
Journal of Computing and Information Technology - CIT 8, 2000, 3, 207–219 207

From CRSM to a Tasking Design

Jean-Jacques Schwarz�1�, Katarina Jelemenska�2�, Zhongwei Huang�3�,
Régis Aubry�1�, Jean-Philippe Babau�1�

�1�Laboratoire L3i, B502, INSA de Lyon, Villeurbanne, France
�2�Dept. Computer Science & Engineering, Slovak University of Technology, Bratislava, Slovakia
�3�Dept of computer science, Harbin Institute of Technology, Heilongjiang, P.R. China

This paper introduces elements to facilitate crossing of
the gap between analysis and design in the case of
real-time applications relying on multitasking operating
system. The chosen specification method is based on the
use of Shaw’s CRSM �Communicating Real-Time States
Machines� and our purpose is to put the basis of a method
for an easier translation of a CRSM-based modelling of
a system into a real-time multitasking execution model.
In order to do this, we present guidelines for translating
the basic constructs of a CRSM model �communicating
machines, channels, transitions� into programs involv-
ing the usual objects and primitives found in off-the
shelf real-time multitasking operating systems �tasks or
threads, message passing, event signalling� � � �. The
guidelines are illustrated with the classical specification
example of the Martian Lander. The aim is to overcome
the gap between a specification made with the CRSM
and a multitasking execution model: this will then enable
good possibilities for verification. The specification can
be executed and the design can be verified for correctness
�liveliness, safety�. Eventually, a comparison between
the behaviour of the specified model and that of the target
program can be made.

1. Introduction

This paper introduces elements to facilitate the
crossing of the gap between analysis and design
in the case of real-time applications relying on
multitasking operating systems.

The transition between the specification and de-
sign software lifecycle phases can generally be
seen from two points of view. The first ap-
proach takes into account the fact that speci-
fication and design are two well-differentiated
phases, both being devoted to specific aims. It
therefore seems natural to use for each phase a
personalised notation. Therefore it is clear that

using the most appropriate modelling tool for
each step is of great advantage. On the other
hand, it is obviously necessary, while making
the transition between the two phases, to op-
erate a mapping from the first notation to the
second one, facing all the implied and known
drawbacks. A good specification notation is
aimed at stating and analysing a problem clearly
�unambiguously�; while a good design tool is
aimed, given a hardware and software target ar-
chitecture, at allowing the designer to harness
carrying out a �one� solution. If we assume that
a well-analysed problem is a half-solved one,
the remaining part to solve, the last but not the
least, has yet to be built.

Fig. 1. Translation Process.

The second approach consists of adopting a sin-
gle notation thus avoiding any risky mapping or
transformation. But in this case, the main dis-
advantage is that the solution addresses then a
specific architecture �ie SPRING, �5, 6�� and�or
does not allow a complete control of the archi-

A previous short version of the paper appeared in Proceedings of the IEEE International Symposium on Industrial Electronics,
Bled, Slovenia, July 12–16, 1999.

208 From CRSM to a Tasking Design

tectural choices in the case of standard operating
systems �i.e. overhead generated by a virtual
machine�.

As far as concerned, this paper is dedicated to
the first approach. The purpose is to facilitate
the transition between the specification and de-
sign steps for the numerous industry designers
that are familiar with state-machines family no-
tations at the specification level and who are
used to implement their applications, using off-
the-shelf multitasking operating systems.

In order to highlight the technical features of
our proposal we will rely, having practical con-
siderations, on Shaw’s CRSM at the analysis
level and, at the design level, on the LACATRE
modelling formalism that allows to abstract a
given operating system. Beyond these particu-
lar notations, the proposed ideas can probably
be helpful to a much larger community of in-
dustry real-time designers.

Starting with a specification based on CRSM
�Communicating Real-Time States Machines�
�4�, our purpose is to propose guidelines for
an easier translation towards a real-time multi-
tasking execution model represented in the LA-
CATRE formalism �3�. The final aim is to over-
come the gap between a specification made with
the CRSM and a multitasking execution model:
this will enable good possibilities for verifica-
tion. The specification can be executed, the de-
sign can be verified for correctness �liveliness,
safety� and eventually a comparison between
the behaviour of the specified model and that of
the target program can be made �Figure 1�.

The paper is structured as following. Section
II recalls the main features of the CRSM. Sec-
tion III describes the LACATRE formalism as
an abstraction level to standard COTS real-time
kernels, and highlights themain semantic differ-
ences between CRSM and LACATRE and sec-
tion IV presents some of our translation rules. In
section V, some of the guidelines are illustrated
with an example.

2. CRSM as a Specification Language

CRSM �Communicating Real-Time State Ma-
chines� represents a complete and executable
notation for specifying the requirements of real-
time systems including the monitored and con-

trolled physical environment. They are essen-
tially state machines that communicate syn-
chronously in a manner much like the input-
output in Hoare’s CSP �Communicating Se-
quential Processes�. In addition, there is a set
of facilities for describing timing properties and
accessing real time. This language allows not
only for simple and natural requirements speci-
fication, but also some algorithms are available
for executing or simulating CRSM, as well as
some techniques for reasoning about the specifi-
cation. The representation was developed with
the aim to satisfy, as completely as possible, the
needs of real-time applications.

It allows to express concurrency, communica-
tions and synchronisation of various real-time
processes, as well as to express time explicitly.

When specifying a system using CRSM, any
system model has at least two machines, one to
model the environment and the other to spec-
ify the required computer system behaviour.
The machines execute concurrently and inde-
pendently of one another in case there is no
active communication among them. Any pair
of state machines can communicate together,
sending messages over channels that are uni-
directional, uniquely identified, and there is a
message type associated with each channel.

In case of communication the two machines are
synchronised because the communication only
takes place when both machines are ready for
the communication. That means that the first
machine that is ready to communicatemust wait
until the second one is also prepared to commu-
nicate.

There are no global variables within the model
except for global real time, so each of the state
machines can only operate on its local variables.

Each machine has a finite number of states with
one start state and zero or more halt states. The
state transitions are described as guarded com-
mands with optional guard �Boolean expression
over local variables� and a command that can be
either an input, output, or internal command.

Internal command can specify either a sequen-
tial program or a physical activity. Its execution
time is marked off by a pair of time values,
Tmin and Tmax, indicating that the duration
of the command is somewhere in the interval
� Tmin� Tmax �. These bounds can be repre-
sented as a requirement or as a given behaviour.

From CRSM to a Tasking Design 209

Fig. 2. CRSM Modelling of a LACATRE Mailbox.

The state transition with an internal command
can be executed when its “from” state is entered
and its guard is evaluated to true.

Several commands may be eligible for execu-
tion at the same time; selection is then made
non-deterministically.

Input and output are modelled directly after
CSP: the communication is synchronous, 1-
way, and has a unique sender and receiver.
What is more, the communication can only oc-
cur when two machines are sending�expecting
the message of the same type, over the same
channel, and can perform their IO commands at
the same time.

Using the synchronous type of communication
over channels for real-time specifications has
several advantages compared to other alterna-
tives such as an asynchronous method with or

without broadcast. Namely, very simple as-
signment semantics of the IO, no messages are
“lost”, there is no need to assume unbounded
buffer capacities on communication channels,
and finally, it allows to introduce the real time
in a natural and easy manner.

IO times are also represented by pairs of time
values, in this case denoting the earliest and lat-
est times that the IO can occur after entering
a given state. So the time values represent the
minimal and maximal delay of an IO from the
time when the machine has entered the "from"
state of the transition. So if the time intervals of
sending and receiving machine do not overlap,
the communication cannot occur at all and nei-
ther of the transitions can be executed. IO is in-
stantaneous and any preparation, processing, or
communication time that should be accounted
for can be expressed either in time values or
using an internal action immediately following
the IO.

In spite of the instantaneous nature of com-
mands there is always aminimal nonzero amount
of time δ that the machine will spend to do an
IO or an internal command in case the specified
time values are zero.

There is a real-time clock machine RTCM as-
sociated with each machine M. This machine
communicates with machine M over channel
RTM and is always ready to send the current
value of real time, represented by global vari-
able rt, that is globally available to all clock
machines.

An IO command RTM�x�?�y � executed by ma-
chine M will generate a timeout at relative time
y and set x to the real time rt at the timeout.
So x can be used as a time stamp for time-out
event. By omitting y the approximate time of

Fig. 3. CRSM Modelling of a Periodic Process.

210 From CRSM to a Tasking Design

entering the “from” state of the transition will
be assigned to x. Omission of x will generate a
pure time-out.

Thus CRSM provide mechanisms for accessing
absolute and relative real time and for describ-
ing timeouts, the main functions available on al-
most all computer systems. Thismethod of time
specification is quite simple and the description
of periodic �Fig. 3� or sporadic process control,
the typical parts of real-time application, can be
done without any difficulties. If necessary, it is
also possible to define a discrete time clock 0.

3. Multitasking Design

We are focusing our work on designs relying on
off-the-shelf Real-Time Multitasking �or Multi-
threading� Kernel MTRK �or Operating Sys-
tem� used in industry. Even if these kernels
have similar functional purposes, they may dif-
fer in the basic tasking objects proposed to the
programmer. That is the reason why we have
chosen the LACATRE language and tool for the
execution model of an application.

The LACATRE graphical languagewas initially
designed for educational purposes: the same
tool is used, on the one hand, to describe and
model the objects being manipulated by real-
time kernels and, on the other hand, as a de-
sign tool for real-time applications. Within the
software lifecycle, LACATRE covers both the
preliminary design and detailed design steps. It
gives access to the various approach axes re-
quired for the design of a real- time application:

� The abstraction-level axis settles the link be-
tween the low-level basic objects �the ker-
nel objects: tasks, semaphores, messages,
mailboxes� � � � and the objects that are de-
fined during the specification step of an ap-
plication.

� The behavioural axis allows modelling of the
dynamic behaviour of an application, from
the multitasking and communication�synch-
ronisation points of view.

� The transformational axis defines how and
where the application data processing is done.

� The application phase axis deals with the var-
ious running modes of an application: the ini-
tialisation, the normal running �kernel�, the
exception handling and the shutdown.

Fig. 4. Applicative Object.

For the purpose of this paper we have focused
only on the dynamic behaviour of an applica-
tion.

A dual textual language, which can be consid-
ered as an intermediate language, is associated
with the graphical language. Starting from the
textual form of his programme, the designer can
use different tools, such as the code generator
for a given target �for example, a C-C�� pro-
gramme with system calls for a given real-time
executive�. In addition, it is obvious that a pro-
gram has to be validated �verified� before its
layout. These verifications are done using both
the principles of hierarchical relative correct-
ness �7� and the modelling of each LACATRE
atomic object by means of communicating real-
time state machines �1�.

During the preliminary design step, LACATRE
allows the designer to structure his solution by
splitting it up into various actors represented by
high-level objects called “applicative objects”.
Each applicative object proposes to the other ac-
tors a set of specific functions �services� which
have therefore to be defined by the designer.

As a client does not have to know how a service
is processed, the realisation of this service can
be hidden. Nevertheless, it may require services
offered by other applicative objects: hence, an
applicative object is often both a server and a
client. In addition, an applicative object may
have to interact with the outside real world to
be monitored or controlled: these interactions
are represented by means of “terminators” as in
SART.

From CRSM to a Tasking Design 211

The applicative objects can be handled by way
of state primitives. These state primitives �cre-
ate, delete, suspend, resume, connect, discon-
nect� � � � are common to the whole set of LA-
CATRE objects.

During the detailed design step, the description
of the behaviour of an applicative object, that
means the processing of the state and service
primitives, is obtained thanks to combining ba-
sic LACATRE objects, called “atomic objects”.
These objects can be considered as the final
leaves in a complete hierarchical decomposi-
tion of an applicative object. These low-level
objects and their associated primitives are im-
ages of the objects and system calls offered by
the existing real-time kernels. These atomic ob-
jects are not only used to implement services,
but also to specify the access protocols to these
services.

They can be classified into two classes:

� The server objects: they are concerned with
data flows and synchronisation. Their be-
haviour is user-configurable, but not pro-
grammable. The current version of LACA-
TRE proposes the following objects: mes-
sage, mailbox, resource, semaphore and event
�Fig. 5a.�.

Fig. 5a. Low Level Server Objects.

� The client objects: the processing �control
flow� associated to such an object is spec-
ified by the programmer. LACATRE cur-
rently proposes two main execution mecha-
nisms: the task and the exception handling
�including interrupts� �Fig. 5b�.

Fig. 5b. Low Level Client Objects.

Server objects, providing clients objects with
communicating-synchronising services, are the
usual semaphore �and derivatives�,message and
mailbox �queues, message passing protocols�,
event �broadcast synchronisation� and resource
�read�write embedded in access-release opera-
tion for mutual exclusion functioning�.

Actions �primitives� are associated to these ob-
jects �create, delete, suspend, resume, P, V,
send message, acces-read,� � � � and show on the
graphical design the links between clients and
servers.

Task and Interrupt objects are said to be clients
because they have been programmed to use
communication objects �servers�. Tasks �thre-
ads� are under the control of the operating
system kernel �scheduler�. Exception �Inter-
rupt� objects correspond to the code �interrupt
handler� activated by the physical environment
�sensors, actuators, devices, � � � �.

Task parameters are introduced to take the task
characteristics into account. A task owns an
identifier and a Task Time Requirement De-
scriptor �offset�. The TTRD is a septuple,
which describes the nature and the time con-
straints of the task:

TTRDi �
n

Ni� Si� Pi� ri� ci� di� Ti

o
�

Taski descriptor,

with:
Ni: task type: periodic or sporadic,
Si: execution site,
Pi: task priority �statically or dynamically

assigned�,
ri: task starting time,
ci: task computing time,
di: task deadline
Ti: task period.

The parameters are not necessarily set accord-
ing to the task time constraint knowledge that
the developer has at a given date. For example,
for the standard real-time executives previously
considered, only the priorities will be taken into
account. For a sporadic task, the TTRD param-
eters have a different meaning, some of them
being non-significant and therefore not set. For
example, the Ti parameter will possibly repre-
sent the associated pseudo- period,whichmeans

212 From CRSM to a Tasking Design

the minimum time interval between two succes-
sive computations of this task, if sporadic tasks
are taken into account as periodic tasks �7�.

4. From CRSM to Design: Rules

In a CRSM specification any system model has
at least two machines, one to model the environ-
ment and the other one to specify the required
computer system behaviour. This is a some-
what unusual approach and the question natu-
rally arises, whether to incorporate the given be-
haviour of an environment, described in CRSM
representation, into the execution model or not.

In LACATRE, the main object that is able to ex-
press some activity is the task �thread�, so quite
naturally we would assume that each state ma-
chine in CRSM representation should be repre-
sented with it. But there are other objects avail-
able. For example, a display or a reading device
can be represented using a resource object and
a switch can be represented by an interrupt.

The problem is how to distinguish between
given and required behaviour when they are
mixed together and represented uniformly in
CRSM model. So, further on we will assume
that the two associated types of state machines
are clearly identified within a CRSM represen-
tation �for instance shaded objects for ESMs-
Environment State Machine, non-shaded ob-
jects for SSMs- System State Machines�.

The other thing where CRSM and LACATRE
differ substantially are directly supportedmeans
of communication. In CRSM, the communica-
tion is synchronous channel-based: the channel
provides a direct communication mechanism
between two state machines, and the commu-
nication can only occur when the two machines
are sending�expecting the message in the same
time interval.

On the other hand, LACATRE provides several
communication entities �semaphore, mailbox,
interrupt and event� but none of them requires
the two communicating tasks to wait for each
other. Neither is there an action that would en-
able the tasks to communicate directly just like
any two state machines can by means of channel
in CRSM representation.

Based on these differences, the translation of
the following constructs in CRSM has to be
considered.

A. Environment State Machine Translation

The actual representation of ESM in LACA-
TRE will be decided based on its behaviour and
communication with other state machines.

– If there is only one IO command and zero or
more internal commands in ESM, the inter-
nal commands will be ignored and the ESM
will be represented as one LACATRE object
�resource and�or interrupt� according to the
IO command.

– If there are several IO commands and zero
or more internal commands in ESM, its be-
haviour will be simulated using LACATRE
task object. However, to distinguish this
task from other tasks, representing SSMs, all
the communications between this ESM and
a SSM will be represented using either re-
source or interrupt object, depending the IO
command.

B. System State Machine Translation

In general, each of the state machines modelling
SystemStateMachines �SSM�will be described
in LACATRE by means of one task object, us-
ing the state machine’s name as task identifier.
However, in some cases several new tasks can
be created temporarily by this main task in case
some parallel actions are modelled within the
SSM.

C. Execution time of an internal command

The most natural way of expressing execution
time of an internal command in LACATRE is
to associate each internal command �with spec-
ified time values� with a procedure call speci-
fying minimal and maximal times of execution
�timed procedure�.

Since in CRSM a transition with an internal
command is ready at the same time as its “from”
state is entered �5� both time values will be rel-
ative to the time point when the procedure was
called. We suppose that an alarm will be set to

From CRSM to a Tasking Design 213

the value of deadline simultaneously with the
procedure call in order to generate an interrupt
�or an error message� in case the deadline was
not met. Each time the return from the proce-
dure is executed, the minimal execution time is
checked as well producing some warning �er-
ror� message in case the execution was too fast.

D. CRSM’s Input/Output Commands

Two main issues concerning communication
will be discussed in this section:

� Transformation of single communicationCR-
SM channel into one of several different com-
munication objects available in LACATRE,
and

� The difference between synchronous and asyn-
chronous communication.

There are several solutions to these problems.
Any indirect means of communication, sup-
ported inLACATREcan be represented inCRSM.
However, if we required CRSM specification to
use only indirect means of communications, it
would result in substantial loss of readability
of the design, since these indirect means would
introduce new machines into it.

The simplest solution would be to extend LA-
CATRE to include channels among its basic
communication entities which would, however,
only postpone the problem until later in case

channels are not supported by target real- time
executive. That is why we decided to find a
suitable transformation of channel-based com-
munications into objects and actions available
in LACATRE.

The translation of CRSM channels will depend
on the type of communicating state machines
and on the input.�output command.

1� Channels between two SSM or two ESM

SSMs in CRSM are represented by tasks and
therefore channels could be easily represented
by inter-tasks communication means like sema-
phores and mailboxes.

In case some time values are specified with in-
put and�or output command in CRSM, there
is always a possibility that the communication
will never take place, since the two machines
are required to be at the point of communica-
tion at strictly defined time interval. So, if one
of them misses the time interval the message
will not be sent at all. Obviously in this case
it will be necessary to make the two communi-
cating tasks wait for each other, otherwise the
required behaviour will not be attained.

A time interval specified with input command
can be represented in LACATRE using a wait-
ing primitive with flow control on the mailbox
�semaphore� representing the channel. This
means that the reading task awaits the message

CREATE MAILBOX (chan);
CREATE SEMAPHORE (chan ACK);
...
CREATE MESSAGE (m1);
DELAY(t1);
SEND to MBX(chan, m1);
WAIT on SEM (chan ACK, ,t2);
IF time out THEN /* end of

overlapping period*/
WAIT on MBX (chan); //

/* get back the message */
DELETE MESSAGE(m1);

/*(no communication)*/
Error handler(e num);

ELSE
/* next commands */

END IF;

Fig. 6a. Graphical Modelling SSM1. Fig. 6b. Textual Description.

214 From CRSM to a Tasking Design

DELAY(t3);
WAIT on MBX(chan, t4);
IF time out THEN

Error handler(e num);
ELSE

SEND to SEM (chan ACK);
/* next commands */
DELETE MESSAGE(m1);

END IF;

Fig. 7a. Graphical Modelling SSM2. Fig. 7b. Textual Description.

only for a specified amount of time. If a time-
out occurs while awaiting a message the two
tasks do not meet within the time interval and
an exception handler must manage this fault.

When a time interval is specified with output
command themessage should not be sent in case
the reading task is not ready to read the mes-
sage. Similar behaviour can be reached when
sending task deposits a message to mailbox or
semaphore and then withdraws it again after a
specified time in case it has not yet been read by
reading task. This can be represented in LACA-
TRE quite easily without introducing any new
object or primitive, provided that a semaphore
can be accessed by several tasks. However, a
simple CRSM channel may be represented by
two or more objects: two semaphores or mail-
boxes, message and a semaphore. The follow-
ing example illustrates the situation.

Suppose there is an output command chan�m1�!
�t1� t2� in SSM1 �Figure 6a.� and an input com-
mand chan�m2�?�t3� t4� in SSM2 �Figure 7a�.
The first time value t1 represents some internal
activity, needed to prepare the communication.
This internal activity has not yet been specified
and therefore will be mapped to the LACA-
TRE of DELAY�t1� system call. The second
time value t2 represents time-out of output op-
eration, so the task SSM1 should wait until the
message has been read by task SSM2 or time t2
has expired. The output command will then be
translated as shown in figures 7a and 7b. The
corresponding reading task SSM2 waits for the
time t3 first and then awaits amessage. If a time-
out occurs while awaiting the message, the two
tasks do not meet and an exception handler will
manage the situation. Otherwise the task sends
an acknowledgement. Figure 6b. illustrates the
dual textual form of sending task SSM1.

2� Channels between SSM and ESM

A channel between SSM and ESM will be rep-
resented either by resource or interrupt object,
depending on the message and the direction.
Translation rules are based on the assumption
that no time restrictions can be specified on the
side ofESM.Anyoutput toESMandnon-empty
input from ESM in SSM with time restrictions
will be translated into timed procedure call. The
access or access and release action system calls
�depending on the resource configuration� will
then be included in the procedure itself. An
empty input from ESM command in SSM with
time restrictions is mapped to a timed wait for
interrupt system call.

E. State Transitions

State transitions represent the execution flow of
state machine. In CRSM they are described as
guarded commands with an optional guard and
a command that can be either an input-output,
or an internal command. From now on, we
will use the expression “guarded transition” to
denote a transition labelled with complete com-
mand �explicit guard part� and the expression
“unguarded transition” otherwise.

Task is a basic LACATRE programmable ob-
ject with a progress bar representing its ex-
ecution path. Several algorithmic forms can
be placed onto this bar to change the execu-
tion flow: forever, if condition, while condition,
repeat-until condition, switch variable, proce-
dure call. Some of these algorithmic forms
include a condition and are therefore used to
translate a guarded transition. The decision,
which of these algorithmic forms is to be used
to translate a particular guarded transition, is

From CRSM to a Tasking Design 215

not easy to make, since a thorough inspection
of state machine’s structure will be necessary
for the decision. To simplify this job, some
restrictions have to be defined and given.

3� Restrictions

For the purpose of specifying the restrictions
and the rules for translation of state transitions
some terms have to be defined first.

Definition 4.1. For each state S of state ma-
chine M each state transition that ends up in
state S is called incoming transition and simi-
larly, each state transition that leads out of the
state S is called outgoing transition.

Definition 4.2. Any sequence of states and
state transitions of state machine M is called
path iff it starts in a state S that is reachable
from start state of state machine M.

Definition 4.3. A path starting in state Si and
ending in state Sj is called full path iff state Sj
is either halt state or is included in a path from
start state to state Si.

Definition 4.4. Each incoming transition of
state S that is on a path from start state to state
S is called initialising transition.

Definition 4.5. A state Si of a state machine M
is called quasi-start state iff none of the paths
starting in the state Si includes a state Sj that is
on a path from start state to state Si.

Definition 4.6. A set of all paths starting in
state Si with the same state transition t and end-
ing in the same state Si is called standalone loop
iff none of the paths includes a state Sj that is
on a path from start state to state Si.

Definition 4.7. A set of all paths �at least two�
starting in state Si and ending in state Sj is called
parallel construction iff each of the paths has
the same set of commands describing the state
transitions on the path.

In CRSM, any Boolean expression over local
variables can be used as a guard. But it would
be very difficult and also time consuming, to

consider all the possible combinations of tran-
sitions and their guards. Therefore some restric-
tions concerning allowed combinations of tran-
sitions and their guards are defined in this sec-
tion. Based on the previous restrictions, follow-
ing combinations of outgoing transitions from
any state S are legal:

� one unguarded outgoing transition described
with any command,

� exactly two guarded outgoing transitions de-
scribed with any command,

� any number �implementation dependent� of
unguarded outgoing transitions belonging to
the same parallel construction,

� any number of unguarded outgoing transi-
tions described with input commands; only
one of the commands can represent input
from real-time clock machine,

� two unguarded outgoing transitions one of
them described with an input from real-time
clock machine command and the other one
with common input�output command.

When a state machine reaches a halt state, that
means that its execution is finished. Since real-
time applications have usually repetitive nature
the halt states will most often represent erro-
neous situations. That is why they will be
represented in LACATRE by procedure called
Error handler(e num), where parameter e num
represents a particular situation number.

4� Transformation rules

The following rules are supposed to be used dur-
ing transformation of one state machine �certain
ESMs and SSMs� of CRSM into LACATRE
task in order to decide which of the algorithmic
forms �control flow� available in LACATRE to
use in a particular situation.

� If state S has only one outgoing transition and
no incoming transition �except for initialising
transition�, analysis of state S is finished.

� If state S is a start state of state machine
M and has only unguarded outgoing transi-
tion�s� and at least one incoming transition
�except for initialising transition� FOREVER
algorithmic form is placed onto the progress
bar �see for instance state S1 in figure 10�.

� If state S is neither start state nor quasi-start
state of state machine and has only unguarded

216 From CRSM to a Tasking Design

outgoing transition�s� and at least one incom-
ing transition �except for initialising transi-
tion� REPEAT � � �UNTIL algorithmic form is
placed onto the progress bar �see for instance
state S1 in figure 10�.

� If state S has two guarded outgoing transi-
tions with complementary guards condS and
�condS and each of them starts one stan-
dalone loop, FOREVER algorithmic form is
placed into LACATRE representation, fol-
lowed by algorithmic forms WHILE condS
� � � END WHILE and WHILE condS � � �

END WHILE. Analysis of state S is finished.
The standalone loops will be translated inside
the respective WHILE algorithmic forms.

� If there is a guarded outgoing transition from
state S with guard condS that starts a stan-
dalone loop, the algorithmic form WHILE
condS � � � END WHILE is placed into LA-
CATRE representation. Analysis of state S is
finished. The standalone loop will be trans-
lated inside the WHILE algorithmic form and
all full paths starting with the other guarded
transition will directly follow the WHILE al-
gorithmic form.

� If neither of the guarded outgoing transitions
from state S starts a standalone loop, the algo-
rithmic form IF condS THEN � � � ELSE � � �

END IF is chosen.

5� LACATRE extensions

Each state machine in CRSM representation,
although sequential in its nature, allows to ex-
press a non-deterministic behaviour of an envi-
ronment or a part of system. For example, if
several outgoing transitions in state S are ready
to be executed at the same time, the selection
will be made non-deterministically. However,
even if only one of them were ready, there is
still some kind of non-determinism, because at
the time of entering Let’s take several outgo-
ing transitions described with input commands
first. In this case the decision depends on which
of the state machines, sending the messages,
will be ready to communicate as the first one.
That means, the channels should be sampled
in a loop until one of them has been activated
by a sending task. In OCCAM programming
language, which is also �like CRSM notation�
based on Hoare’s CSP, such a behaviour can
be described simply, using one ALT construc-
tion. Since we would like to keep LACATRE

design, especially its graphical form, as simple
as possible, it will probably be interesting to
introduce two new algorithmic �ALT and PAR�
into the graphical language. A parallel con-
struction in a state machine �as by definition 7
in section 4. E� describes several activities �e.g.
internal commands� that can be executed in any
order, therefore, are independent of each other.
That means, that they can, but do not have to,
be executed in parallel. The only way, how to
describe this behaviour in LACATRE is to ex-
ecute them in parallel, that means as separate
tasks. Of course this will result in some addi-
tional overheads �e.g. creation and deletion of
new objects�. To keep the LACATRE graphical
representation legible the additional commands
will be included only in textual form. Graph-
ical form will display only original commands
�those from CRSM translated into LACATRE�
using the newly introduced PAR algorithmic
form.

5. Illustrating Example

The chosen example is the Martian Lander sys-
tem taken from �2�. The landing system oper-

Primitive Actions:

Action Time
in ms

Description

RACC 10 Starts IO device to read acceleration;
sets DONE state predicate to FALSE

STMR 10 Starts hardware watchdog timer

IACC 10 Input measured acceleration

ADJM 20 Adjust motor thrust

TDP 10 Transmit info to display panel

IEM 10 Initiate emergency mode if DONE is FALSE
by setting ELSM state predicate to TRUE

ETC 10 Other housekeeping function

IVEL 20 Input measured velocity

IALT 20 Input measured altitude

CKDT 10 Check input data for consistency

RRM 10 Retro-rocket module

Composite Actions:

Action Description Primitive Actions

N1 Phase 1 of Normal Operation
of Landing System

RACC ; STMR

N2 Phase 2 of Normal Operation
of Landing System

IACC ; �ADJMkTDP�

TIH Timer Interrupt Handler IEM ; ETC

E Emergency Operation
of Landing System

�IVELkIALT�; CKDT;
RRM

From CRSM to a Tasking Design 217

State Predicates:

Predicate Description

ELSM Emergency landing system mode is on;
initially FALSE

DONE I�O status flag denotes no I�O in progress;
initially TRUE

External Events:

Event Description

START System start-up

IOINT I�O device signals completion; sets DONE to TRUE

TMRINT Time Interrupt, occurs at least 100 ms after start
of STMR

Timing Constraints:

a� While ELSM is off, execute N1 : period � 200 ms,
deadline � 40 ms

b� When external event IOINT occurs, execute N2 with
deadline � 60 ms, separation � 100 ms

c� When external event TMRINT occurs, execute TIH with
deadline � 60 ms, separation � 100 ms

d� While ELSM is on, execute E : period � 200 ms,
deadline � 100 ms

Fig. 8. Event-Action Specification.

ates in one of two modes: normal or emergency.
Emergencymode is activatedwhen some timing
constraints are not met.

While in normal landing mode, the pilot can
control acceleration, velocity, and position by
adjusting the downward thrust generated by the
rocket motor, thus bringing the space vehicle
to a safe landing. This task is continually per-
formed in two phases. In phase 1, an I�O device
is started to read the acceleration set by the pilot
and a hardware timer is started which generates
a timer interrupt �i.e., external event TMRINT�
after 100ms. In phase 2, when the I�O opera-
tion is completed �i.e., external event IOINT�,
the value of acceleration is read and the mo-
tor thrust is adjusted appropriately. However, if
for some reason the I�O operation is not done
within 100 ms, the timer interrupt initiates the
emergency landing mode.

While in emergency landing mode, the altitude
and velocity is periodically sampled and retro-
rocket is automatically fired to bring the vehicle
to a safe landing.

Event-action specification of Martian Lander is
given in figure 8. Based on this specification
we described the Martian Lander using CRSM

Fig. 9. Global CRSM Modelling.

notation which was then translated �manually�
into LACATRE.

In CRSM representation each composite action
is described by one SSM. Primitive actions are
represented, according to the context, either as
messages sent down the channels or as internal
activities. In the first case someESMs are added
to send or receive the messages. External events
are also represented as messages and ESMs that
generate these messages. State predicates rep-
resent local variables in some SSMs and their
values are set according to the communication
between these SSMs. Timing constraints are
modelled in the same way as it was described
in �4�. The global view of the system is given in
Figure 9.

Figure 10 is extracted from the state machines
of this system and their manual translation into
LACATRE.The final target code is then straight-
forward to obtain. The figure shows the result
of the translation applied to one phase of Nor-
mal Operation of Landing System �example of
SSM�.

6. Conclusion

The aim of this paper is to propose some rules
for the translation from aCRSMspecification of
a real-time system to a multitasking execution
model based on LACATRE. It has been shown
that, by introducing some restrictions in the use
of CRSM and probably some extensions in LA-
CATRE, the translation is possible leading thus
to a possible comparison of the specification be-
haviour and that of the execution model. The
translation from LACATRE to CRSM, which is
a much easier issue, is done as shown in �1�.

218 From CRSM to a Tasking Design

Fig. 10. Phase 1 of Normal Operation of Landing System �SSM�.

From CRSM to a Tasking Design 219

Currently, the translation is hand-made by using
the rules, some of which have been described
in this paper. Work under process tries to show,
thanks to more complex real time applications,
that these rules and restrictions cover most of
the current situations. The next step consists of
building, with the help of a graphical environ-
ment, basic CRSM state “forms” and of asso-
ciating them with basic LACATRE “patterns”
in order to assemble them in a semi-automated
assisted way.

References

�1� Z. HUANG, A. LEGAIT, M. MARANZANA, E. NIEL,
J. J. SCHWARZ, J. SKUBICH, About Techniques for
the Verification of the Behaviour of Real-Time Mul-
titasking Components, IFAC’99 World Congress,
Beijing 1999.

�2� F. JAHANIAN AND A. MOK, Safety Analysis of Tim-
ing Properties, in Real-Time Systems, IEEE T.S.E.,
vol. SE–12, No. 9, pp. 890–904, Sept. 1986.

�3� J. J. SCHWARZ AND J. J. SKUBICH, Graphical Pro-
gramming for Real Time Systems, Control Eng.
Practice, vol. 1, No. 1, pp. 43–49, 1993.

�4� A. SHAW, Communicating Real-Time State Ma-
chines, IEEE Trans. on Software Eng., vol. 18, pp.
805–816, Sept. 1992.

�5� J. A. STANKOVIC, K. RAMAMRITHAM, The Spring
Kernel: A New Paradigm for Real-Time Systems,
IEEE Software 8�3�: 62–72 �1991�.

�6� J. A. STANKOVIC, K. RAMAMRITHAM, D. NIEHAUS,
M. HUMPHREY, G. WALLACE, The Spring System:
Integrated Support for Complex Real-Time Sys-
tems, Real-Time Systems 16�2–3�: 223–251 �1999�.

�7� T. SZMUC, P. SZWED, J. J. SCHWARZ, AND J. J. SKU-
BICH, Hierarchical Correctness Verification in Mul-
tiphase Real-Time Software Design, IFAC WRTP,
1994.

�8� J. XU AND D. L. PARNAS, On satisfyingTiming Con-
straints inHardReal-TimeSystems, IEEETSE.,Vol.
19 n. 1, pp. 70–84.

Received: April, 2000
Revised: June, 2000

Accepted: July, 2000

Contact address:

Jean-Jacques Schwarz
Laboratoire L3i, B502

INSA de Lyon
20 Av A. Einstein, 69621
Villeurbanne, FRANCE

e-mail: jjs�iuta�univ�lyon��fr

Katarina Jelemenska
Dept. Computer Science & Engineering

Slovak University of Technology
Ilkovicova 3, 812 19 Bratislava

SLOVAKIA
e-mail: jelemenska�dcs�elf�stuba�sk

Zhongwei Huang
Dept of computer science

Post Box 318
Harbin Institute of Technology

15001 Harbin, Heilongjiang
P.R. CHINA

JEAN-JACQUES SCHWARZ is a professor in the Department of Computer
Science at the Technological Institute of the University of Lyon. He was
head of the Industrial Computing Research Laboratory �L3i� at INSA
de Lyon. His reserch interests primarly concern graphical programming
and validation of complex multitasking real-time systems.

KATARÍNA JELEMENSKÁ was born in 1962 in Slovak Republic. She
received her Msc. and PhD. from Slovak University of Technology
Bratislava. She is an assistant professor at the Department of Computer
Science and Engineering of the same university. Her scientific inter-
ests include fault-tolerance and reliability, real-time systems, means of
hardware �and software� specification.

ZHONGWEI HUANG is an assistant professor in the Department of Com-
puter Science at the Harbing Institute of Technology �PRC�. His reserch
interests include distributed real-time operating systems and structural
correctness verifying of real-time sofware.

RÉGIS AUBRY �graduate of the Computer Sciences Department at INSA�
is a senior lecturer of Computer Science at Institut National des Sciences
Appliquées �INSA� de Lyon. His research interests include software
engineering, complex system , software quality, dependability. He is re-
sponsible for software engineering, quality assurance and dependability
courses.

JEAN-PHILIPPE BABAU is an assistant professor in the department of
computer science at the INSA �engineer school� of Lyon. He received
his PhD in computer science from the University of Poitiers in 1996.
His research interests include the design, object-oriented techniques,
and the analysis of temporal behavior for complex real-time systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

