Journal of Computing and Information Technology - CIT 8, 2000, 4, 285-291

285

Visualisation Techniques for Learning
and Teaching Programming

Lynne P. Baldwin, Jasna Kuljis

Department of Information Systems and Computing Brunel University, Uxbridge, UK

This paper describes the programming knowledge and
skills that learners need to develop, and concludes that
this is an area of computer science education where those
involved in the teaching of programming need to further
consider the nature, structure and function of domain-
specific knowledge. Visualisation techniques may offer
important insights into the learning and teaching of
programming. It has been argued that conceptual models
could serve to enhance learners’ conceptual understand-
ing of programming, and we describe how these may
effectively be used in the teaching of programming. The
methods to enhance the development of accurate mental
models include: designing the interface so that users can
interact actively with it; using metaphors and analogies to
explain concepts; and using spatial relationships so that
users can develop capabilities for mental simulations.

Keywords: computer science education, learning pro-
gramming, visual programming

1. Introduction

The demand for competent programmers has
risen dramatically in the last several years. The
‘millennium problem’ has emphasised the im-
portance of ensuring that there are IT special-
ists with good programming skills. The high
demand for computing studies graduates in the
job market both nationally and worldwide, to-
gether with the wider access to higher education
generally, has prompted many students to enter
into the field of computer science. Given the
diverse educational backgrounds and skills of
such students, together with the ever-increasing
number of them in our classrooms, the role of
computer science educators in teaching good
programming skills is becoming ever more im-
portant.

The majority of students, even those enrolled
on computer science courses, find computer

programming a difficult and complex cognitive
task (Guindon, 1990; Jeffries et al, 1981; Kim
and Lerch, 1997; Letovsky, 1986; Simon, 1973;
Mayer, 1989). The seriousness of the problem
recently prompted an email debate among UK
educators (cphc-members@mailbase.ac.uk).
Academics reported their experience in using
various teaching methods to get better results
in teaching programming. Changing the lan-
guage that is taught first does not significantly
change the pass rate. Neither does using dif-
ferent textbooks, slowing the course down, or
does alternating bottom-up versus top-down ap-
proach. Some academics opted to lower stan-
dards and/or to reduce the quantity of material
taught and concentrate on ’important’ topics.
Because of the increase in student population
the classes are large and classes of 100 — 200
students in computer programming courses are
not uncommon. Usually, there is a huge vari
ety in students’ abilities, learning speeds, and
attitudes. Attention to difficulties faced by an
individual cannot be easily addressed in a large
class. Therefore, educators are faced with a task
of having to find an alternative way of helping
students in their learning by providing a vari-
ety of modes of learning and supporting dif-
ferent rates of learning. One possibility is to
let students teach themselves with the help of
computer.

The knowledge and skills required in order to
become a successful programmer are the sub-
ject of much debate, and for those engaged in
the teaching of programming, it is necessary
to look not only at programming knowledge
learners need to develop, but to look at human

286

Visualisation Techniques for Learning and Teaching Programming

cognition, that is, how learners learn. Con-
clusions from this suggest that program visu-
alisation may offer important insights into the
learning and teaching of programming. The in-
tention is to provide a system for novice users
which will help them create an accurate mental
model. If such a system proves to be useful
it would be a good starting point from which
better systems can be built.

This paper does not describe any experiments
that have been carried out with regard to the
learning of programming using visualisation
techniques, but instead it explores the back-
ground that will inform such future research.
The next section examines which programming
knowledge and skills learners need to develop.
The section that follows considers visual pro-
gramming as a potentially more intuitive repre-
sentation for programs, followed by a section
which provides a brief discussion on what can
be represented visually. In the conclusions the
paper argues that little is known about the learn-
ing of programming and that these issues have
not been given due attention in the literature to
date, yet are essential in framing any empirical
work.

2. Learning programming

Programming demands complex cognitive skills
such as reasoning and planning. However, as
Kurland et al (1986), note, we know little about
these. Interest has centred towards trying to
discover precisely which higher level thinking
skills learners need in order to develop pro-
gramming ability, and how those involved in the
teaching of programming may best foster these
in the students they teach. Thinking skills are,
however, not domain-specific. Although gen-
eral intellectual ability, especially logical rea-
soning and spatial ability, play a part in learning
how to program, the difficulty in attempting to
understand how such complex intellectual skills
are used by learners further demonstrates the
challenges that those involved in teaching such
learners face in assisting them with the task.
The importance of looking at the nature, struc-
ture and function of domain-specific knowledge
is, as McGill and Volet (1997) state, potentially
useful. They say that there is now general ac-
ceptance in the literature that learners need to

acquire and effectively use the following three
interrelated types of knowledge of program-
ming: syntactic, conceptual and strategic.

Syntactic knowledge is concerned with spe-
cific facts regarding a programming language
and deals with the rules governing its use, say
Bayman and Meyer (1988). With this type of
knowledge, learners are able to write programs
that can be compiled but they do not possess the
technical knowledge that allows them to design
and develop programs that can effectively solve
computing problems. For Linn (1985), syn-
tactic knowledge is described as the acquisition
of knowledge about language features, but both
definitions concern what might be termed low-
level knowledge of programming. Another kind
of knowledge, conceptual knowledge, concerns
the understanding of constructs and principles
which govern the semantics of programming
actions. By employing the syntactic knowledge
of the language features, learners of program-
ming are able to design a program, say Bayman
and Mayer (1988). Linn’s (1985) definition
of conceptual knowledge is also related to the
learning of design skills, although Linn cautions
that developing a limited set of templates and
procedural skills allows learners to design solu-
tions to computer problems which are only very
closely related.

The most complex knowledge that learners need
to have with regard to programming is strategic.
Once learners have strategic knowledge they
are, say Bayman and Mayer (1988) able to solve
programming problems that are more complex
and beyond those that have been met before.
Such strategic knowledge is necessary not only
to recognise a problem but also to decompose
it in order to design the phases that will sub-
sequently be programmed, and is also essential
for testing and debugging errors. Linn’s (1985)
definition of syntactic knowledge closely mir-
rors this in that it concerns the development of
a wide range of problem solving skills, and that
these can be used to solve programming prob-
lems that are not language specific; in short,
it can be said that such learners have a robust
understanding of programming. Although it is
useful for those teaching programming to be
able to describe programming knowledge in this
way, it nevertheless points up some difficulties.
Not least among these is that the learning of pro-
gramming is part of learning in general, and that

Visualisation Techniques for Learning and Teaching Programming

287

in order to be able to program, complex cogni-
tive skills such as reasoning, problem-solving
and planning play their role. Assuming that
those new to programming are people of rea-
sonable intelligence, we can be fairly confident
that such skills have been learned and practised
earlier in life and in other areas. We do not,
as yet, know how, or if, the reasoning skills in-
volved in programming can be separated from
other reasoning skills that we, as humans pos-
sess, as little is known about thinking skills in
many areas of learning in a wider context.

Thinking skills are not domain-specific, and
thus looking at programming needs to be seen
within the broader context of learning in gen-
eral. Of particular interest is to find out a great
deal more about the 'readiness skills’ that those
beginning the task of learning to program need
to have. Readiness skills are concerned with
looking at learners before they begin the task;
but what they intend to do with programming
once they have become competent in it is also a
factor in that how far learners intend to go with
programming may also affect in some way how
they approach the task. Little is known about
how humans acquire, store and use knowledge,
and this naturally includes syntactic, conceptual
and strategic knowledge. Although learning
programming is not easy for learners, it would
seem that the task is not that much easier for
those teaching it.

Those involved in the teaching of program-
ming to those students who are new to the task,
have long been criticised for failing to develop
students’ understanding in the key area of se-
mantics, that is, program comprehension (De
Corte et al., 1992; Haynes, 1998; Linn and
Dalbey, 1985; Linn, 1985; Oliver and Malone,
1998). Shih and Alessi (1994) argue that over-
emphasis on the ’how to’ may not facilitate the
transfer of what is learned to novel situations as
it does not highlight the knowledge underlying
such skills. Over-emphasis on the *why’ how-
ever, although providing learners with a wider
knowledge base which can be applied in a va-
riety of contexts, can result in a mismatch be-
tween instruction and hands-on practice. Shih
and Alessi (1994) comment that theories which
seek to account for how learners develop con-
ceptual understanding offer differing explana-
tions of the mechanisms which underlie such
learning. Such differing views therefore mean

that there are differing opinions about which
teach ing methods may be the most appropriate
(Cormier and Hagman, 1987).

Clear (1997) suggests that those involved in the
teaching of programming need to reconsider
their approach to teaching in light of current
theories on cognition. These, he argues, may re-
quire us to adopt a more inductive, exploratory
and interactive approach; a move away from
seeing programming as 'a process of detached,
abstract reflection and consideration’ to one of
"active engagement and action’ (p. 25). He
comments that abstraction followed by action
may not be valid planning or programming tech-
niques, and posits that models of learning which
emphasise interaction may be more powerful.
Visualisation techniques, posits Clear (1997),
may offer important insights into the learning
and teaching of programming.

Research suggests that the human mind is strong-
ly visually oriented and that people acquire in-
formation at a significantly higher rate by dis-
covering relationships in complex pictures than
by reading text (Raeder, 1985). There has
been some research into software visualisation
to enhance the comprehension of algorithms and
computer programs (Price at al., 1993; Stasko
et al., 1997) and for debugging (Baecker et
al., 1997). Carroll’s (1995) and Carroll’s and
Rosson’s (1991) work on learning to program
in Smalltalk apply the concept of guided explo-
ration. The next section discusses how visual
(iconic) programming can be used to aid task
of computer programming.

3. Visual programming

Visual programming uses visual expressions
such as diagrams, free-hand sketches, icons or
graphical manipulators (Shu, 1992). The ear-
liest work in visual programming started with
two kinds of visual programming languages:
visual approaches to traditional programming
languages, such as executable flowcharts, and
visual approaches that departed from tradition,
such as programming by demonstrating the de-
sired actions on screen (Burnett and Mclntyre,
1995). Visual systems to aid programming
make use of various metaphors. Olsen et al’s.
(1990) visual objects consist of a set of tem-
plates including, for example, forms, modules,

288

Visualisation Techniques for Learning and Teaching Programming

statements, programs, and subprograms. Hi-
rakawa et al.’s (1990) objects, algorithms and
data structures are visualised by means of icons,
data flow graphs, and spatial placement of icons,
respectively. In considering the possible repre-
sentations of a problem, we can adapt Bruner’s
(1966) classification into enactive, iconic, and
symbolic representations. Enactive represen-
tation employs a set of actions appropriate for
achieving a certain result. Iconic representation
employs a set of summary images or graphics
that stand for a concept without defining it fully.
Symbolic representation uses a set of symbolic
or logical propositions drawn from a symbolic
system that is governed by rules or laws for
forming and transforming propositions.

In iconic programming languages, not only is
the flow of control or data represented graph-
ically, but also icons represent the operations
themselves. Iconic programming systems of-
fer a potentially more intuitive representation
for programs because they allow users to cre-
ate programs and examine their execution using
pictures and diagrams. They may make it easier
for novices to learn how to program and, it is ar-
gued, may also be easier for people from differ-
ing language backgrounds. Such systems have
to model people’s understanding of program-
ming ideas, so as to identify those qualities that
make an iconic programming system easy to
learn. However, programming involves many,
often abstract, objects and concepts which are
not easily mapped to the physical world. A
key research problem is to discover new visual
metaphor for representing those programming
components that have no natural and obvious
physical representation. Visual representation
is just one aspect of a complex problem. In
order to understand when to use visualisation
and then to create effective visualisations we
need to understand the learners’ needs. Mod-
elling learners’ understandings of programming
is a complex task and, according to Smith et al.
(1996), the solution is to make programming
more like thinking. Eberts (1994) claims that
many of the most effective and accurate mental
models seem to be spatial in nature.

In Cocoa (Smithetal., 1996), a children’s iconic
programming system, the approach to program-
ming is to eliminate programming language
syntax. Cocoa uses representations which are
analogous to the objects being represented and

allows these representations to be directly ma-
nipulated in the process of programming. The
programmer specifies the behaviour using gra-
phical rewrite rules. Programming by demon-
stration allows children to directly manipulate
the representations, and graphical rewrite rules
provide an understandable representation for the
recorded programs. This approach would not
necessarily lead to learning programming. The
aim of our research is to teach would-be pro-
grammers the concepts of traditional program-
ming. Therefore, our system should support
a novice in the task of algorithmic program-
ming where the user of the system must un-
derstand the underlying concepts of variables,
operations, flow of control, subprograms, recur-
sion, etcetera.

Through the acknowledgement of the existence
of visualisation, the mental picture in the men-
tal model, the implication is that an accurate
mental model can be developed if novices use
an interface incorporating graphics. Such sys-
tems have to model people’s understanding of
programming ideas by aiding the development
of accurate mental models. The methods to en-
hance such development include: designing the
interface so that users can interact actively with
it; using metaphors and analogies to explain
concepts; and using spatial relationships so that
users can develop capabilities for mental simu-
lations. The problem is how to visually repre-
sent programming concepts and how to specify
algorithms in a visual language.

4. What to visualise

Programming is a complex activity requiring
the acquisition of non trivial new concepts, new
facts and new skills, and it involves learning re-
lationships between many things which cannot
be identified except by their relationships. Pro-
gramming languages deal with the unfamiliar
world of data structures and algorithms. This
makes them less tractable for novices. Vari-
ous diagramming techniques to represent algo-
rithms have been used to overcome some of the
problems. Usually, these representations were
used to guide writing program code not nec-
essarily done by the same person. The stan-
dardisation of graphical design notations us-
ing the flowchart was popular in some earlier

Visualisation Techniques for Learning and Teaching Programming

289

attempts (see, for example, Nassi and Shnei-
derman, 1973; Frei et al., 1978; Tripp, 1988).
Diaz-Herrera and Flude (1980) used diagram-
matic representation that visually controls flow.

Control-of-flow descriptions for programs have
long been performed with flow diagrams. Like
ancillary representations of computer programs,
flowcharts do not necessarily provide improve-
ment in the practice of programming. Data-flow
diagrams provide an alternative kind of chart for
representing programs. In data flow diagrams
there are no sequencing constraints other than
the ones imposed by data dependencies. They
seem to be advantageous when the problem to
be solved is already understood in terms of data
flow. On the other hand, control-of-flow dia-
grams are usually preferable when emphasis is
to be placed on the agents (things performing
acts) of a computation rather than on the objects
(data) being manipulated.

Research into learning indicates that the key to
successful learning lies in organisation, repre-
sentation, and structuring of knowledge (Glaser,
1990). Instead of simply replacing textual ex-
pressions with visual expressions visualisation
should address these issues. Graphical repre-
sentations for computing objects can be created
for data, program, process, and the command
object. However, when considering an appro-
priate visual representation, choosing suitable
graphical objects and how to use them is a
well-recognised research issue. Tanimoto and
Glinert (1990) see the development of a good
metaphor and the successful use of stylisation
as two major problems of representation. The
development of a good metaphor requires an
analogy between a physical or mechanical fam-
ily of phenomena and the phenomena impor-
tant in computer programming. Stylisation is
a key concept in iconic programming, because
on the one hand designing icons is analogous to
choosing identifier names in conventional (that
is, textual) programming, while on the other
hand pictures of different sizes and resolutions
are required in different contexts for the same
operation.

Experienced programmers differ from inexpe-
rienced students in their ways of organising
domain information. There is evidence that
programmers’ knowledge base is structured in
terms of deep functional principles of program-
ming rather than in terms of particular language

syntax (Adelson, 1981). They also form a rep-
resentation of a problem in terms of smaller
manageable subproblems for each they already
may reuse previously developed solutions. Mar-
co and Colina (1993) call these templates and
argue that students can benefit if they are taught
how to implement particular templates in dif-
ferent problems. Regardless of which represen-
tation is used for a problem, the use of tem-
plates is obviously very important. Reusing
previously derived solutions to novel problems
is basically the same type of transformation that
we use when making generalisations based on
instances. A predominant skill is required for
program ability to generalise.

An appropriate representation can provide a ba-
sis for automating program code generation.
We support the view that if the program code
were automatically generated, from the repre-
sentation provided by a student, the student
would then gain a better understanding of the
relationship between the problem and the pro-
gram which solves the problem. The process
of learning, aided with such a tool, would even-
tually lead to improved problem solving skills
using computers and to better structural pro-
gramming skills.

5. Conclusion

This paper has described the programming
knowledge and skills that learners need to de-
velop, and concluded that this is an area of com-
puter science education where those involved
in the teaching of programming need to fur-
ther consider the nature, structure and function
of domain-specific knowledge. The knowledge
and skills required in order to become a success-
ful programmer are the subject of much debate.
Those engaged in the teaching of programming
have not only to consider programming knowl-
edge learners need to develop, but have also to
research into how learners learn.

Formal instruction has been criticised for as-
sisting learners in developing misconceptions
and misunderstandings. Iconic programming
systems offer a potentially more intuitive rep-
resentation for programs. They may make it
easier for novices to learn how to program, be-
cause they allow users to create programs and

290

Visualisation Techniques for Learning and Teaching Programming

examine their execution using pictures and di-
agrams. Such systems have to model people’s
understanding of programming ideas, so as to
identify those qualities that make an iconic pro-
gramming system easy to learn. Conclusions
from this suggest that program visualisation
may offer important insights into the learning
and teaching of programming.

As can be seen from the above, little is known
about the learning of programming, and indeed
of learning in general, and, as such, this pa-
per offers an insight into the complexities in-
volved. These issues, we would argue, have
not been given due attention in the literature to
date, yet are essential in framing any empirical
work. This paper does not, then, offer any ’so-
lutions’ or indeed any views as to which meth-
ods might be employed in approaching the task
of finding out how visualisation does, or does
not, precisely assist learners in their learning of
programming. We are, at this initial stage of
our research, investigating current frameworks.
We are exploring and evaluating various frame-
works which would be suitable for representing
typical programming problems. There is no
single obvious visual representation technique
which would ensure learnability. Early results
suggest that the chosen technique will necessar-
ily be a hybrid of existing techniques, and aug-
mented by new schemas. It is also anticipated
that it is almost impossible to provide a generic
visual representation which will enhance the de-
velopment of accurate mental models through
the display of all programming problems.

The empirical work that we shall later carry out
will necessarily develop from this and cannot
therefore be described or evaluated in a more
formal way at this point in time. This is, then,
an exploratory, rather than technical, paper, and
seeks to focus attention on the issues with a view
to opening up debate in this new and exciting
field.

References

[1] B. ADELSON, Problem solving and the development
of abstract categories in programming languages.
Memory and Cognition. 9(4) (1981), 442-433,

[2] R.B. BAECKER, C. DIGIANO AND A. MARCUS, Soft-
ware visualisation for debugging. Communications
of the ACM. 40(4) (1997), 44-54.

[3] P. BAYMAN AND R. E. MAYER, Using conceptual
models to teach Basic computer programming.
Journal of Educational Psychology. 80(3) (1988),
291-298.

[4] J. BRUNER, Theory of Instruction. Harvard Univer-
sity Press, Cambridge, Mass., 1966.

[5] M. M. BURNETT AND D. W. MCINTYRE, Visual pro-
gramming. Computer. 28(3) (1995), 14-16.

[6] J. M. CARROLL, Making use of a design representa-
tion. Communications of the ACM. 37(12) (1995),
29-35.

[7] J. M. CARROLL AND M. B. ROSSON, Deliberated
evolution: Stalking the view matcher in design
space. Human-Computer Interaction. 6 (1991),
281-318.

[8] T. CLEAR, The nature of cognition and action. ACM
SIGCSE Bulletin. 29(4) (1997), 25-29.

[9] S. M. CORMIER AND J. D. HAGMAN, (Eds). Transfer
of Learning: Contemporary Research and Applica-
tions.: Academic Press, San Diego, CA., 1987.

[10] E.L.DE CORTE, VERSCHAFFEL AND H. SCHROOTEN,
Cognitive effects of learning to program in LOGO:
a one-year study with sixth graders. In Computer-
based Learning Environments and Problem Solving
(E. De Corte, M. Linn, H. Mandl and L. Verschaffel,
Eds.) (1992) pp. 207-228, Springer-Verlag, Berlin.

[11] J. L. Diaz-HERRERA AND R. C. FLUDE, Pas-
cal/HSD: A graphical programming system. [EEE
Proceedings COMSAC (1980), pp. 723-728.

[12] R. E. EBERTS, User Interface Design. Prentice Hall,
Englewood Cliffs, 1994..

[13] H. P. FREL, D. L. WELLER AND R. WILLIAMS. A
graphics-based programming support system. ACM
Computer Graphics, 12(3) (1978), 43-49.

[14] R. GLASER, Toward new models for assessment. In-
ternational Journal of Educational Research. 14(5)
(1990), 475-483.

[15] R. GUINDON, Designing the design process: ex-
ploiting opportunistic thoughts. Human Computer
Interaction. 5, (1990), 305-344.

[16] C.T.HAYNES, Experience with an analytic approach
to teaching programming languages. ACM SIGCSE
Bulletin. 30(1) (1998), 350-354.

[17] M. HIRAKAWA, M. TANAKA AND T. ICHIKAWA HI-
VISUAL Iconic programming environment. In Vi-
sual Languages and Applications (T. Ichikawa, E.
Jungert and R. R. Korfhage, Eds.) (1990), pp.
121-145. Plenum Press, New York.

[18] R. A. JEFFRIES, P. TURNER, G. POLSON AND M. E.
ATWOOD, The processes involved in designing soft-
ware. In Cognitive Skills and their Acquisition (J.
R. Anderson, Ed.), (1981), pp. 255-283. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Visualisation Techniques for Learning and Teaching Programming

291

[19] J. KiM AND F. J. LERCH, Why is programming
(sometimes) so difficult? Programming as scientific
discovery in multiple problem spaces. Information
Systems Research. 8(1) (1997), 25-50.

[20] D. KURLAND, R. PEA, C. CLEMENT AND R. MAWBY,
A study of the development of programming ability
and thinking skills in high school students. Journal
of Educational Computing Research. 2 (4) (1986),
429-457.

[21] S.LETOVSKY, Cognitive processes in program com-
prehension. In Empirical Studies of Programmers
(E. Solway and S. Iyengar, Eds.), (1986) pp. 58-79,
Ablex Publishing, Norwood, NJ.

[22] M. C. LINN, The cognitive consequences of pro-
gramming instruction in classrooms. Educational
Researcher 14(5) (1985), 14-16, 25-29.

[23] M. C. LINN AND J. DALBEY J., Cognitive conse-
quences of programming instruction: instruction,
access, ability. Educational Psychologist 20(4)
(1985), 191-206.

[24] R.E.MARCO AND M. M. COLINA, Programming lan-
guages and dynamic instructional tools: Addressing
students’s knowledge base. In Instructional Models
in Computer-Based Learning Environments (S. Di-
jkstra, H. P. M. Kramer and J. J. G. van Merri€nboer,
Eds.) (1993), pp. 445-457. Springer-Verlag, Berlin.

[25] R. E. MAYER, The psychology of how novices learn
programming. In Studying the Novice Programmer
(E. Soloway and J. C. Spohrer, Eds.) (1989) pp.
129-159, Lawrence Erlbaum Associates, Hillsdale,
NJ.

[26] T.J. MCGILL AND S. E. VOLET, A conceptual frame-
work for analyzing students’s knowledge of pro-
gramming. Journal of Research on Computing in
Education. 29(3) (1997), 276-297.

[27] I. NASSI AND B. SHNEIDERMAN, Flowchart tech-
niques for structured programming. SIGPLAN No-
tices. 8(8) (1973).

[28] R. OLIVER AND J. MALONE, The influence of in-
struction and activity on the development of seman-
tic programming knowledge. Journal of Research on
Computing in Education. 25(4) (1998), 521-533.

[29] K. A. OLSEN, B. PEDERSEN, P. HARNES AND O. J.
TOSSE, A visual system to support teaching of
programming. In Visual Languages and Visual Pro-
gramming (S.-K. Chang, Ed.) (1990), pp. 277-288.
Plenum Press, New York.

[30] B. A. PRICE, R. M. BAECKER AND I. S. SMALL,
A principled taxonomy of software vizualization.
Journal of Visual Languages Computing. 4(3)
(1993), 211-266.

[31] G. RAEDER, A survey of current graphical program-
ming techniques. IEEE Computer. August (1985),
11-25.

[32] Y.-F. SHIH AND S. M. ALESSI, Mental models and
transfer of learning in computer programming.

Journal of Research on Computing in Education.
26(2) (1994), 154-175.

[33] N. C. SHU, Visual Programming. Van Nostrand
Reinhold, New York, 1992.

[34] H. A. SIMON, The structure of ill-structured prob-
lems. Artificial Intelligence. 4 (1973), 181-201.

[35] D.C. SMITH, A. CYPHER AND K. SCHMUCKER, Mak-

ing programming easier for children. Interactions,
September+October (1996), 58-67.

[36] J. STASKO, J. DOMINIQUE, M. BROWN AND B. PRICE
(EDS.), Software Visualisation: Programming as
a Multimedia Experience. MIT Press, Cambridge,
Mass, 1997.

[37] S. L. TANIMOTO AND E. P. GLINERT, Designing
iconic programming systems: representation and
learnability. In Visual Programming Environments:
Applications and Issues (E. P. Glinert, Ed.) (1990),
pp. 330-336. IEEE Computer Society Press, Los
Alamitos, Ca.

[38] L. L. TRIPP, A survey of graphical notations for pro-
gram design: an update. ACM SIGSOFT Software
Engineering Notes. 13(4) (1988), 39-44.

Received: October, 2000
Accepted: November, 2000

Contact address:

Dr. Jasna Kuljis

Department of Information Systems and Computing
Brunel University

Uxbridge, Middlesex UB8 3PH

United Kingdom

Tel: +44 (0)1895 203 081

Fax: +44 (0)1895 251 686

e-mail: Jasna.Kuljis@brunel.ac.uk

LYNNE P. BALDWIN is a lecturer in the Department of Information Sys-
tems and Computing at Brunel University, UK. She gained her PhD
at Brunel University, and an MA in Language and Communication at
the University of East Anglia, UK. Her research interests are varied, al-
though there is a strong emphasis on knowledge management, decision-
making, and related communication issues in both industrial and educa-
tional settings. Her email addressis <Lynne .Baldwin@brunel.ac.uk>.

JASNA KULIJIS is a Senior Lecturer in Computer Science at the Gold-
smiths College of University of London. She has a B. Sc. in Mathe-
matics from Zagreb University, an M. S. in Information Science from
Pittsburgh University and a Ph. D. in Information Systems from the
London School of Economics. She is currently researching into human-
computer interaction and in visual programming. She has published
widely in many aspects of computing. Her email and web addresses are
<jasna.kuljis@brunel.ac.uk> and <www.brunel.ac.uk/
~csstjjk>.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

