Journal of Computing and Information Technology - CIT 8, 2000, 3, 249-257

249

Genetic Algorithms in Real-Time
Imprecise Computing

Leo Budin, Domagoj Jakobovi¢, Marin Golub

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

This article describes the use of genetic algorithms in
real-time systems that employ the imprecise computation
paradigm. In real-time systems, the focus is on ensuring
that a set of tasks each complete within their deadlines.
Faults may occur in the computation or the environment
that can cause missed deadlines. That is why the idea
of using partial results, when exact ones cannot be
produced within the deadline, has been introduced. This
idea has been formalized using the concepts of any-
time algorithms and imprecise computation and specific
techniques have been developed for designing programs
which can produce partial results and for developing sys-
tems that can support imprecise computation techniques.
Genetic algorithms are methods that can be, without any
adaptation, used in an imprecise computation system.
They produce a solution that bears a certain measure of
reliability. During the process of their execution, this
solution is constant ly improving. They can be used as
a part of a real-time system, especially for optimizing
tasks where the classical algorithms are not applicable or
its computational time proves to be too expensive.

1. Introduction

Real-time systems are now used in a wide vari-
ety of applications, including space and defence
systems, process control and signal processing
[4]. Conventionally, real-time systems are de-
signed to perform a given set of tasks where
each task is bounded with its time constraints.
A task setin a classical real-time system can also
be interdependent; a successor-predecessor re-
lation is defined between some of the tasks. In
order for all of these constraints to be satisfied,
a feasible schedule must be produced prior to
or even during thesystem run. This, with the

general problem of scheduling resources being
optimally NP-hard, calls for fast and effective
methods for resolving the scheduling problem

[3].

While the scheduling is in most cases fixed
at design time, a static well-planned real-time
system will never miss a deadline. In prac-
tice, however, several dynamic situations may
arise, which affects the scheduling. Tasks may
overrun their expected computation time due to
larger amount of input data or because an itera-
tive algorithm takes a longer time to converge.
The concept of imprecise and approximate com-
putations has emerged as the basis of a new
approach in dealing with these issues. When
time and resources are not sufficient for com-
putations to complete within the deadline, there
may still be enough resources to produce ap-
proximate results of acceptable, if not desired,
quality.

The nature of many of the algorithms is such
that they can adapt to the imprecise compu-
tation concept; that is, an algorithm can pro-
duce an approximate result before its regular
execution time is finished. Genetic algorithms,
an example of heuristic directed random search
methods, fit perfectly with the idea of imprecise
computing. They are iterative algorithms which
refine their output with time and can handle a
vast majority of computational and optimization
tasks in everyday practice.

A genetic algorithm [2] may be viewed as an
evolutionary process wherein a population of

A previous short version of the paper appeared in Proceedings of the IEEE International Symposium on Industrial Electronics,

Bled, Slovenia, July 12-16, 1999.

250

Genetic Algorithms in Real-Time Imprecise Computing

solutions evolves over a sequence of genera-
tions. The algorithm maintains a set of solutions
which are evaluated by fitness function in each
generation. After evaluation, based on their
fitness, they are selected for reproduction. Se-
lection embodies the principle of survival of the
fittest: good solutions are selected for reproduc-
tion and bad ones are eliminated. The selected
solutions then undergo recombination of genetic
operators crossover and mutation. Crossover
causes exchange of genetic material between
solutions. Crossed solutions can produce ones
of better (or worse) fitness value. The role of
mutation is in restoring lost or unexplored ge-
netic material. After performing genetic opera-
tors, a generation cycle is concluded and a test
is performed in order to determine whether the
termination condition has been reached or not.

In this work the use of genetic algorithms in im-
precise real-time systems is analyzed, the fea-
tures of such systems are described, and a few
guidelines are stated for their efficient design.
A scheduling algorithm is designed which can
be used in systems that include genetic algo-
rithms, as well as in other real-time systems
with imprecise computation.

2. Imprecise Computation Technique

Meeting timing or deadline constraints is one
of the most important concerns in real-time sys-
tems. Unfortunately, due to nonpredictive el-
ements in dynamic real-time implementations,
such as variations in processing times of algo-
rithms and constantly changing environmental
demands, it is sometimes impossible to schedule
all of the tasks so that their deadlines are met at
all times. This situation occurs quite often when
the system is in peak load. The imprecise com-
putation technique represents an approach that
trades off the quality of the results produced by
the tasks with the amounts of processing time
required to produce the results. This technique
insures that an approximate result of an accept-
able quality is available to the user whenever
the exact result of the desired quality cannot be
obtained in time.

A. Task requirements

In order for a real-time system to support im-
precise computation, every time-critical task in
the system has to be structured in a way that it
can be logically decomposed into two subtasks:
a mandatory subtask and an optional subtask.
The mandatory subtask is the portion of compu-
tation that has to be done for a task to produce
a meaningful result and it has to be completed
before the deadline. The optional subtask is the
portion of the computation that refines the re-
sult. It can be left unfinished at the expense of
the quality of the overall result produced by the
task.

There exist several methods to adapt the task
execution so it can be used in imprecise com-
putation. If a task generates the result in some
form of iterative refinement, we can record the
intermediate results at appropriate instances of
the task execution. The mandatory part of a task
executes first, producing a result with the mini-
mum acceptable level of reliability. This result
is then refined by the optional part which stores
the current output value in predefined time in-
tervals. Upon request, the latest recorded value
of intermediate result is available to the user.
This method for returning imprecise results is
called the milestone method.

If the milestone method is not applicable, then
it can be possible to compose a task where
mandatory parts are interleaved with compu-
tational steps that can be skipped in producing a
minimally acceptable solution. These parts are
called sieve functions. If a sieve function is not
completed, then its inputs, rather then outputs,
are used by later mandatory computation. Iter-
ative computation can also be viewed as a series
of sieve functions.

When neither the milestone method nor the
sieve method can be used, we can almost al-
ways use the multiple versions of the tasks. In
this approach we need to provide two (or more)
versions of each task: the primary and the alter-
nate version. The primary version produces a
precise result but uses more computation time.
We may want to schedule the alternate version,
which has a shorter processing time and gener-
ates an imprecise but acceptable result, when it

Genetic Algorithms in Real-Time Imprecise Computing

251

is not possible to complete the primary version
of a task by its deadline.

We have the maximum flexibility in schedul-
ing when all the time-critical computations are
designed to be monotone. The quality of the
intermediate result produced by monotone al-
gorithm is non-decreasing as it executes longer.
The longer a monotone task executes before
its termination, the smaller is the error of its
imprecise result. Monotone algorithms exist
in many problem domains such as numerical
computation, statistical estimation and predic-
tion, heuristic search or sorting. Efforts are
also made to develop monotone algorithms in
application domains where such algorithms are
needed. When tasks are monotone, the schedul-
ing can be done dynamically and on-line, or
nearly on-line, because the scheduler can termi-
nate a task at any time after it has produced an
acceptable result.

B. Scheduling for a purpose

Given a set of tasks in a real-time system, we
have to schedule them so that deadline con-
straint is met for every task. Apart from sat-
isfying timing constraint, we may also want to
achieve a certain performance regarding some
other criteria [5]. Inimprecise real-time systems
there are several different performance metrics.
If our goal is to minimize the total or maximum
error, we will try to schedule the tasks in such a
fashion that every task returns as good result as
possible. The problem becomes more demand-
ing if every task has a certain weight factor that
determines exactly how important its result is to
the system.

If we are given a certain total error threshold,
we may want to minimize the number of late or
tardy tasks, that is, the ones whose mandatory
subtask cannot even meet its deadline. Given
the same threshold value, we may choose to
minimize the average response time or mean
flow time, 1.e. the average amount of time a task
spends in the system until it completes, which
includes possible waiting as well as running.

The goal may also sometimes be to minimize the
number of discarded optional tasks, the ones
whose optional part is not computed. If the

real-time system is realized by using the multi-
ple versions of the tasks, it is then often called
the imprecise computation with 0/1 constraint.
Scheduling such a system to minimize total er-
ror has proved itself to be very demanding.

3. Scheduling Genetic Algorithms

Genetic algorithms have not been excessively
utilized in hard real-time systems so far. In such
a system the user needs the output promptly and
accurately, which genetic algorithms are not de-
signed for. Of course, there always has to be an
algorithm that will produce the result. In cases
where there is no algorithm which will yield
the correct result, or its execution might be too
slow, or the problem is NP-hard, we might use
a genetic algorithm. If a real-time system is
also based on an imprecise computing model, a
genetic algorithm as a task may be the solution.

Genetic algorithms, as well as other heuristic
random search methods (simulated annealing,
evolutionary strategies etc.), are monotone al-
gorithms that are suitable for implementation in
an imprecise computation system. The system
can record the current solution in every gener-
ational cycle of the algorithm. The computa-
tional time of the mandatory subtask of genetic
algorithm is virtually non-existent, because the
algorithm provides the initial solution in the first
iteration. The optional part, on the other hand,
has an undetermined execution time, because
there is no way to know whether the algorithm
has reached the correct solution. Formally, we
can either denote the computational time of
mandatory subtask as zero and of the optional
subtask as infinite or vice versa, depending on
the nature of the real-time system. Genetic al-
gorithms can also very easily be designed to
execute in parallel. That approach can produce
better results in the same amount of time on
multiprocessor systems [6].

The accuracy of the solution provided by ge-
netic algorithm cannot be measured, which is a
significant drawback; in general, we can only
hope that the solution is good enough as there
is no error estimate. What we can tell is that the
solution can only be better if the algorithm exe-
cutes longer. If we want to calculate the quality

252

Genetic Algorithms in Real-Time Imprecise Computing

dependence of the results the genetic algorithm
will produce on the execution time of the algo-
rithm, we can perform a series of optimizations
of the same class of the problem. One should
keep track of the intermediate results and times
when they were recorded, and determine the
quality of the best result the algorithm can give.
That way, for a given execution time, we could
estimate the quality of the solution produced so
far or schedule the amount of computation time
needed for the desired result quality. Itisimpor-
tant to note that this method also bears a certain
measure of unreliability — there is no way we
could predict the exact quality of the results,
given only the execution time of the algorithm.

There are two ways of incorporating genetic
algorithms into real-time systems. They can ei-
ther replace a task or several of them or the sys-
tem may consist entirely of genetic algorithms.
In the first approach the genetic algorithm can
perform a job for which there is no effective
algorithm or the job is too time-consuming for
a classical algorithm. If that is the case, the
computation time of the mandatory part of ge-
netic algorithm should be defined as infinite so
it can run as long as possible. That way it will
always be late, but only formally, as it can never
complete in traditional sense anyway. The com-
putational error of the algorithm is unknown and
therefore can only be ignored.

What criteria should we consider when making
a schedule for a real-time system including or
consisting entirely of genetic algorithms? Min-
imizing total or maximum error is not possi-
ble because we have no mean to evaluate it.
In classical imprecise computations the error is
usually defined as a function of the time portion
of the optional subtask that was discarded in the
schedule, which cannot be measured if a task is
a genetic algorithm. The user can, in that case,
assign higher weight values to more important
parts of the computation. The number of late
tasks is also without meaning in such system,
as well as the problems with 0/1 constraints.
As for the average response time, there is no
sense in terminating a genetic algorithm if it is
not absolutely necessary; it can only produce a
better result over time. Thus, when scheduling
genetic algorithms, we should allow each one to

execute as long as possible in order to get more
accurate results. We can assign weight factors
to each algorithm so that more important tasks
get more execution time.

The scheduling algorithm should also take ad-
vantage of the property of the genetic algo-
rithms, which allows them to be easily con-
figured to execute on more than one processor
simultaneously. Such a parallelization can be
achieved by dividing an algorithm into a num-
ber of threads where each thread operates on a
single set of solutions. The number of threads
is not limited which in turn allows a genetic
algorithm to run on as many processors as we
can provide, whereas some other types of algo-
rithms can appropriately run only on a certain
maximum number of processors. That number
is called the maximum degree of concurrency
and is not defined for genetic algorithms. In
the same time, a genetic algorithm divided in
threads and executing on a number of proces-
sors doesn’t have any multiprocessing overhead
since no interprocessor communication or syn-
chronization is needed. In fact, that parameter
cannot be defined because of the undetermined
computation time of the algorithm.

The migration problem, i.e. transferring the al-
gorithm from one processor to another, is not
an issue when genetic algorithms are in ques-
tion. Since there exists only one set of solutions,
available to all processors, on which the threads
operate, any processor can continue the work
of every other. More details on implementing
parallel genetic algorithms can be found in [1].

On the other hand, when constructing a feasi-
ble schedule, we should also try to avoid the
preempting of a genetic algorithm. Every al-
gorithm operates on a population of solutions
that can occupy a significant amount of mem-
ory, depending of the number and size of the
population members. If we are to interrupt the
algorithm, we have to preserve or store the entire
population. Not only that it is not recommended
but it can also block some valuable resources
and demand more computation time for context
switching.

Genetic Algorithms in Real-Time Imprecise Computing

253

4. Scheduling Algorithm

Having in mind the goals stated for scheduling
imprecise real-time systems with genetic algo-
rithms, a scheduling algorithm can be designed
which will take in account those priorities. An
imprecise real-time system is defined in a fol-
lowing manner.

We are given a set of n preemptable tasks, in-
dicated as T = {Ty,T»,...,T,}. Each task
is characterized by the following parameters,
which are rational numbers:

e ready time r} at which T; becomes ready for
execution,

e deadline d. by which T; must be completed,

e mandatory processing time m; that is required
to execute the mandatory part of 7; (not de-
fined for genetic algorithms)

e optional processing time o; for the optional
subtask (not defined for genetic algorithms)

e weight w; that is a positive number, greater
or equal to one, and measures the relative
importance of the task.

The weights of the tasks are determined prior to
the scheduling or executing and are considered
to be constant. Should the importance of a task
change during the system run, the schedule can
be redesigned regarding new weight values and
the current time instance as a new begin time of
the system.

The dependencies between the tasks in T, if any,
are specified by their precedence constraints;
they are given by a partial order relation < de-
fined over T. The relation 7; < T; holds if the
execution of 7 cannot begin until the task T; is
completed and terminated. In order for a sched-
ule to be valid, all the precedence constraints
must be satisfied. It is possible that the given
deadline of a task is later than that of its succes-
sors, or the given ready time may be earlier than
that of his predecessors. Instead of working
with given ready times and deadlines, modi-
fied values are used that are consistent with the
precedence constraints. Those values are com-
puted as follows. If a task has no successors, the
modified deadline is equal to its given deadline.

If there exist successors of a task 7;, let A; be
the set of deadline times of all successors of 7;.
The modified deadline d; of T; is

di = min{d;, min{d;}}, Vd; € A;. (1)
Similarly, the modified ready time of a task that
has no predecessors is equal to its given ready
time. Let B; be the set of ready times of all
predecessors of 7;. The modified ready time r;
of T; is

ri = max{rf, maX{rj}}v v}”j € B;. (2)
Working with the modified ready times and
deadlines allows the precedence constraints to
be ignored temporarily. If an algorithm finds
an invalid schedule in which 7; is assigned a
time interval later than some intervals assigned
to T; and T; < Tj, then a valid schedule can
be constructed by exchanging the time inter-
vals assigned to 7; and T; to satisfy their prece-
dence constraint without violating their timing
constraints. Hereafter, by “ready times” and
“deadlines” we mean modified ready times and
deadlines.

The scheduling algorithm devised in this work is
oriented towards scheduling genetic algorithms
as tasks, but it can also be used in any impre-
cise real-time system. We only have to keep
in mind the algorithm’s assumptions and prior-
ities, which are:

e every task is supposed to be parallelizable;
the algorithm schedules them as on the one-
processor system, but a task is supposed to
occupy all the available processors in its time
interval;

o the algorithm tries to give more time to more
important tasks, but only as long as less im-
portant tasks keep a certain minimum quan-
tity of time (defined later in the text), which
can be set by the user;

e if a task is scheduled more than one distinct
time interval, the scheduling algorithm tries
to rearrange the intervals to merge them into
one.

Rather than stating the algorithm and than pre-
senting a scheduling example, we will describe

254

Genetic Algorithms in Real-Time Imprecise Computing

the algorithm along with resolving an imprecise
real-time system schedule. The real-time sys-
tem which is going to be scheduled is defined
in Table 1.

rli] | dli] | wli]
1|0 6|3
T, 4 12| 2
75| 0 I

Table 1. The Example Real-Time System.

The given parameters are presented in the al-
gorithm in the following data structures (their
values for the specified system are also given):

e 7, the number of tasks in the system;

e r[i],i = 1..n, array of (modified) ready times
of every task;

e d[i], i = l..n, array of (modified) deadlines
of every task;

e al], array of distinct time values which is ob-
tained by sorting the lists of ready times and
deadlines of all the tasks in T and deleting
duplicate entries in the list, without the last
one (i.e. all distinct values of r[i] and d[i]);
here a[] = (0, 4, 6, 12);

e wli], i = l..n, array of task weights;

e 1[], array of distinct weight values, sorted
in descending order and without the small-
est value; here h[] = (3, 2);
mT(i], i = 1..n, array of minimum time quan-
tities for each task;

e MT[i], i = l..n, array of the maximum al-

lowed time for each task, MT[i] = d[i] — r|i].

The minimum time for a task is defined as

The user can redefine the minimum time a task
is assigned, but in that case there may not always
exist a feasible schedule.

Let the tasks’ indexes be arranged in such a
fashion that d[1] < d[2] < ...

< din], ie.

a task with a greater index has a later dead-
line. The output of the scheduling algorithm
is a list of time intervals along with an index
of the task which is executed in that time. It
consists of three phases: in the first phase the
initial feasible arrangement is made. In the sec-
ond phase the intervals are modified, if possi-
ble, so that the tasks with higher weight values
get even more computational time, keeping the
other tasks with their defined minimum. Fi-
nally, the algorithm finds the preempted entries
in the third phase and tries to merge them if
possible.

Additional data structures that are used in the
process are:

e L[i][2], list of time intervals; the first compo-
nent of the list element denotes the task index
Jj = L(i, 1) and the second one the allotted
duration ¢t = L(i, 2);

e p, total number of entries in the list;

e F[i], i = l..n, array which denotes the last
entry of the task i in list L;

e D[i], i = l..n, array of total time duration
given to the task i;

e M[i][2], i = 1..I, array of amounts of time
an interval can be ’shifted’ in the schedule in
both directions, the distance from the task’s
ready time in one direction and its deadline
in the other (defined in the algorithm).

In our example system, the defined minimum
time quantities for tasks 77, 7> and T3 are 3,
8/3 and 7/3, respectively. We will, however,
redefine those values into, for example, 3, 3 and
2.5.

The total execution time of the system is di-
vided by values in array a[] in distinct time in-
tervals. For each interval the algorithm detects
active tasks — the ones whose ready time comes
earlier and deadline time later than the interval
boundaries, i.e. the task is considered active if
r(task] <= a[i] and d[task] >= ali + 1].

The initial arrangement allocates to each of the
tasks the amount of time proportional to its
weight value. Time quantities are calculated for
each distinct interval and new entries are added
to the schedule if the task has not yet been given
one; otherwise, the calculated time quantity is
added to the existing entry of a task already in

Genetic Algorithms in Real-Time Imprecise Computing

255

the list. New entries for existing tasks in the
schedule can be given if a task’s scheduled time
has reached its deadline - in that case a new set
of entries for all active tasks must be introduced.

The first phase of the scheduling algorithm is
presented in Fig 1.

for every i in af] {
W = weight sum of all active tasks;
if (p=0 or M[L(p,1)1[2]1=0)
for every active task j {
ptt;
add entry L(p,1)=j; F[jl=p;
L(p,2)=wljl/Ww*(ali+1]-alil);
D[j1 += L(p,2); }
else
for every active task j {
if(alil=r[j1) {
ptt;
add entry L(p,1)=j; F[jl=p;
L(p,2)=wljl/Wx(ali+1]-a[il);
D[j] += L(p,2); }
else {
L(F[j1,2) += wljl/wx(ali+1]-alil);
D[j]1 += L(F[jl1,2); } }
if d[L(p,1)]=ali+1]
M[L(p,1)1[2]=0; }
c=0;
for every i in L {
M[il[1]l=c-r[L(i,1)];
c += L(i,2);
M[i][2]=d[L(i,1)]-c; }

Fig. 1. The First Section of the Scheduling Algorithm.

After the first phase we have the following en-
tries in L as (task, duration) and M as (left shift,
right shift):

L(task, duration) M

) (0.2)
(T3, 3.333) (4, 6.666)
(T>, 4.666) (3.333,0)
(757) (1270)

The values in array M denote how much we can
shift the specified time interval to the left (ear-
lier in time) or right (later in time) before the
boundaries reach the ready time or the deadline
of the task.

In the next section the algorithm rearranges the
schedule so the tasks with higher weight values
get more computational time. A task, in fact
an entry in the list, with higher weight borrows
time from other entries with smaller weight val-
ues. Time reallocation is undertaken with pre-
serving the minimum time a task must have and
not violating the determined ready times and

deadlines. An entry from the list can gain more
time from any other entry as long as there is
minimum time left (to the task in the other en-
try) and no time constraint is violated for any list
member in between. The reallocation is done
in steps according to values in array h[]. If all
the tasks bear the same weight value, there is
no change in the schedule. The second phase of
the algorithm is listed in Fig 2.

for every i in h[]
for every entry j : w[L(j,1)]=h[i] AND
DIL(j,1)I<MT[L(j,1)] {
k=j; end=0; taker=L(j,1)
while M[k][2]>0 AND end=0 AND
D[taker]<MT[taker] {
k++; giver=L(k,1);
if (wlgiver]<h[i] AND [giver]>mT[giver]){
qty=min(D[giver]-mT[giver],

MT [taker]-D[taker], L(k,2))
qty=min(qty, M[mI[2]), m=j..k-1
L(j,2) += qty;

D[taker] += qty; M[j1[2] -= qty;
L(k,2) -= qty;
D[giver] -= qty; M[k][1] += qty;
if qty=L(k,2)
remove entry k from L
for every entry m from j+1 to k-1 {
M[m] [1] += qty;
M[m] [2] -= qty;
if M[m] [2]=0
end=1; } }
(endwhile) }
k=j; end=0;
while M[k][1]1>0 AND end=0 AND
MT [taker]>D[taker] {
k--; giver=L(k,1);
if wlgiver]<h[i] AND D[giver]>mT[giver]{
qty=min(D[giver]-mT[giver],

MT [taker]-D[taker], L(k,2))
qty=min(qty, M[m][1]), m=k+1..j
L(j,2) += qty;

D[taker] += qty; M[jI1[1] -= qty;
L(k,2) -= qty;
D[giver] -= qty; M[k][2] += qty;
if qty=L(k,2)
remove entry k from L
for every entry m from k+l to j-1 {
M[m] [1] -= qty;
M[m] [2] += qty;
if M[m] [1]1=0
end=1; } }
(endwhile) } }

Fig. 2. The Second Section of the Scheduling
Algorithm.

After the second section the schedule for our
example is as follows:

L(task, duration) M

(T17 6) (07 0)

(T3,0.5) (2,7.5)
(T, 5.5) (2.5,0)
(Té,) (1270)

256

Genetic Algorithms in Real-Time Imprecise Computing

The tasks T and T, have been given additional
amounts of computation time taken from the
task 753. The latter is, on the other hand, pre-
empted with 73. In the last section the schedul-
ing algorithm finds such duplicate entries and
tries to resolve them, but only if such rearrange-
ment would not interfere with the timing con-
straints of the entries that are being shifted in
time (which are all the ones between the merg-
ing two). The third phase of the algorithm is
shown in Fig. 3. Finally, the schedule for the
example real-time system takes the following
form:

L(task, duration) M

for every entry i : F[L(i,1)]>i

repeat {
k=i+1; z=L(i,1);
max_up=max_dn=MT [z] ;
while L(k,1)!'=z {
max_dn=min(max_dn, M[k][1]);
max_up=min(max_up, M[k]1[2]); }
if max_dn>=L(i,2) {
L(k,2) += L(i,2);
for every entry m from i+l to k-1 {
MIm][1] -= L(i,2);
Mm][2] += L(i,2); }
remove entry i from L; }
else if max_up>=L(k,2) {
L(i,2) += L(k,2);
for every entry m from i+l to k-1 {
MIm] [1] += L(k,2);
M[m][2] -= L(k,2); }
remove entry k from L; } }
while F[z]>k AND L(i,2)>0;

Fig. 3. The Third Section of the Scheduling Algorithm.

We now have a schedule in which the tasks with
higher priorities have an optimal arrangement
of computing time. In addition, there is no pre-
empting which was one of the priorities during
the design of the algorithm. If we are running
on a multiprocessor system, a genetic algorithm
or any other parallelizable algorithm can occupy
all the available processors in its time interval.

As it was mentioned before, the scheduling al-
gorithm was devised primarily for scheduling
genetic algorithms as tasks in an imprecise real-
time system, but it can also be used for schedul-
ing of ’ordinary’ imprecise systems’ tasks. If
that is the case, the minimum task running time
should be set to the computational time of the

mandatory part mi, and the maximum task run-
ning time to the sum of the mandatory and the
optional time oi. Finally, the user may choose
to schedule the system with some of the ex-
isting algorithms, in which case the mandatory
and optional part of a genetic algorithm should
only formally be defined as it was described in
section III.

The schedule itself is static and fully determined
prior to system execution. Further develop-
ment of the algorithm would include dynami-
cal scheduling of the tasks, which would allow
certain parameters, as deadline times or task
weights, to change during the process.

5. Acknowledgement

This work was carried out within the research
project “Problem-solving Environments in En-
gineering”, supported by the Ministry of Sci-
ence and Technology of the Republic of Croa-
tia.

References

[1] BUDIN, L., JAKOBOVIC, D., GOLUB, M., (1998), Par-
allel Adaptive Genetic Algorithm, Proc. Int. Conf.
Neural Computing NC’98, Wienna, October 1998.

[2] DavIs, L., (1991) Handbook of Genetic Algorithms,
Van Nostrand Reinhold, New York.

[3] GARVEY, A., LESSER, V., (1995), Representing and
scheduling satlsfylng tasks Imprecise and approx-

imate computation, Kluwer Academic Publishers,
pp. 23-34.

[4] LEUNG, JOSEPH Y-T., (1995), A survey of schedul-
ing results for imprecise computation tasks, Impre-
cise and approximate computation, Kluwer Aca-
demic Publishers, pp. 35-42.

[5] Ly, J. W-S., LIN, K-J., SHIH, W-K., YU, A. C,,
CHUNG, J-Y., ZHAO, W., (1991), Algorithms for
Scheduling Imprecise Computations, IEEE Com-
puter, 24, pp. 58-68.

[6] MICHALEWICZ, Z., (1992), Genetic Algorithms
+ Data Structures = Evolutionary Programs,
Springer-Verlag, Berlin.

Received: April, 2000
Revised: June, 2000
Accepted: July, 2000

Genetic Algorithms in Real-Time Imprecise Computing

257

Contact address:
Leo Budin
Domagoj Jakobovi¢
Marin Golub
Faculty of Electrical Engineering and Computing
Unska 3
HR-10000 Zagreb
Croatia
phone: +385 161 29 935
fax: +3851 61 29 653
e-mail: leo.budin, domagoj.jakobovic,

marin.golub@fer.hr

LEO BUDIN is full professor of computer engineering at the Faculty of
Electrical Engineering and Computing (FER), University of Zagreb,
Croatia, where he has been lecturing since 1962. He holds the Doctor-
ate, M.Sc. and Dipl.-Ing. degrees in Electrical Engineering, all from the
University of Zagreb. During his academic career he has been holding
courses both the undergraduate and graduate levels at his home insti-
tution as well as at other Faculties of the University of Zagreb, Osijek
and Split, respectively.

Professor Budin has carried out important duties in the management of
FER, being its Dean, Vice-Dean, Department Chair, as well as chairman
of a number of Boards within the University of Zagreb. He has had a
leading role in several important initiatives at the national level such as
establishing of the University Computing Centre (SRCE), introduction
of the Computing Program at FER, and foundation of CIT — Journal of
Computing and Information Technology for which he also served as the
first Editor-in-Chief. Having written a number of high-school textbooks
on the topic, he is influencing the shaping of Computing education in
general.

His research interest is in the general study of computers and com-
puter systems, along with methodologies in system analysis and design,
and computer applications in diverse fields of human activities, within
which he has led a number of national research projects. He has also
been involved in the work of the Department for Technical Sciences of
the Croatian Academy of Sciences and Arts (HAZU). Professor Budin
has published more than 100 research and professional papers in jour-
nals, conference proceedings and books in his areas of interest, and has
co-authored the textbook Computer-Aided Analysis (in Croatian). He
has been advisor for a number of Ph.D. and M.Sc. theses.

Besides research he has succeeded in building a thriving collabora-
tion with the industry, successfully consulting and leading many R&D
projects. He has consulted the Croatian government, and is presently
chairing the Committee on Information Technology of the Central
Council for the Project Strategy of Development of the Republic of
Croatia “Croatia in 215" Century”.

Professor Budin has been conferred several awards for significant sci-
entific achievements, and has been both a Humboldt and a Fulbright
scholar. He is member of IEEE, IEEE Computer Society, and ACM.

DOMAGOJ JAKOBOVIC received his B. Sc. degree in electrical engineer-
ing in 1996 from the Faculty of Electrical Engineering and Computing,
University of Zagreb. He is a research and teaching assistant at the
same faculty since 1997. During 1995 and 1996 he was a visiting
research scholar in Tunisia and Slovakia. His professional interests in-
clude genetic algorithms, algorithm design and validation, knowledge
representation and parallel kinematic structures.

MARIN GOLUB received the B. Sc. and M. Sc. degrees in electrical en-
gineering from the Faculty of Electrical Engineering and Computing,
University of Zagreb, in 1992 and 1996, respectively. Currently he is a
doctoral student, working as an assistant at the Department of Electron-
ics, Microelectronics, Computer and Intelligent Systems. His interests
include parallel algorithms, operating systems and genetic algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

