information for verification of system’s
temporal behaviour. The pessimism necessarily
involved is minimized by automated measure-
ment of the pilot code generated by the analyser
and supported by the background debugging
mode facility of the employed microprocessor.

Better option at this stage would be to perform
a thorough schedulability analysis [18] what we
find feasible, but is for the time being not sup-
ported.

The estimated or measured temporal behaviour
is checked against the specifications. It can
also be simulated using the architectural model
resulting from the system part, and the tasks’
behaviour described in the problem part. The
cycle closes by returning to the overall design,
which can be changed or refined according to
the results of the validation.

3. Specification PEARL

Specification PEARL is a hardware/software
architecture specification and description lan-
guage. Itoriginates from PEARL for distributed
systems [22]. The latter was defined to sup-
port the design of real-time systems and appli-
cations, which often are of the distributed na-
ture. They represent an extension to the Full
PEARL [21] standards’ SYSTEM part, which
describes the hardware units being addressed in
the PROBLEM part of the PEARL program.
The description of the hardware architecture
consists of the top-level “station layer” and the
detailed-level “component layer”. There is a
separate “program layer”, which depicts the
software architecture.

Specification PEARL extends the standard
PEARL for distributed systems in the manner
consistently with the standard. Some constructs

have been added in order to enable the descrip-
tion of asymmetrical distributed multiproces-
sor systems and the peripherals, attached to the
system. The parameters of the Specification
PEARL components have been chosen based
on the PEARL for distributed systems standard
and our experience in designing an asymmetri-
cal multiprocessor hardware platform [8] and
analysing the worst case execution times of
PEARL programs. However, although moti-
vated by the particular architecture, the method
is universal enough to model a wide variety of
different embedded systems.

Specification PEARL has two representations:
the graphical and the textual one. They have an
equivalent translation from the graphical to the
textual form and vice versa. Both representa-
tions are described in the sequel. The graphical
symbols used to represent the components of
Specification PEARL have been chosen in com-
pliance with the philosophy of the LACATRE
graphical constructs:

e acommon symbol for every component group,

e casy recognition and differentiation between
different components,

e specialised components are added additional
graphical details in order to differentiate them
from the other components in the group.

3.1. The Textual Specification PEARL

The textual system architecture description
[12] consists of divisions, which describe the
components of the system architecture and their
interconnections by looking at those from dif-
ferent perspectives.

Station Division

In the station division, the processing nodes of
the system are introduced, stating their most im-
portant characteristics. Stations are treated as
black boxes with connectors, called "PORTS",
by the other layers of the architecture descrip-
tion. PORTSs are a means of communication
between the stations of a system and are ref-
erenced by their program collection’s tasks. A
similar concept is also used in UML [20, 30].

Typically, there are more stations in a system,
so each of them is uniquely identified. Each

An Experiment in Design and Analysis of Real-Time Applications

185

station is associated with the state information,
upon which it is being decided which applica-
tion program collection is loaded and executed
by the station.

Several types of stations have been defined. The
default type is the BASIC station, which repre-
sents a general purpose processing node. To be
able to describe asymmetrical architectures, two
additional types of processing nodes have been
defined: TASKPROC for task processors and KER-
NELPROC for operating system kernel processors
[8]. This comes from a widely accepted con-
cept of migrating the operating system functions
to a separate processor, which enables better
predictability of the actual program execution
times.

To allow for the design of multiprocessor nodes,
a “compound station” has been defined to be a
set of stations, which are logically and/or phys-
ically strongly connected (they share the same
connections with other stations or peripheral de-
vices). A multiprocessor node is introduced by
the PART OF attributes of the constituent pro-
cessing nodes.

Since in embedded systems design (intelligent)
peripheral devices are very important the PE-
RIPHERAL station type was defined. The at-
tributes of peripheral stations differ from other
stations’ attributes because of their large diver-
sity. Hence, only a common denominator of
their parameters is used. Their connections to
the devices in the system are described by the
attributes of their interface and PORTs (e.g.: the
direction of data flow, the protocol used and any
additional signals which may be necessary for
the communication). To support schedulabil-
ity analysis, every signal can be specified by its
minimum inter-arrival time.

The basic components of a station are its pro-
cessing elements, working stores and devices
(I/O, timers, etc). They are assigned parame-
ters, which are important for the execution time
analysis during application program compila-
tion and the parameterisation of the RTOS and
configuration manager.

Net Division

The topology of the system is described by port-
to-port connections. In net division the physical
port-to-port connections between the stations of

the system are listed giving their logical names
and directions.

System Division

It represents an extended SYSTEM part, as
obligatory in standard PEARL programs, which
represents the programmer’s view of the system.
System division encapsulates the hardware de-
scription and the assignment of symbolic names
to hardware devices. The described compo-
nents from the station and net divisions are used.

Configuration Division

Configuration division describes the software
architecture. The largest program component
that is associated with a station and its state is a
COLLECTION of MODULESs. It is possible to specify
under which conditions certain collections are
removed from a station and which collections
are loaded instead. These conditions are station
state dependent.

Modules consist of TASKs, which may commu-
nicate through PORTs. Tasks are described by
their trigger conditions and response times. Al-
ternative implementations of tasks, which serve
the purpose of increasing fault-tolerance and aid
the feasibility of task scheduling, may be
defined (during scheduling a task with shorter
run time or longer response time can be sched-
uled in order to maintain the feasibility of the
schedule). The port-to-port connections be-
tween tasks are described by their directions
and line attributes. Line attributes state which
connections are always followed and which can
be chosen from a preference list.

3.2. The Graphical Specification PEARL

The graphical equivalent [11] of the textual
Specification PEARL language has been de-
vised in order to ease the exchange of ideas
and graphical design of the specifications.

There are three layers in the graphical represen-
tation of the system architecture with the graph-
ical constructs, which depict the same compo-
nents, as described in the textual sections and
which are given their properties as parameters:

186 An Experiment in Design and Analysis of Real-Time Applications

ARCHITECTURE;
STATIONS;
NAMES: KP;
PROCTYPE: MC68307 AT 20 MHz;
WORKSTORE: SIZE 65536 SPACE 0-’FFFF’B4 READ/WRITE
WAITCYCLES 1;
WORKSTORE: SIZE 32768 SPACE 0-’7FFF’B4 READONLY
WAITCYCLES 1;
INTERFACE: KP_IO (DRIVER: KPINOUT; DIRECTION: INOUT; SPEED: 20971520 BPS; UNIT: FIXED);
PORT KP_TP1_lin: INQOUT FIXED;
PORT KP_TP2_lin: INOUT FIXED;
STATEID: (NORMAL,CRITICAL);
STATIONTYPE: KERNELPROC;
SCHEDULING: EDF;
MAXTASKS: 20;
MAXSEMA: 5;
MAXEVENT: 15;
MAXEVENTQ: 5;
MAXSCHED: 30;
TICK: 1E-3 SEC;
NAMES: Sensorl;
STATEID: (NORMAL);
STATIONTYPE: PERIPHERAL;
INTERFACE: S1_I0 (DRIVER: S10UT; DIRECTION: OUT; SPEED: 20971520 BPS; UNIT: BYTE);
PORT S1: OUT BYTE;
INTERMESSAGE PERIOD: 1E-3 SEC;
NAMES: Sensor2;...
NAMES: TP1;
PROCTYPE: MC68307 AT 20 MHz;
WORKSTORE: SIZE 65536 SPACE 0-’FFFF’B4 READ/WRITE
WAITCYCLES 1;
INTERFACE: TP1_I0 (DRIVER: TP1INOUT; DIRECTION: INOUT; SPEED: 20971520 BPS; UNIT: FIXED);
PORT TP1_KP_lin: INQUT FIXED;
PORT TP1_S1: IN BYTE;
STATEID: (NORMAL);
STATIONTYPE: TASKPROC;
SUPERVISOR: KP;
NAMES: TP2;...
STAEND;

NET;

KP.KP_TP1_lin <-> TP1.TP1_KP_lin;
KP.KP_TP2_lin <-> TP2.TP2_KP_lin;
TP1.TP1_S1 <- Sensorl.S1;
TP2.TP2_S2 <- Sensor2.S2;

NETEND;

SYSTEM;
NAMES: KP;
KP.KP_TP1_lin INOUT;
KP.KP_TP2_lin INOUT;
NAMES: Sensoril;
Sensor1.S1 QUT;
NAMES: Sensor2;...
NAMES: TP1;
TP1.S1 IN;
TP1.TP1_KP_lin INOUT;
NAMES: TP2;...
SYSEND;

CONFIGURATION;
COLLECTION KP_WS;
PORTS KP_TP1_lin,KP_TP2_lin;
CONNECT KP_WS.KP_TP1_lin INOUT TP1_WS.TP1_KP_lin VIA KP.KP_TP1_lin;
CONNECT KP_WS.KP_TP2_lin INOUT TP2_WS.TP2_KP_lin VIA KP.KP_TP2_lin;

COLLECTION TP1_WS;

MODULES

TP1_WS_M1;

EXPORTS (Actuatorl);
TASKS;

Actuatorl (TRIGGER PORT S1,DEADLINE 100);
PORTS S1,TP1_KP_lin;
CONNECT TP1_WS.S1 IN VIA TP1.S1;
CONNECT TP1_WS.TP1_KP_lin INOUT KP_WS.KP_TP1_lin VIA TP1.TP1_KP_lin;

COLLECTION TP2_WS;...
CONFEND;

ARCHEND ;

Fig. 2. Example Description of an Asymmetrical Control System.

An Experiment in Design and Analysis of Real-Time Applications

187

1. Station layer: STATIONs and PERIPHERALS
with their interconnections,

2. Component layer: PROCTYPES, WORKSTORES
and DEVICES of a STATION with their inter-
nal and global interconnections, and

3. Program layer: COLLECTIONs of MODULES
and TASKs, which are associated with the
stations from the station layer.

3.3. Hardware Configuration Verification

The purpose of the hardware configuration ver-
ification is to ensure a complete and coherent
hardware architecture model with enough tim-
ing information to enable integration verifica-
tion with the program model.

There are three phases in the system model co-
herence checking:

1. Completeness check: “Are all stations in
the hardware architecture fully described?”
is the main question to be answered here.
It is not possible to reason about the sys-
tem feasibility without these hardware ar-
chitecture properties. It is also important
to check that every component, which is
referenced in the configuration, actually
exists with its description.

2. Range and compatibility check: it is al-
ways possible to make a mistake while
inputting the values for the parameters.
While some can only be detected by re-
viewing the design by the designer, some
mistakes like range errors, where the in-
put data differs in the order of magnitude
from the expected value range, can be de-
tected automatically. Itis also possible that
we connect two stations through interface
with different properties, which will surely
result in a communication malfunction in
case the configuration doesn’t change.

3. Software to hardware mapping check is
the preparation to the integration verifica-
tion and is described in the corresponding
section.

3.4. Example Description of an
Asymmetrical Architecture

To illustrate the expressive power and modelling
capabilities of the Specification PEARL, the
following example (Figure 2) is presented here.
An asymmetrical architecture is considered. It
consists of two embedded task processors TP1
and TP2, which are supervised by a common
kernel processor KP. They are receiving input
from two peripheral devices Sensorl and Sen-
sor2 respectively. Their Actuator tasks are trig-
gered by the signal from one or the other sensor.
They are synchronised by the operating system
being run by the KP station.

4. Software Design

4.1. LACATRE

LACATRE [31] is a language with graphical
and textual modes; it has been conceived as a
contribution to the development of design tools
for applications relying on multitasking. It cov-
ers the end of preliminary design and detailed
design of the software lifecycle and enhances
the expression of the dynamic decomposition
and task relationship. An application designed
by means of graphical components of the LA-
CATRE language is a 2-dimensional diagram
made of LACATRE graphical objects (those
commonly involved in most of real-time ex-
ecutives) and LACATRE connections (System
calls) which appear as graphical links between
the objects.

The language’s textual form allows for the pro-
duction of a textual LACATRE program associ-
ated to the graphical design. This textual form
is especially interesting for the detailed design
step because it permits an automatic code gen-
eration thanks to an ad hoc compiler, which
means implementation of the application pro-
gram in the chosen target system and operating
system.

188

An Experiment in Design and Analysis of Real-Time Applications

(Task Id, TD)

Initia liz.ation

e BENAlESS

Client Are Loop Bar

Progress
Bar

... State
......... Bar

(Optional)

TASK (tiche_id, TD)

[Forever:]

END_TASK

Task Descriptor :
timing (deadlines, running time, ..),
priority.

Fig. 3. Task Description.

LACATRE has two types of objects:

1. The programmable objects: the task, the
interruption, the alarm, and the exception.
These are the objects whose behaviour is
user-defined.

2. The configurable objects: the semaphore,
the mailbox, the message, the event, the
resource, etc. These are the objects whose
behaviour is completely defined by param-
eter values set up during creation.

LACATRE Graphical symbols (Objects):

The graphical symbol of a LACATRE object
is made of basic elements (lines) called areas
from which start and end linking symbols of
LACATRE connections (system calls). There
are three types of areas:

1. State area: where LACATRE state system
calls (creation) are anchored and which
may be applied to all LACATRE objects;

2. Progress area: specific to programmable
objects. Itis an oriented line that describes
the sequence of LACATRE system calls.
It may be altered by means of LACATRE
algorithmic forms (IF, WHILE,);

3. Action area: attached to a configurable ob-
ject and has a specific name according to
the concerned object.

Connections:

The LACATRE system calls are the ones used
by the designer to express the interactions among
objects. They are classified in 3 categories:

1. State system calls: allow for the modifi-
cation of the state of an object: creation,
deletion,

2. Action system calls: generate a communi-
cation/synchronization relation between
programmable objects (mainly tasks) with
the help of configurable objects.

3. Progress system calls: provide straight
synchronization between programmable ob-
jects.

After the task design is finished, the building
blocks of the textual representation thereof are
assigned maximum execution times and input as
task models into the program architecture of the
Specification PEARL system model as TSTDs
(Timed State Transition diagrams, [13], see Sec-
tion 6). The trigger conditions are converted
into start states, whereas the building blocks of
the tasks are assigned working states. End states
are produced for end-of-task, error and timeout
conditions. The tasks in TSTD form are used
later on in the integration verification.

4.2. Program Model Verification

The program model in LACATRE is translated
to Shaw’s CRSM (Communicating Real-time
States Machines) internal representation in or-
der to perform the analysis of the designed tasks
[15]. This enables the verification of:

e structure (well formed tasks perform smoother
and safer and at the same time the basic build-
ing blocks are identified, which can be as-
signed maximum execution times to perform
timing analysis) and

e behaviour (possible deadlocks, bottlenecks,
etc. can be detected and avoided by the exe-
cution of the CRSM program model).

An Experiment in Design and Analysis of Real-Time Applications

189

5. Implementation and Analysis:
ObjectPEARL

For the implementation of the application, object-
oriented programming language ObjectPEARL
is devised [37, 38]. Like Specification PEARL,
it is based on programming language PEARL
that was developed in late 60-ies by engineers
from different real-time system domains. It
has been refined during the years and its latest
version (PEARL90) includes several elements
of modern programming languages, but is not
object-oriented. It explicitly supports tasks and
tasking operations, semaphores, signals, etc.
However, for the consistent use in hard real-time
systems, some restrictions must be applied.

To allow for straightforward translation from
object-oriented design tools and methodologies,
traditional elements of real time systems are rep-
resented by means of object-oriented notation.
Thus, all elements of LACATRE and Specifi-
cation PEARL notation can be translated into
ObjectPEARL’s code.

5.1. Object-oriented Extension of PEARL

For introduction of classes, similar approach as
in C++ was used. In both cases, a class is
defined as an extension to the structure. Be-
cause of simplicity of code generation and ex-
ecution time analysis, it was decided not to
use multiple inheritances of classes. Therefore,
a class can be descendent of only one parent
class. All traditional elements of classes were
included (i.e. variables, methods, constructors
and destructors). Like other object-oriented
languages, ObjectPEARL also supports poly-
morphism through virtual methods.

In addition, a special type of variables called
virtual variables or properties was introduced.
Properties behave as ordinary variables with two
additional methods. The first method is used for
reading the variable and the second is used to
change its value. Properties operate in similar
manner as those used in the COM automation
model [29].

There are also special kinds of properties that
are declared only for specification purposes and
no code is associated with them. They can rep-
resent certain non-program-specific attributes.

For example, attributes that represent param-
eters of graphical appearance of an object in
LACATRE or non-programmatic attributes of
Specification PEARL can be given in this way.
This allows two-way translation between tex-
tual and graphical representation of the applica-
tion. As an ultimate goal, no additional editor or
tool for coding should be necessary to develop
an application.

5.2. Object-oriented Representation of Tra-
ditional Elements of Real-Time Appli-
cations

To exploit the advantages of object-oriented ap-
proach, traditional elements of real-time sys-
tems are also represented as classes and objects.
To provide for this, a way to represent tasks,
semaphores, bolts, signals etc. was studied.

Tasks in PEARL and some other traditional pro-
gramming languages are considered as a special
kind of procedures, which can be executed in
parallel under control of the operating system.
For this purpose, a set of well-defined tasking
operations is defined.

On the other side, objects are traditionally con-
sidered as extensions to the static data types.
Objects do not have direct control over their
execution and there is usually no provision for
tasking.

Both views can be combined if task is consid-
ered as an object with a method that represents
the main task behaviour and with several meth-
ods for tasking. Similar approach is used in
Java.

General task in ObjectPEARL i1s declared as
shown in Figure 4.

Data types like TASKCONTEXT and TASKSTATE are
system-defined classes that represent context of
the task, its current state, etc. Variable FContext
and methods SaveContex and RestoreContex
are declared as private components of the class
and are used only within the operating system.
A set of Get and Set methods are declared in
a similar way and are used to access an inter-
nal state of the task and to perform low level
tasking operations. MainProc is the main task

190

An Experiment in Design and Analysis of Real-Time Applications

TYPE
TASK CLASS [
PRIVATE
FContext TASKCONTEXT;

SaveContex PROCEDURE (ProcContext REF TASKCONTEXT) ;
RestoreContext PROCEDURE (ProcContext REF TASKCONTEXT) ;

SetState PROCEDURE(Value TASKSTATE);
GetState PROCEDURE RETURNS (TASKSTATE) ;

PROTECTED

MainProc PROCEDURE VIRTUAL ABSTRACT MAIN;

PUBLIC

Activate PROCEDURE (Schedule SCHEDULE, Deadline DURATION) VIRTUAL;

Terminate PROC VIRTUAL;
Suspend PROC VIRTUAL;

PROPERTY State TASKSTATE READ GetState WRITE SetState;
PROPERTY CurrSchedule SCHEDULE READ GetCurrSchedule;
PROPERTY Deadline DURATION READ GetDeadline;

Fig. 4. Declaration of a Task in ObjectPEARL.

execution method. Tasking operations are de-
clared as public to allow the access from outside
of the object.

Similar to this, other elements of real time sys-
tems can be represented as classes. For exam-
ple, a semaphore can be declared as in Figure
5.

TYPE

SEMA CLASS [

PRIVATE
FCount FIXED;
FSemaState SEMASTATE;

PUBLIC
Preset CONSTRUCTOR(InitCount FIXED);
Request PROC(TimeOut DURATION) ;
Release PROC;
Try PROC RETURNS(BIT(1));

3

Fig. 5. Declaration of a Semaphore.

Like in tasks, private variables FCount and FSe-
maState are used for internal implementation of
a semaphore. Again, private variables and im-
plementation of methods is under direct control
of the operating system. Because of the need
for temporal predictability of the programs in
ObjectPEARL, there is an additional parame-
ter associated with Request method that serves
as deadline on waiting for the semaphore to be
released.

Benefits of object-oriented description can be
fully utilised when there is already a wide set of
predefined data types (classes) and when com-
ponents are divided into specialised groups (e.g.
periodic and a-periodic tasks).

5.3. Compiler for ObjectPEARL With Inte-
grated Execution Time Analyser

Parallel to the programming language design, a
compiler was implemented. The goal was to de-
velop a modular and flexible compiler that could
be easily modified based on results of theoret-
ical research of the development environment.
Compiler should be also target-system indepen-
dent although in its current version it generates
code only for one processor. Nevertheless, com-
piler should generate efficient code, thus several
optimization techniques were included into the
compiler.

One of the most important issues in implemen-
tation of the compiler/analyser was realistic es-
timation of worst-case execution times of tasks,
which is the basis for timing analysis on higher
levels. Too pessimistic execution times of tasks
could declare a system unfeasible and require
unnecessary effort to improve it. On the other
hand, too optimistic estimations cause deadline
misses when an application is executed on a
real system. Worst-case execution time analy-
sis can also be done on the specifications or on
the program code but most accurate results can
be achieved by execution analysis of compiled
code or by direct measurement of the program
on the target.

Compiler for ObjectPEARL was implemented
with Delphi development environment and runs
on Windows 9x or Windows NT platform. It

An Experiment in Design and Analysis of Real-Time Applications 191

uses simple recursive descent parsing algorithm
with semantic routines for code generation and
temporal analysis. In its current version, it
generates code for Motorola’s ColdFire micro-
controller.

Translation of ObjectPEARL code into the stan-
dard PEARL was also studied but there were
several semantic discrepancies between both
languages (e.g. visibility of the class members).
These differences cannot be easily considered
by using simple translation techniques.

5.4. Translation Process and Execution Time

Analysis

Standard PEARL programs are divided into two
parts: system and problem part. In the system
part hardware specific peculiarities are defined,
e.g. input/output devices, communication de-
vices etc. System part can be generated directly
from the Specification PEARL. There are other
attributes in Specification PEARL that are not
directly used in code generation but they can be
used to improve validation process of the appli-
cation. For example, in Specification PEARL
there is a specification of available memory for
the program code. Compiler can easily check
if the compiled code is larger than the speci-
fied storage room. Other attributes can be used
during execution time analysis (e.g. processor
speed, memory wait states, etc.).

In the problem part algorithmic elements of the
application are presented independently of the
hardware. Problem part can be directly gen-
erated from LACATRE notation. By using ob-
ject representation of all real time elements, this
translation can be simple and straightforward.

Worst-case execution time analysis is performed
in two phases. In the first phase, structure of the
program by means of blocks, loops, decisions,
etc., is identified. Then for all linear parts of
the code maximal execution time is estimated.
Similar to the code generation, execution time
analysis is highly dependent on the micropro-
cessor used. Because of this, basic execution
time analysis should be integrated within a low-
level code generator. Thus, in ObjectPEARL
compiler each object for code generation also
has a corresponding method for execution time
estimation. High-level temporal analysis is per-

formed on the structure of the program using
simple recursive rules [36].

Because of different mechanisms of modern mi-
croprocessors to improve overall performances
(i.e. cache, pipeline, etc.), the estimated exe-
cution times based only on compiled code can
be too optimistic. Execution times available for
individual instructions are given for the ideal sit-
uation where instruction is already in the cache
and no stall in pipeline or collision on address
and data busses are considered. Although we
tried to improve algorithm for execution time
calculations, result was not always acceptable.

For that reason it was decided to implement di-
rect measurement of execution times of sequen-
tial parts of code on the target processor. In this
sense, the debug module of the target proces-
sor was utilized, featuring background run-time
debug support. With this module, it is possi-
ble (over a separate external bus) to stop or run
a program on the processor, read or write into
the registers and memory, set breakpoints, etc.
This allows to load the compiled code into the
processor’s memory, run segments of code and
measure the elapsed time.

The results of the execution time analysis are es-
timated execution times of tasks. These results
with some additional information (e.g. dead-
lines of tasks, activation conditions, etc.) pro-
vide the data for further schedulability analysis.

Idiosyncrasy of the microprocessors is a funda-
mental impediment in accurate execution time
estimation. Because of that, generality of the
approach is limited: the timing analysis has to
be adapted for every new processor. However,
by becoming widely used, BDM to some ex-
tend standardises the measurement of execution
times at least within the Motorola family of mi-
CrOprocessors.

6. Verification of the Integral Design by Co-
Simulation

According to [25], for most applications running
in real-time their computational model can be
expressed in the form of the following “equa-
tion”:

Real-time program model = Data flow model
+ State automaton + Timing limitations

192

An Experiment in Design and Analysis of Real-Time Applications

The TASKs of the system represent the basic
program units whose main properties are their
trigger conditions and timing limitations as well
as being part of a MODULE and COLLEC-
TION. This information is sufficient to build a
rough program model, but it is not enough to
determine the feasibility of the program con-
figuration on the model of the target system.
Therefore, they have been extended by timed
state transition diagrams, which represent the
dynamic behaviour of tasks, whereas their ex-
ecution can be simulated on the model of the
target system.

Timed State Transition Diagrams (TSTD) act
as timed finite state automata and consist of:

e start states (task trigger conditions),
e transient states (working states) and
e final states (finalisation actions).

The connections between states represent the
applications’ progress in time. All connections
are local (i.e.: bound to the states of one task).
Inter-task co-operation is modelled by the state
actions-system calls of the operating system.
These also enable the fulfilment and checking
of continuation preconditions of states. The op-
erating system is invisible to the user except for
its system calls and configuration, which is set-
up by setting the parameters of the KERNEL
station.

Every state contains the following data:
e state type (start, working or final state),

e precondition for the states’ execution (trigger
condition for a start state),

e timeout condition (shortest and maximum ex-
ecution times),

e timeout action (the state where the execution
is diverted in case the timeout occurs),

e connection to the next state in case the exe-
cution continues successfully,

e activities, which are carried out within the
execution of this state (PEARL-comment or
system call).

System calls, which trigger specific task states,
make resource requests and change the state of
the system. Interfaces and ports are referenced
in communication system calls as configured in
the hardware /software architecture.

The activities within a state are a set of actions,
which are carried out while the task is in the
state. It is foreseen that the actions may be
either a system call and/or a mini-specification
(PEARL comment). Their execution time is es-
timated by the designer and used while setting
the time-out interval for the state.

Verification Method

After the coherence of the design has been
checked, the feasibility of the modelled sys-
tem is validated. It has been established that
co-simulation of the execution of the tasks on
the specified (hardware and software) system
architecture is the most appropriate verification
method for our methodology.

The program as well as hardware models may be
modified if necessary due to the feasibility es-
timation from the co- simulation or subsequent
execution time analysis that may differ from the
execution time estimates in the program model.

The method of the next critical moment co-
simulation of execution with time boundaries
has been chosen as the method for verification
of the designs. The boundary time values are
considered along with the variables’ values, as
it is usual in the program verification practice.
For each state the shortest and the longest trans-
action times are checked.

By taking the shortest and the longest transac-
tion times through the task states of the system,
the time domain is sufficiently covered to be
able to generalise the results of arbitrary trans-
action time of every state and herewith also the
system as a whole.

The following concept of correctness for the
described method of verification has been de-
fined: “The system fails in the case when during
co-simulation the system reaches an undefined
state or its predefined time frame is violated and
no timeout-action is defined.”

The station clock rate is translated into the step
size of the station in the co-simulation and is
used when the next event time is being calcu-
lated. The station components are not relevant
for the co-simulation, but they may be subject
to compatibility checks and their time parame-
ters must be used later on in the schedulability
analysis.

An Experiment in Design and Analysis of Real-Time Applications

193

7. Conclusion

The pragmatic combination of the tools pre-
sented in this paper enables parallel design of
the hardware and the software parts and of-
fers textual as well as graphical notations for
both domains. It allows for early mapping of
the problems onto the appropriate hardware or
software solutions and their design. Further,
early verification and validation of functional
and timing properties is enabled considering be-
haviour of hardware and software components
of the application.

By taking already existing tools, problems were
anticipated from the beginning. The main weak
points of the tools in the combined approach
include:

e lack of the means for requirements engineer-
ing of the system,

e lack of the possibility of direct mutual im-
pact of the solutions between LACATRE and
SPEARL,

e PEARL does not explicitly support certain
useful LACATRE constructs (e.g. mailboxes),

e in the current version of LACATRE it is not
possible to change the graphical model by
modifying the textual form of the application,

e LACATRE does not allow for hierarchical
top-down design of larger applications, it
does not itself explicitly deal with tempo-
ral properties and does not support deadline-
driven scheduling.

Most of the listed problems could be solved
by applying certain changes in the forthcoming
versions of LACATRE, SPEARL and OPEARL.
Apart of that, for the successful use of the
methodology an integrating environment should
be developed.

References

[1] G. AGHA, The Structure and Semantics of Actor
Languages, in J.W. de Bakker, W.P. de Roever,
and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, pp 1-59, Springer Verlag,
1991.

[2] F. BALARIN, M. CHIODO, P. GiusTO, H. HSIEH,

[10

11

[12

]

]

A. JURECSKA, L. LAVAGNO, C. PASSERONE, A.
SANGIOVANNI-VINCENTELLI, E. SENTOVICH, K.
SuUzUKI1, B. TABARRA, Hardware-Software Co-
Design of Embedded Systems: The POLIS Ap-
proach, Kluwer Academic Publishers, 1997.

G. BoocH, 1. JACOBSON, J. RUMBAUGH ET. AL., The
Unified Modeling Language for Object-Oriented
Development Version 1.0, UML Notation Guide,
UML Summary, UML Semantics; Rational Soft-
ware Corporation, January 1997 and the UML 1.1
update of Sept. 1997.

G. BORRIELLO, P. CHOU, ROSS B. ORTEGA, Embed-
ded System Co-Design: Towards Portability and
Rapid Integration, Hardware/Software Co-Design,
pages 243-264, Kluwer Academic Publishers, 1996.

A. BURNS, A. J. WELLINGS, HRT-HOOD: A Struc-
tured Design Method for HRTS, Real-Time Systems,
Vol. 6, pp. 74-114,1994.

Z. CHAOCHEN, J1 WANG, A. P. RAWN, A Formal
Description of Hybrid Systems, Hybrid Systems 111,
eds. R. Alur and T. Henzinger & E. Sontag, LNCS
1066, Springer-Verlag, 1996.

M. COLNARIC, D. VERBER, W. A. HALANG, A
Real-Time Programming Language as a Means
of Expressing Specifications, Proceedings of 21st
IFAC/IFIP Workshop on Real-Time Programming
(WRTP’96), Gramado, RS, Brazil, November 1996.

8] M. COLNARIC, D. VERBER, R. GUMZEJ, W. A. HA-

LANG, Implementation of Real-Time Embedded
Control Systems, Real-Time Systems, Kluwer Aca-
demic Publishers, May 1998.

C. DIETZ, Action Diagrams, Proceedings of 22nd
IFAC/IFIP Workshop on Real-Time Programming
(WRTP’97) (Preprints), September 15-17, 1997,
Lyon, France.

T. J. ERIKSEN, S. T. HEILMANN, M. HOLDGAARD,
A. P. RAVN, Hybrid Systems: A Real-Time Inter-
face to Control Engineering, Proceedings of Sth
Euromicro Workshop on Real-Time Systems, IEEE,
pp. 114-120, 1996.

R. GUMZEJ, M. COLNARIC, J. P. BABAU, J. SKU-
BICH, Hardware Architecture Components for Real-
Time Systems Design, in Proceedings of the 7th
Electrotechnical and Computer Science Conference
ERK’98, Vol. A pp. 41-44, Portoroz, Slovenia,
September 1998.

R. GUMZEJ, M. COLNARIC, D. VERBER AND W. A.
HALANG, Towards standard-based specification and
design of embedded real-time systems, in Proceed-
ings of Euromicro’98, Viasteras, Sweden, August
25-27, 1998.

R. GUMZEJ, M. COLNARIC, An approach to real-time
systems co-design and verificaiton, in Proceedings
of the IASTED international conference on Control
and Applications, Cancun, Mexico, May 2000.

R. GUPTA, Co-Synthesis of Hardware and Software

for Digital Embedded Systems, Kluwer Academic

Publishers, 1995.

194

An Experiment in Design and Analysis of Real-Time Applications

[15] Z. HUANG, A. LEGAIT, M. MARANZANA, E. NIEL,
J. J. SCHWARZ, J. SKUBICH, Techniques for the
Behaviour Verification of Real-Time Multitasking
Components, 14th IFAC World Congress, 5-9 July
1999, pp. 6, Beijing, Chine.

=
o

International standard ISO/IEC 9126: Information
technology — Software product evaluation — Qual-
ity characteristics and guidelines for their use, First
edition 1991-12-15, Reference number ISO 9126 :
1991.

[17

International standard ISO/IEC 9127: Informa-
tion processing systems — User documentation and
cover information for consumer software packages,
First edition 1988-09-01, Reference number ISO
9127 : 1988 (E).

18

E. KLIGERMAN, A. D. STOYENKO, Real-Time Eu-
clid: A Language for Reliable Real-Time Systems,
IEEE Transactions on Software Engineering, Vol.
12, No. 9, September 1986, pp. 941-949.

[19] L. LEE, S. DAVIDSON, R. GERBER, Communicat-
ing Shared Resources: A Paradigm for Integrating
Real-Time Specification and Implementation, Foun-
dations of Real-Time Computing: Formal Specifi-
cations and Methods, Kluwer Academic Publishers,
1991.

[20] A. LYONS, UML for Real-Time Overview, Objec-
Time Limited, April 1998.

[21] Full PEARL, DIN 66253, Part 2.
[22] Distributed system PEARL, DIN 66253, Part 3.

[23] H. DE MAN, 1. BOLSENS, B. LIN, K. VAN ROMPAEY,
S. VERCAUTEREN & D. VERKEST, Co-Design of
DSP Systems, Hardware/Software Co-Design,
pages 75-104, Kluwer Academic Publishers, 1996.

[24] V. J. MOONEY I, Hardware/Software Co-Design
of Run-Time Sytems, School of Electrical and Com-
puter Engineering, Georgia, PhD thesis, Sep. 1998.

[25] A. K. MOK, Towards Mechanization of Real-Time
System Design, Foundations of Real-Time Comput-

ing: Formal Specifications and Methods, Kluwer
Academic Publishers, 1991.

[26] L.Mortus, T. NAKS, Formal timing analysis of OMT
designs using LIMITS, Computer System Science
and Engineering, Vol. 13, No. 3, pp. 161-170, 1998.

[27] ObjecTime Limited, ObjecTime Overview, 1994.

[28] J. S. OSTROFF, A Visual Toolset for the Design Of
Real-Time Discrete Event Systems, IEEE Transac-
tions On Control Systems Technology, May 1997.

[29] D. ROGERSON, Inside COM, Microsoft Press, 1997.

[30] J. RUMBAUGH, B. SELIC, Using UML for Model-
ing Complex Real-Time Systems, Rational Software
Corporation, ObjecTime Limited, March 1998.

[31] J. J. SCHWARZ, J. J. SKUBICH, Graphical program-
ming for Real-Time Systems, Control Engineering
Practice, Vol. 1, No. 1, pp. 43-49, 1993.

[32] A. C. SHAW, Communicating real-time state ma-
chines, IEEE Trans. Software Engineering, Vol. 18,
No. 9, pp. 805-816.

[33] S. SHLAER, S. MELLOR, Object-oriented systems
analysis: modelling the world in data, Prentice
Hall, Englewood Cliffs, NF, 1998.

[34] TRAORE L., SAHRAOUI ABD-EL-KADER, A Multi-
formalism Specification Framework with State-
charts and VDM, Proceedings of 22nd IFAC/IFIP
Workshop on Real-Time Programming (WRTP’97)
(Preprints), September 15-17, 1997. Lyon, France.

[35] OMG Unified Modeling Language Specification
(draft), Version 1.3, March 1999.

[36] D. VERBER, Programming and timing analysis of
hard real-time systems, Master thesis, 1997, Uni-
versity of Maribor

[37] D. VERBER, Object Orientation in Hard Real-Time
System Development, Doctoral thesis, 1999, Uni-
versity of Maribor, Slovenia.

[38] D. VERBER, M. COLNARIC, Object Oriented Exten-
sion to Development of Hard Real-Time Systems, to
appear on SCI/ISAS 2000, Orlando, Florida.

Received: April, 2000
Revised: June, 2000
Accepted: July, 2000

Contact address:

Roman Gumzej
University of Maribor,
Faculty of Electrical Engineering and Computer science,
Smetanova 17
2000 Maribor
Slovenia
e-mail: roman.gumzejQuni-mb.si

Jean-Philippe Babau

INSA de Lyon+

Bat 502 - L3i

20 Av A. Einstein

69621 Lyon, France

e-mail: jpbabau@if.insa-lyon.fr

ROMAN GUMZEJ joined the Faculty of Electrical Engineering and Com-
puter Science at the University of Maribor, Slovenia, in 1994, as a junior
research follow. He received his Master of Science and Doctor of Sci-
ence degrees in 1997 and 1999 respectively. He is currently a teaching
assistant and research engineer at the same faculty.

His main research interests are real-time systems, their co-design, op-
erating systems as well as verification and validation. He is a member
of the IEEE Computer Society.

DOMEN VERBER is assistant professor at the Faculty of Electrical En-
gineering and Computer Science, University of Maribor, Slovenia. He
received his Master of Science and Doctor of Science degrees in 1996
and 1999 respectively.

His main research interests are real-time programming languages, object
orientation, temporal and schedulability analysis of task, and applica-
tion design techniques and methodologies. He is a member of the IEEE
Computer Society.

An Experiment in Design and Analysis of Real-Time Applications 195

MATJAZ COLNARIC is associate professor at the Faculty of Electrical
Engineering and Computer Science, University of Maribor, Slovenia,
from which he also received his Master of Science and Doctor of Sci-
ence degrees in 1983 and 1992, respectively. He chairs the Real-Time
Systems Laboratory and teaches courses on microprocessors, real-time
systems, and algorithms and data structures.

His main research interests are related to embedded real-time control
systems, their hardware and system architectures, operating systems,
programming languages as well as application design techniques and
methodologies therefor.

Dr. Colnari¢ has authored, or co-authored, some 80 journal and confer-
ence papers and book chapters, mainly in the real-time area. He served
in programming committees of a number of international conferences,
he organised special sessions and chaired them. He is a member of
the IEEE Computer Society and its TCs on Real-Time Systems and
Complexity in Computing. He is also a member of IFAC Technical
Committee on Real-Time Software Engineering.

JEAN-PHILIPPE BABAU is an assistant professor in the department of
computer science at the INSA (engineer school) of Lyon. He received
his PhD in computer science from the University of Poitiers in 1996.
His research interests include the design, object-oriented techniques,
and the analysis of temporal behavior for complex real-time systems.

JACQUES SKUBICH is an assistant professor at the Department of Com-
puter Engineering & Inf. Technology at INSA de Lyon, France from
which he received his Ph.D. in Applied Computer Science and Au-
tomation in 1983. His main lecturing activities are related to Operating
Systems, Software Engineering & Real-Time Systems, in particular
by means of graphical programming. He is a member of program-
ming committees of a number of Conferences and has been the general
Chairman of WRTP’97 in 1997. He is a member of the IF AC Technical
Committee on Real-Time Software Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

