
Journal of Computing and Information Technology - CIT 6, 2000, 3, 235–247 235

A Hardware Architecture for Scheduling
Complex Real-Time Task Sets*

Sergio Sáez�, Joan Vila�, Alfons Crespo� and Angel Garcia�
�DISCA, Universidad Politécnica de Valencia, Spain
�Departament of Electrical Engineering, Universidad del Valle, Cali, Colombia

The problem of jointly scheduling both hard deadline pe-
riodic tasks and soft aperiodic tasks has been the subject
of considerable research in real-time systems. One of
the most widely accepted solutions for this problem are
slack stealing algorithms. However, these algorithms are
rather impractical, since they all imply a considerable
scheduler overhead. This paper faces the overhead prob-
lem by introducing a complete hardware architecture that
implements slack stealing in hardware using an optimal
algorithm redesigned to be implemented efficiently in
hardware. The proposed solution is a circuit that behaves
as a kind of sophisticated interrupt controller taking the
task workload and the interrupts as inputs, and providing
the highest priority task to be executed in the CPU. From
the point of view of hardware design, the algorithm
involves two main problems: first, to select the highest
priority task at every moment and, second, to locate a set
of slack gaps in a real-time computation.

Locating slack gaps in a real-time computation is a
problem that requires to “look forward in time” into the
forecast schedule of a given workload. This paper analy-
ses the different approaches for solving this problem and
presents a novel architecture to solve it efficiently using
a technique based on an event-driven simulation of the
future of a real-time computation. A timing analysis of
the proposed design is also presented.

1. Introduction

The workload of a real-time system can be ex-
pressed, in general, as a task set composed
by a mixture of periodic, and aperiodic tasks.
The problem of jointly scheduling hard periodic
tasks and soft aperiodic tasks has been subject
of considerable research in the last years. As
a result, there are several solutions with dif-
ferent performance�cost ratios. Among the

proposed solutions �1, 29� are the background
server, the polling server, bandwidth preserv-
ing servers �12, 27, 28, 8, 6� and slack steal-
ing algorithms �11, 17, 29, 20�. Most of the
proposals that claim to be optimal, are highly
complex and would imply a significant tempo-
ral execution overhead. The main reason for
this overhead is the need to look forward into
the periodic tasks schedule in order to locate the
processor quanta �gaps� where aperiodic tasks
can be executed. An approach to reduce this
overhead is to provide the run-time scheduler
with some tables, elaborated off-line, with the
locations of the processor gaps. This method
has two disadvantages: first, the spatial cost of
the tables and, second, the processor time that
is wasted in the �usual� case when tasks have
an execution time that is lower than its nominal
WCET �worst-case execution time�.

The approach followed in this paper to reduce
the scheduling overhead is to do scheduling in
hardware. The selected algorithm for its hard-
ware implementation is a variation of the Dy-
namic Slack Stealer by �20� that has been spe-
cially adapted to be implemented in hardware
�23�. This algorithm is optimal in the sense of
minimising the response time of aperiodic tasks
without jeopardising the deadlines of periodic
tasks. The paper presents a complete hardware
implementation of the EDF scheduler and the
DSS algorithm. As it is a completely on-line
version of the algorithm, no pre-calculated slack
table is needed and, therefore, the spatial com-

�This work was supported by the Spanish Government Research Office �CICYT� under grant TIC99–1043–C03–02.

A previous short version of the paper appeared in Proceedings of the IEEE International Symposium on Industrial Electronics,
Bled, Slovenia, July 12–16, 1999.

236 A Hardware Architecture for Scheduling Complex Real-Time Task Sets

plexity of such slack tables is avoided �29, 20�.
Furthermore, all dynamic workload variations,
such as periodic or sporadic tasks with stochas-
tic execution times �gain time�, can be taken
into account when slack time is calculated.

Most of the literature about hardware imple-
mentation of schedulers comes from the field of
packet scheduling and packet multiplexing in
real-time networks. In these systems schedul-
ing is always done in hardware since efficiency
is crucial. Packet scheduling in real-time net-
works ismostly based on priorities, as it happens
in processors scheduling, but the Rate Mono-
tonic �RM� theory is not so straightforward
to apply in this case �26�. The key aspect of
the hardware implementation of priority poli-
cies is the hardware design of priority queues.
Static priorities scheduling can be implemented
with a fixed number of FIFO queues, one for
each priority level. An efficient application of
the RM theory requires as many as 256 prior-
ity levels. The paper by Moon, et al. �15�,
reviews several architectures for implementing
priority queues in hardware and includes a com-
parison of the four main existing approaches:
binary trees of comparators, priority encoders
with multiple FIFO lists, shift registers and sys-
tolic arrays. An alternative scheme is �9� that
uses an associativememory �CAM� to store pri-
ority information, and RAM for data storage.
Most of these works deal with fixed priorities.
The complexity of hardware implementations
significantly increases in the case of dynamic
priorities, since it requires a scheme for updat-
ing priorities and for reordering of packets on
a per cycle basis. That can severely degrade
the performance of conventional priority queue
design. The performance of a given queue de-
sign for a particular problem has been analysed
throughout different papers.

Some examples can be found in �18� address-
ing the design of real-time router using a com-
parator tree, in �13� presenting an implementa-
tion called Rotating Priority Queues �RPQ� that
provides an efficiency similar to EDF schedul-
ing with a complexity of RMS, in �31� ad-
dressing the problem of updating priorities in
Fair Queueing algorithms, in �10� presenting a
conceptual multi-channel EDF queue for ATM
switching and in �16� presenting a novel VLSI
Priority Packet Queue �PPQ� that achieves fast
operation by manipulating packets instead of

isolated words. Some papers also address the
problem of full queues �25, 16�.

In the field of real-time processing, hardware
scheduling is not so usual as in packet switching,
but there are also some proposals of real-time
coprocessors. The ATAC coprocessor �22� pro-
vides support forAda tasking including schedul-
ing, precise delay implementations, and inter-
rupt handling. Scheduling is based on the RM
theory and provides 64 priority levels and pri-
ority inheritance for shared objects. Colnaric
and Halang �5� introduce the idea of a kernel
coprocessor that is responsible for all operat-
ing system services. The design is structured
into two layers: a Primary Reaction Layer, that
handles all external events, and a Secondary Re-
action Layer, responsible for operating system
requests. From the point of view of scheduling,
dynamic scheduling �EDF� is implemented in
hardware �4�, since it offers a number of ad-
vantages over RM, as discussed in �7�. Finally,
the Spring kernel �30� introduces a sophisticated
coprocessor for a dynamic distributed real-time
system where no periodic workload is known
in advance. It provides support for multipro-
cessor scheduling �completely based on heuris-
tics�, feasibility checking and task migration
�14�. This paper assumes a different model and
presents hardware support for a system where
the static workload, formed by a set of periodic
tasks, is scheduled using EDF and the dynamic
workload, modelled as aperiodic tasks, is sched-
uled using a slack stealer. Themain contribution
of this scheme is how to perform slack stealing
in hardware.

The rest of the paper is organised as follows:
section 2 presents the basic hypothesis and prob-
lem formulation, section 3 revises the method
for slack stealing, section 4 introduces the hard-
ware architecture and the design of its build-
ing blocks, section 5 discusses the problem of
the clock frequency and, finally, section 6 con-
cludes and points out future work.

2. Problem Formulation

Given a real-time system with a workload de-
fined by a set system of independent periodic
tasks T , a stream of sporadic tasks S �aperi-
odic tasks with hard deadlines� and a stream of

A Hardware Architecture for Scheduling Complex Real-Time Task Sets 237

aperiodic tasks J with no deadlines, to be exe-
cuted on a uni-processor system, the goal of the
paper is to design a hardware circuit that sched-
ules this workload in the way that minimises
the response of aperiodic requests and accepts,
whenever possible, sporadic tasks without jeop-
ardising the deadlines of periodic tasks.

The periodic task T is defined by T � fTi�Ci�

Di� Pi� : i � 1 � � �ng with 1 � Ci � Di � Pi,
where Ci, Di and Pi are the worst-case execution
time, relative deadline and period of the task Ti,
respectively. The task set T is assumed to be
feasible �21�.

The sporadic task set S can be defined as S �
fSi�Ai� Ci� Di� : i � 1 � ig with 1 � Ci � Di,
where Ai, Ci and Di are the arrival time, worst-
case execution time and deadline of sporadic
task Si, respectively. We assume that the arrival
time Ai of each sporadic task is unknown, and
that Ci and Di become known at Ai upon the
arrival of Si. At time Ai, the task Si must be
accepted or rejected if its deadline cannot be
guaranteed.

Similarly, the aperiodic task set J can be de-
fined as J � fJi�Ai� Ci� : i � 1g, where the
definition and assumptions for Ji are the same
that as for Si, but taking into account that Ji has
no deadline, and it cannot be rejected.

The workload at a given instant I0 is represented
by a set of active tasks A�I0� that defines the
outstanding computation, a set of inactive peri-
odic tasks T �I0�, and the current aperiodic task
queue J �I0�. A�I0� is composed of all periodic
activations and already accepted sporadic tasks
that are unfinished by time I0.

The tasks do not suspend themselves or syn-
chronise with other tasks and they are ready for
execution as soon as its activation occurs.

The circuit that performs the required schedule
for the described workload behaves as a kind
of sophisticated interrupt controller. The hard-
ware�software interface is defined as follows:

� On startup time, the software writes all the
task attributes �Ci� Di� Pi� into the hardware
registers.

� When a sporadic task arrives, the hardware
must perform a feasibility test in order to ac-
cept or reject the task if its deadline cannot
be guaranteed.

� When an aperiodic task finishes its execution
or a periodic task suspends itself until the next
period, the software writes the task id of that
task into the hardware.

� When a context switch should occur, the hard-
ware issues an interrupt and provides the soft-
ware with an output register that indicates the
task id to be executed next.

The controller maintains all the task sets, and
calculates the slack gaps and it provides an in-
terrupt onlywhen necessary. The software com-
ponent of the scheduler is, thus, reduced to the
minimal expression, acting only as CPU dis-
patcher.

3. Algorithm for Dynamic Slack Stealing

This section presents a brief overview of the al-
gorithm for implementingDynamicSlackSteal-
ing �DSS� algorithm in hardware. The founda-
tions of this algorithm are in the analysis of EDF
scheduling by Ripoll et al. �21�.

The first concept that needs to be introduced is
the definition of slack gap.

Definition 3.1. For a given feasible task set T ,
the slack gaps are the intervals of idle time in
the schedule of T that hold when active tasks of
T are processed as late as possible.

Slack gaps were first characterised by Chetto
and Chetto �3�, for task sets with deadlines equal
to periods. Ripoll et al. �20� showed the slack
time characterisation for periodic tasks with
deadlines lower than periods. In their work,
a formal method to construct the list of slack
gaps is presented. This analysis introduces two
functions GT �t� and HT �t�which are key to the
whole development. These two functions will
have to be calculated in hardware in the design
presented in this paper.

� Function GT �t�: Given a task set T , function
GT �t� accumulates the amount of computing
time required by all activations of tasks in T
from time zero until time t. Formally:

GT �t� �
nX

i�1

Ci

�
t
Pi

�

238 A Hardware Architecture for Scheduling Complex Real-Time Task Sets

� Function HT �t�: Given a task set T , func-
tion HT �t� is the amount of computing time
required by all activations of tasks inT whose
deadline is less than or equal to t. Formally:

HT �t� �
nX

i�1

Ci

�
t � Pi � Di

Pi

�

In other words, HT �t� represents the amount
of computing time that the scheduler should
have served until time t in order to meet all
deadlines.

For the sake of clarity, these functions are de-
fined for a synchronous task set T , where all the
periodic tasks start at time zero, but they can be
easily extended to use T �I0� � A�I0� �19�.

Figure 1 shows functions GT �t� and HT �t� for
the task set T � fT1 � �1� 3� 6�, T2 � �4� 10�
10�, T3 � �4� 10� 17�g. Note that GT �t� is a
stepped function with steps in the beginnings of
new periods �0� 6� 10� 12� 17� 18� 20� ���� while
HT �t� is also a stepped function with steps in
deadlines �0� 3� 9� 10� 15� 20� 21� 27� ����. Note
also that GT �t� � HT �t� �t.

Fig. 1. GT �t� and HT �t� Examples.

Using these functions, slack time can be char-
acterised as follows:

Lemma 3.1. For a given feasible task set T ,
the slack time at time I0, STT �I0�, can be ob-
tained as:

STT �I0� � min
�t�I0

�t � HT �t��

For any feasible set of periodic tasks T sched-
uled according to any optimal preemptive sched-
uler, the slack time STT �I0� represents the max-
imum time that can be used to service aperiodic
tasks until time I0, without jeopardising the hard
deadlines of the periodic tasks.

Once the slack time has been formally char-
acterised, the next step is to obtain a list of
slack gaps. An important property shown in
�20� is that these gaps always start where HT �t�
changes its value �a step in HT �t��. This is a
necessary �but not sufficient� condition for the
beginning of a slack gap. Let Vi be the instants
where HT �t� takes a step. To confirm that some
Vi is the beginning of a slack gap, it has to be
checked that:

� �Vj : �Vj�Vi�	
�
�Vj�HT �Vj�� � �Vi�HT �Vi��

�

This requires to search forward into the values
of HT �t� to confirm the beginning of a slack
gap. Fortunately this search is bounded, as it
will be shown shortly.

Another interesting aspect is the length of a
slack gap. Let βi be the beginning of a slack
gap. The length of slack βi requires to know the
beginning of the next gap, that is βi�1, and is
given by:

length�βi� � ∆i�1 � ∆i with ∆i � βi � HT �βi�

If the algorithm is looking for an amount S0 of
slack time, its confirmation time is defined as:

Definition 3.2. For a given feasible task set
T , and an amount of slack time S0, the confir-
mation instant CI�S0� is defined as: CI�S0� �
min�t� : �t � 0� 	 �t � GT �t� � S0�

and this confirmation time is bounded, provided
this slack time exists.

Lemma 3.2. For any feasible task set T , and
an amount of slack time S0, it can be asserted
that: � �t : �t � CI�S0�� 	 �t � HT �t� � S0�

A Hardware Architecture for Scheduling Complex Real-Time Task Sets 239

This property indicates that the minimum of the
function t � HT �t� is reached before t � GT �t�
matches the current minimum, and therefore it
limits the search range for the confirmation con-
dition.

These definitions show how a list of slack gaps
can be constructed for a given task setT . Equiv-
alent definitions can be done, but using the task
set at given instant I0, T �I0� � A�I0�.

Consider the above example shown at figure 1
where a periodic task set T � fT1 � �1� 3� 6�,
T2 � �4� 10� 10�, T3 � �4� 10� 17�g is repre-
sented. For such task set, the instant of time
where HT �t� takes steps are: Vi � �0� 3� 9�
10� 15� 20� 21� 27� ���� The beginnings of slack
gaps are: βj � �10� 15� 30� 33� ����, and the list
of slack gaps, with their corresponding lengths:
θ � f�10� 4�� �15� 1�� �30� 2�� ���g. The grey
boxes at the bottom of the figure show where
the slack gaps are located �θ�.

4. Hardware Design

According to the previous section, it can be
stated that the goal of a hardware coprocessor
for slack stealing will be to compute the start
and the length of the slack gaps in a real-time
computation in order to satisfy the requirement
for a given amount of slack time. As shown,
that requires to search forward in time, looking
for the instants of time that meet the slack time
characterisation. Once a gap is suspected, the
search has to continue until reaching the confir-
mation time, but fortunately the search depth is
bounded. Suspecting and confirming slack gaps
require to compute functions GT �t� and HT �t�
for every instant of time that is inspected.

This section describes the architecture to per-
form this search into future instants of time of
a real-time computation. Two approaches have
been devised to achieve this goal:

Tick-oriented. In this approach time is incre-
mented by one in each iteration, checking
for the start of gaps and the confirmation
of gaps. So, finally, all future instants of
time up to confirmation time are inspected.

Event-oriented. This approach is based on the
idea that GT �t� and HT �t� are stepping
functions, so it is not worth checking every

future instant of time, but only those where
GT �t� and HT �t� change value. These
changes can be characterised by some well
known events: HT �t� takes a step when
the deadline of some task is reached �so
it evolves to inactive state� while GT �t�
changes when a task changes to ready
state.

In our research both approaches have been stud-
ied. The conclusion is that tick-oriented archi-
tectures have the advantage of being more sim-
ple �they can be implemented using a pipelined
binary tree for example �2�� but they also have
important drawbacks: the performance and the
maximumdepth search they can reach analysing
future instants of time strongly depends on the
granularity of the real-time clock. So if the
unit of time is changed, say from milliseconds
to microseconds, the implementation will per-
form 1000 times slower. On the other hand,
event-oriented architectures result in a greater
complexity, due to event detection, but they are
much more powerful. This section concentrates
on the design and implementation of a event-
oriented architecture for slack stealing in hard-
ware.

The goal of the hardware design is to minimise
the processor time wasted by the scheduler and
interrupt handling which always results in de-
lays and utilisation reduction.

The scheduler design has been split into a hard-
ware component and a software component, but
the last one can be reduced to the minimal ex-
pression. Their goals are:

� The hardware maintains all the task sets, cal-
culates slack gaps and informs the software
componentwhen a task reaches themaximum
priority or an aperiodic task should start exe-
cution.

� The software component is only a CPU dis-
patcher. It only needs to schedule the task
indicated by the hardware, and inform the
hardware when the current task finishes.

The proposed architecture for the hardware sched-
uler is shown by figure 2, and its main functions
are:

240 A Hardware Architecture for Scheduling Complex Real-Time Task Sets

1. To select the highest priority task at every
moment. In this case, the scheduling pol-
icy follows the EDF basis, and therefore,
the highest priority task is the ready task
with the earliest deadline.

2. To calculate the HT �t� and GT �t� func-
tions, as intermediate step towards aperi-
odic task scheduling.

3. To calculate the set of slack gaps, in or-
der to know when an aperiodic task can be
scheduled or when an sporadic task can be
accepted.

Fig. 2. Hardware Architecture.

Before describing this architecture, it is worth
noting that there are two clocks involved in this
hardware design:

Real-Time clock �RTC� The execution
times are measured using this clock and
it determines the processor quantum.

Hardware clock �HC� It determines how
fast the hardware scheduler executes its in-
ternal algorithms, and it is implementation
dependent.

The main components of this architecture are
related bellow:

Task table It is amemory thatmaintains the pa-
rameters of the tasks, such periods, dead-
lines, worst-case execution times �wcet�,
remaining execution time �ret�, etc.

Ready tasks queue �hereafterRTQ� It contains
all active tasks �A�I0� set� sorted accord-
ing to the EDF policy. The active task with
the highest priority is always at the head
of the queue. It is also used to calculate
the HT �t� values.

Inactive tasks queue �hereafter ITQ� It con-
tains the periodic inactive task set �T �I0��
sorted by activation time. The head of the
queue is the next periodic task to be pro-
moted to ready state. It is also used to
calculate the GT �t� values.

Aperiodic tasks queue It contains the aperi-
odic tasks sorted according to the selected
policy �FIFO, shortest job first, etc.�. If
that policy is preemptive, the run-time con-
troller is informed whenever a preemption
occurs between aperiodic tasks.
The aperiodic task queue can be imple-
mented using well known static priority
queues.

Run-time controller It is the main component
of the system. It performs the sched-
uler role, selecting the highest priority task
from the active tasks queue and generating
an interrupt towards the CPU whenever a
context switch is required. It also calcu-
lates functions HT �t� and GT �t� necessary
for slack detection.

Sporadic tasks queue It is a small queue that
sorts all concurrent sporadic arrivals. The
sporadic tasks are ordered according to the
EDF policy, using a well known static pri-
ority queue.

Slack gaps queue �hereafter SQG� It stores the
slack gaps �θ�, calculated from the Vi and
Vi � HT �Vi� values.

Slack controller It calculates the slack gaps us-
ing the slack gaps queue. The required
values of the GT �t� and HT �t� are propor-
tioned by the run-time controller. It also
maintains the amount of slack time that
has been confirmed and when it has been
confirmed �S0 and CI�S0��.

A Hardware Architecture for Scheduling Complex Real-Time Task Sets 241

Interrupt controller It receives aperiodic and
sporadic hardware requests, and informs
the RT controller about these requests. If
an sporadic request is rejected by the slack
controller, it is conveniently signalled..

The main roles are carried out by the dynamic
queues �RTQ and ITQ�, the run-time controller
and the slack controller. Their behaviour and
implementation details are described next.

4.1. Dynamic Priority Queues

In this work dynamic priority queues are used
for implementing the ready task setA�I0� �RTQ�,
and sorting the future activations of periodic
tasks, i.e., the inactive periodic task set T �I0�
�ITQ�. Several hardware structures have been
proposed for implementing these queues, such
as binary trees of comparators, shift registers or
systolic queues. But, if the task priorities are
dynamic, i.e., they depend on current time, an
implementation problem arises: the task prior-
ities should be updated every clock tick, and
the highest priority should be reevaluated. This
problem is not so important under the EDF ap-
proach, since the head of the list can only change
when new periodic activations occur or current
running task finishes. According to this, several
possible designs are possible:

� To update task priorities �deadlines� only
when periodic task activates or the current
running task finishes.

� To use absolute values for deadlines, i.e.,
deadlines values are related to a given fixed
instant, called zero.

� To use relative values for deadlines, i.e, the
value stored in every element is relative to the
previous one and only the value at the head
of the list is related to the current time.

In the first approach the update overhead could
be not negligible if the task set is large enough.
The second approach requires wider registers
and also introduces the overflow problem at the
deadline registers, but it was successfully used
at �10�. To avoid such problems, this paper
advocates implementing in hardware a prior-
ity queue with relative values similar to those
queues used by the operating systems to han-
dle multiple clock timers. With this approach,
updating deadlines only requires to update the
head of the queue.

Implementation details Implementation of
the above queue solution has been done using
the systolic approach. This solution has the
advantage that scales to a large number of pe-
riodic tasks and priority levels. Furthermore, it
also allows to obtain the highest priority task in
constant time.

1. case Ctri�1 of
2. when Insert ��
3. Ti�e :� abs �Hi�e - Ti�1�e�;
4. if �Ti�1�e � Hi�e� then
5. Ti�i :� Hi�i;
6. Ti� f :� Hi� f ;
7. Hi :� Ti�1;
8. Ctri :� Shift;
9. else

10. Ti�i :� Ti�1�i;
11. Ti� f :� Ti�1� f ;
12. Ctri :� Insert;
13. end if;
14. when Shift ��
15. Ti :� Hi;
16. Hi :� Ti�1;
17. Ctri :� Shift;
18. end case;

Fig. 3. Dynamic Priority Queue Cell and Algorithm �Insert Command�.

242 A Hardware Architecture for Scheduling Complex Real-Time Task Sets

A dynamic priority queue is a systolic chain of
event cells, each of them containing registers
H, Ctr, B, and T . Register H is a compound
register that stores the following values: a time
event value e that represents a deadline for RTQ
or a task activation for ITQ, and is relative to the
previous cell, a task identifier i or pointer to the
task table, a flag f indicating if it is a current
event or a future one. Register Ctr is a com-
mand control register. Register B is a backup
register for storing H value before the start of
a simulation and restoring it later �see below�.
Register T is a temporal register necessary for
pipeline systolic behaviour. In addition, each
cell contains an ALU to compute abs�H � T�,
i.e., the difference ofH�ewith respect the former
cell. The algorithm shown in figure 3 describes,
in VHDL notation, the insertion behaviour of a
event cell. The length of ITQ should be equal to

the maximum number of periodic tasks, and the
length of RTQ should be equal to the maximum
number of periodic and sporadic tasks that can
be active simultaneously.

4.2. Run-Time Controller

The main function of the run-time controller
is to update the RTQ and ITQ when a CPU
quantum ends and to calculate HT �t� and GT �t�
functions to detect slack gaps. The values of
these functions will be provided to the slack
controller.

UpdatingRTQ and ITQ implies that when an in-
active task reaches its period, the RT controller
promotes it to the ready task set, and when the
CPU informs that the current task has finished,

1. if �clock mod 2 � 0�
2. min RTQ :� �RTQ.H.e �� ITQ.H.e�;
3. if �min RTQ� then
4. min time :� RTQ.H.e; min ident :� RTQ.H.i;
5. if �RTQ.H.f � future�
6. func H :� func H � TT�min ident�.wcet;
7. else
8. func H :� func H � TT�min ident�.ret;
9. end if;

10. RTQ.Ctr :� Extract;
11. ITQ.H.e :� ITQ.H.e - min time; ITQ.Ctr :� None;
12. else
13. min time :� ITQ.H.e; min ident :� ITQ.H.i;
14. execution time� TT�min ident�.wcet;
15. ITQ.Ctr :� Extract;
16. RTQ.H.e :� RTQ.H.e - min time; RTQ.Ctr :� None;
17. end if;
18. future time :� future time � min time;
19. SC.T :� future time; SC.H :� func H; SC.G :� func G;
20. else
21. if �min RTQ� then
22. ITQ.H.e :� TT�min ident�.period;
23. ITQ.H.f :� future; ITQ.H.i :� min ident;
24. ITQ.Ctr :� Insert; RTQ.Ctr :� None;
25. else
26. func G :� func G � execution time;
27. RTQ.H.e :� TT�min ident�.deadline;
28. RTQ.H.f :� future; RTQ.H.i :� min ident;
29. RTQ.Ctr :� Insert; ITQ.Ctr :� None;
30. end if;
31. end if;

Algorithm 1. HT �t� and GT �t� Calculations.

A Hardware Architecture for Scheduling Complex Real-Time Task Sets 243

the run-time controller extracts it from the ready
tasks queue and, if it is periodic, it inserts a new
instance into the inactive tasks queue.

Calculating the values of the HT �t� and GT �t�
is done by simulating future states of the RTQ
and ITQ. In order to maintain the current state
of those queues �A�I0� and T �I0��, a backup
system should be incorporated to the dynamic
queue design.

The HT �t� and GT �t� calculation section of the
run-time controller is described by algorithm 1
using a notation close to VHDL. The algorithm
notation is as follows:

RTQ.H: register H �time event� of the head
of RTQ

RTQ.Ctr :� Extract: Apply command Ex-
tract to the control register of the head of
RTQ.

TT�n�.wcet: register wcet �worst case ex-
ecution time� of entry n of the task table.

SC.T: Register T of interfacewith the slack
controller.

min RTQ: true when the closest event is a
task deadline.

The rest of the notation is self explanatory.

This algorithm simulates the future states by
updating RTQ and ITQ at the speed of the hard-
ware clock. Obtaining a new state requires two
clock cycles. During the first cycle, the heads
of RTQ and ITQ are inspected to find out the
nearest event �deadline or activation� and the
corresponding cell is dequeued. During the sec-
ond cycle, a cell dequeued from RTQ during the
first cycle is inserted in ITQ and a cell dequeued
from ITQ is enqueued in RTQ. According to its
definition, function HT �t� is updated in the first
cycle every time the head of RTQ is dequeued.
The initial value of HT �t� is 0. Conversely,
GT �t� is updated every time that the head of
ITQ is dequeued. However, note that in this
case the calculation is done during the first cy-
cle but the update is done in the second cycle
since GT �t� changes its value at the end of a
time interval. The initial value of GT �t� is the
sum of the outstanding execution times of all
active tasks.

The simulation of future states is event driven
�not tick driven� so the time does not increment
uniformly: once an event is processed, time is
advanced by the value of the processed event.

The run-time controller also informs the slack
controller of the sporadic task arrivals in or-
der to confirm them. All sporadic tasks that
are confirmed are inserted into the RTQ, to be
taken into account in future calculations. The
aperiodic and sporadic tasks can be generated
from software components by calling an operat-
ing system primitive, or from hardware signals
through the interrupt controller.

4.3. Slack Controller

The proposed hardware scheduler also calcu-
lates the set of slack gaps to know when the
aperiodic and sporadic task can be scheduled
without jeopardizing the hard deadlines of the
periodic tasks.

In order to find the slack gaps, the slack con-
troller uses the functions HT �t� and GT �t� pro-
vided by the run-time controller, and a special
hardware queue, Slack Gaps Queue �SGQ�, that
calculates and stores the future slack gaps in a
systolic fashion.

When a sporadic request arrives, the slack con-
troller extracts the required slack gaps from the
slack queue to find out if the sporadic task can
be accepted. If the appropriated amount of slack
time is available before the sporadic deadline,
then the task is granted. If so, the sporadic task

1. if �clock mod 2 � 1� then
2. ∆H :� T � H;
3. ∆G :� T � G;
4. else
5. if �∆G � confirmed time� then
6. confirmed time :� ∆G;
7. end if;
8. if �T �� LastT� then
9. SGQ.TS :� LastT;

10. SGQ.TL :� Last∆H;
11. SGQ.Ctr :� Insert;
12. end if;
13. LastT :� T;
14. Last∆H :� ∆H;
15. end if;

Algorithm 2. Slack Controller Algorithm.

244 A Hardware Architecture for Scheduling Complex Real-Time Task Sets

identifier is sent to the RT controller and in-
serted into the ready tasks queue, to be taken
into account in future calculations.

Whenever a slack gap is reached and outstand-
ing aperiodic computation exists, the run-time
controller is asked to generate a context switch
interrupt.

The algorithm 2 shows the slack controller in
VHDL notation. This algorithm basically tries
to confirm slack time using the characteriza-
tion of definition 2 in section 3. It works in
two phases. During the first phase, it computes
t � GT �t�, that represents an amount of con-
firmed slack time, for a new step in HT �t�. In
the second phase it determines the maximum
of this function and inserts into the SGQ a new
cell with the values of t and t � HT �t� for the
recently processed step.

Implementation details of Slack Gaps Queue
The SGQ is also implemented as a systolic
queue, where each slack cell stores a slack gap,
i.e. its start time Si and its length Li, and a con-
trol command register, Ctr. Those values are
relative to the end of the slack gap stored in the
previous cell, except for the first cell.

The cell and the algorithm of this queue are
shown in figure 4. The input values to the SGQ

are provided by the slack controller and consist
of the current future time Vi, and the function
Vi�HT �Vi� �∆i, if Vi is the beginning of a slack
gap�. These values are inserted in the SGQ as
TS and TL respectively. With these input val-
ues, the SGQ constructs a list of presumed slack
gaps that must be confirmed by using the GT �t�
function.

When the SGQ receives a new slack gap, ba-
sically, what every cell does is make it relative
to itself and pass a relative gap to the next cell.
This means TSi :� TSi�1� �Si�Li� and TLi :�
TLi�1 � Li. If, during this iteration, the length
of the relative gap becomes zero, then it indi-
cates that the end of the queue has been reached
and all outstanding cells are cleared. If, dur-
ing this iteration, some cell of zero length or a
length greater than the relative gap �produced
by the previous cell� is found, then this cell sets
its length to the length of the relative gap and
the queue ends in the next cell.

5. Timing Analysis

Although some other methods, such as com-
plex binary trees, can be used for implementing
priority queues and also to calculate HT �t� and
GT �t� values, the main advantage of the pre-
sentedmethod is that it performs an event driven

1. caseCtri�1 of
2. when Insert ��
3. if �TLi�1 � 0� then
4. Si :� TSi�1;
5. Li :� 0;
6. Ctri :� Clear;
7. elsif �TLi�1 � Li or Li � 0� then
8. Li :� TLi�1;
9. TSi :� TSi�1 � �Si � TLi�1�;

10. TLi :� 0;
11. Ctri :� Insert;
12. else
13. TSi :� TSi�1 � �Si � Li�;
14. TLi :� TLi�1 � Li;
15. Ctri :� Insert;
16. end if;
17. when Clear ��
18. Si :� 0; Li :� 0;
19. Ctri :� Clear;
20. end case;

Fig. 4. Slack Gaps Queue Cell and Algorithm �Insert Command�.

A Hardware Architecture for Scheduling Complex Real-Time Task Sets 245

simulation, so it calculates the values of GT �t�
and HT �t� when they take a step, not continu-
ously. This also avoids the problemwith the real
time clock granularity. This kind of stepped cal-
culation is difficult to be calculated using other
methods, since they would require to compute
the step width first, and then the value incre-
ment. For example, this calculation would need
two steps of log2�N� cycles using a binary tree,
where N is the number of tasks.

The goal of this analysis is to determine the re-
lation Real-Time Clock � Hardware Clock that
allows to locate a given quantity of slack time
ST before it is needed. This allows aperiodic
and sporadic tasks to be managed as soon as
possible. More precisely, in order to obtain the
minimum response time for a given aperiodic
task Ai, the next slack gap should be located be-
fore the start time of the slack gap is reached. To
do that, the worst scenario the hardware should
be able to face would be to locate a slack time
unit in only one real-time clock tick. On the
other hand, In order to accept a given sporadic
task Si with a computational requirement of Ci,
the quantity of slack time ST found before Si
arrives should be equal or greater than Ci. Oth-
erwise, the task Si should wait until such quan-
tity of slack time could be found, and then be
accepted or rejected.

In order to determine the relation Real-Time
Clock � Hardware Clock, it is required to ana-
lyze the work to be done in a real-time tick. It
can be splitted in two parts:

1. To update RTQ and ITQ according to the
Real-Time clock.

2. To extract the slack gaps queue θ by look-
ing forward in time.

According to this, the latency of the hardware
algorithm can be represented as:

L � tupdate � textract

The worst case for updating the queues is when
all the periodic tasks are inactive and should be
promoted from the ITQ to the RTQ. Then tupdate
can be stated as:

tupdate � 2NtHC

where N is the number of periodic tasks, tHC is
the period of the hardware clock, and the value 2

comes from the two cycle basis of the run-time
controller algorithm.

On the other hand, as it was detailed in �24�, the
worst case latency for textract depends on where
the worst case confirmation time for a given
quantity of slack time ST is located. Such con-
firmation timeR can be calculated by using the
recursive expression Ri�1 � GT �Ri � pS� ST�
until Ri � Ri�1, where R0 � 0, and pS is the
slack time used on the previous RTC tick. The
last value of Ri indicates the confirmation time
R. For the aperiodic case, pS and ST should be
set to 1.

Then, the worst case for extracting ST units of
slack time is:

textract � 2AtHC

where A represents the number of activations
and deadlines within the interval �0�R�. That
is:

A �
X
Ti�T

�
R� Pi � Di

Pi

�
�

�
R

Pi

�

6. Conclusions and Future Work

This paper shows the feasibility of implement-
ing a complex scheduling algorithm in hard-
ware, which avoids completely theCPUschedul-
ing overhead. The presented scheduler also
shows a good scalability factor due to the sys-
tolic design.

The paper describes how to efficiently imple-
ment in hardware the following two important
problems:

� the systolic priority queues using relative
time values, and

� how to anticipate scheduling events using
an event-driven approach and avoiding the
real-time clock granularity problem.

A timing analysis of the hardware design has
also been shown allowing to determine the de-
sign suitability for any given task set.

246 A Hardware Architecture for Scheduling Complex Real-Time Task Sets

References

�1� N. AUDSLEY, A. BURNS, R. DAVIS, K. TINDELL, AND
A. WELLINGS, Fixed priority pre-emptive schedul-
ing: An historical perspective, The Journal of
Real-Time Systems, 8�2�3�:173–198, March�May
1995.

�2� A. G. BAÑOS, Arquitecturas Hardware para Plani-
ficadores de Tiempo Real, PhD thesis, Universidad
Politécnica de Valencia, 1999. in Spanish.

�3� H. CHETTO AND M. CHETTO, Some results of the
earliest deadline scheduling algorithm,IEEETransi-
tions on Software Engineering, 15�10�:1261–1269,
1989.

�4� M. COLNARIC, D. VERBER, R. GUMZEJ AND W. HA-
LANG, Hardware-supported real-time operating sys-
tem kernel, Microprocessor and Microsystems,
18:579–591, 1994.

�5� M. COLNARIC, D. VERBER, R. GUMZEJ AND W. HA-
LANG, Implementation of hard real-time embed-
ded control systems, Real-Time Systems Journal,
14�3�:77–94, 1998.

�6� T. GHAZALIE AND T. BAKER, Aperiodic servers in
a deadline scheduling environment, The Journal of
Real-Time Systems, 9:31–67, 1995.

�7� W. HALANG AND A. STOYENKO, Constructing Real-
Time Predictable Systems, Kluwer Academic Pub-
lishers, Boston-Dordrecht-Lond, 1991.

�8� N. HOMAYOUN AND P. RAMANATHAN, Dynamic pri-
ority scheduling of periodic and aperiodic tasks in
hard real-time systems, The Journal of Real-Time
Systems, 6:207–232, 1994.

�9� T. HSU AND L. KUNG, A hardware mechanism
for priority queue, Computer Arcitecture News,
7�66�:162–169, December 1989.

�10� B. KIM AND K. SHIN, Scalable hardware earliest-
deadline-first scheduler for atm switching networks,
in Proceedings of Real-Time Systems Symposium,
pages 210–218, 1997.

�11� J. LEHOCZKY AND S. RAMOS-THUEL, An optimal
algorithm for scheduling soft-aperiodic tasks in
fixed-priority preemptive systems, in Proceedings
of the Real-Time Systems Symposium, pages 110–
123, 1992.

�12� J. LEHOCZKY, L. SHA, AND J. STROSNIDER, En-
hanced aperiodic responsiveness in hard real-time
environments, in Proceedings of the Real-Time Sys-
tems Symposium, pages 261–270, 1987.

�13� J. LIEBEHERR AND D. WREGE, Design and analysis
of a high performance packet multiplexer for mul-
tiservice networks with delay guarantee, Technical
report,Department ofComputer Science,University
of Virginia, 1995.

�14� L. MOLESKY, K. RAMAMRITHAM, C. SHENA,
J. STANKOVIC, AND G. ZLOKAPA, Implementing a
predictable real-time multiprocessor kernel – the
spring kernel, in IEEE Workshop on Real-Time
Operating Systems and Software, May 1990.

�15� S. MOON, K. SHIN, AND J. REXFORD, Scalable hard-
ware priority queue architectures for high speed
packet switches, in Proceedings of the Real-Time
Technology and Applications Symposium, pages
203–212, 1997.

�16� D. PICKER AND R. FELLMAN, A vlsi priority packet
queue with inheritance and overwrite, IEEE Trans-
actions on VLSI Systems, 3�2�:245–253, June 1995.

�17� S. RAMOS-THUEL AND J. LEHOCZKY, On-line
scheduling of hard deadline aperiodic tasks in fixed-
priority systems, in Proceedings of the Real-Time
Systems Symposium, pages 160–171, 1993.

�18� J. REXFORD, J. HALL, AND K. SHIN, A router ar-
chitecture for real-time communication in multi-
computer networks, in Proceedings International
Symposium on Computer Architecture, pages 237–
246, May 1996.

�19� I. RIPOLL, Planificación Prioridades Dinámicas en
Sistemas de Tiempo Real Crítico, PhD thesis, Univ.
Politécnica de Valencia, 1996. in Spanish.

�20� I. RIPOLL, A. CRESPO, AND A. GARCÍA-FORNES,
An optimal algorithm for scheduling soft aperiodic
tasks in dynamic-prioritypreemptive systems, IEEE
Transactions on Software Engineering, 23�6�:388–
400, June 1997.

�21� I. RIPOLL, A. CRESPO, AND A. MOK, Improvements
in feasibility testing for real-time tasks, The Journal
of Real-Time Systems, 11:19–39, 1996.

�22� J. ROOS, Designing a real-time coprocessor for
ada tasking, IEEE Design and Test of Computers,
8�1�:67–79, 1991.

�23� S. SÁEZ, A. GARCÍA, J. VILA, AND A. CRESPO,
The real-time stealer, in Proceedings of the 23rd
IFAC/IFIP Real Time Programming Workshop,
pages 61–66, June 1998.

�24� S. SÁEZ, J. VILA, A. CRESPO, AND A. GARCIA,
A hardware architecture for scheduling complex
real-time task sets, Technical Report DISCA-2-98,
DISCA, Univ. Politécnica de Valencia, 1998.

�25� L. SHA, R. RAJKUMAR, AND J. LEHOCZKY, Real-
time computing with IEEE Futurebus�, IEEE Mi-
cro, 11:30–33,95–100, June 1991.

�26� L. SHA AND S. SATHAYE, A systematic approach
to designing distributed real-time systems, IEEE
Computer, 26:68–78, 1993.

�27� B. SPRUNT, J. LEHOCZKY, AND L. SHA, Exploiting
unused periodic time for aperiodic service using the
extended priority exchange algorithm. In Proceed-
ings of the Real-Time Systems Symposium, pages
251–258, 1988.

�28� B. SPRUNT, L. SHA, AND J. LEHOCZKY, Aperiodic
task scheduling for hard real-time systems, The
Journal of Real-Time Systems, 1:27–60, 1989.

A Hardware Architecture for Scheduling Complex Real-Time Task Sets 247

�29� M. SPURI AND G. BUTTAZZO, Scheduling aperiodic
tasks in dynamic priority systems, The Journal of
Real-Time Systems, pages 179–210, 1996.

�30� J. STANKOVIC AND K. RAMAMRITHAM, The design
of the spring kernel, in Proceedings of Real-Time
Systems Symposium, 1987.

�31� A. VARMA AND D. STILIADIS, Hardware implemen-
tation of fair queuing algorithms for atm networks,
IEEE communications magazine, 35�12�:54–69,
1997.

Received: April, 2000
Revised: June, 2000

Accepted: July, 2000

Contact address:

Sergio Sáez, Joan Vila, Alfons Crespo
DISCA

Universidad Politécnica de Valencia
Camino de Vera 14

46022 Valencia
SPAIN

phone: �34 96 387 95 77
fax: �34 96 387 75 79

e-mail: fssaez�jvila�alfonsg�disca�upv�es

Angel Garcia
Departament of Electrical Engineering

Universidad del Valle
Cali, COLOMBIA

e-mail: angarcia�eiee�univalle�edu�co

SERGIO SÁEZ received the B. S. and Ph. D. degrees in computer science
from the Polytechnic Universty of Valencia, Spain, in 1994 and 2000
respectevely. He is assistant professor in the Department of Computer
Engineering and Science at the Polytechnic Universty of Valencia. His
current research interests include real-time scheduling, multiprocessor
systems and hardware-assisted scheduling.

JOAN VILA received the B. S. and Ph. D. degrees in industrial engi-
neering from the Polytechnic Universty of Valencia, Spain, in 1985
and 1994 respectevely. He is professor in the Department of Computer
Engineering and Science at the Polytechnic Universty of Valencia. His
research interests include distributed systems, real-time communica-
tions and real-time systems operating.

ALFONS CRESPO received the B. S. and Ph. D. degrees in electric engi-
neering from the Polytechnic Universty of Valencia, Spain, in 1979 and
1984 respectevely. He is professor in the Department of Computer En-
gineering and Science at the Polytechnic Universty of Valencia. Since
1988, he has been at the head of lead the Real-Time group, leading
several national and European research projects. His areas of technical
interests are real-time systems, integration of intelligent components in
real-time systems, and real-time operating systems.

ANGEL GARCIA received the B.S. degree in communication engineer-
ing in 1985, and the Ph.D. degree from the Polytechnic University of
Valencia, Spain, in 1999. He is Professor in the Department of Elec-
trical and Electronic Engineering at the Universidad del Valle, Cali,
Colombia. His current research interests include real-time scheduling
and hardware�software codesign.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

