
Journal of Computing and Information Technology - CIT 8, 2000, 4, 319–331 319

A Contribution to Triangulation
Algorithms for Simple Polygons

Marko Lamot1, Borut Žalik2

1Hermes Softlab, Ljubljana, Slovenia
2Borut Žalik, University of Maribor, Faculty of Electrical Engineering and Computer Sciences, Maribor, Slovenia

Decomposing simple polygon into simpler components
is one of the basic tasks in computational geometry and
its applications. The most important simple polygon de-
composition is triangulation. The known algorithms for
polygon triangulation can be classified into three groups:
algorithms based on diagonal inserting, algorithms based
on Delaunay triangulation, and the algorithms using
Steiner points. The paper briefly explains the most
popular algorithms from each group and summarizes
the common features of the groups. After that four
algorithms based on diagonals insertion are tested: a
recursive diagonal inserting algorithm, an ear cutting
algorithm, Kong’s Graham scan algorithm, and Seidel’s
randomized incremental algorithm. An analysis con-
cerning speed, the quality of the output triangles and the
ability to handle holes is done at the end.

Keywords: simple polygons, simple polygon triangula-
tion, Steiner points, constrained Delaunay triangulation

1. Introduction

Polygons are very convenient for computer rep-
resentation of the boundary of the objects from
the real world. Because polygons can be very
complex �they can include a few thousand ver-
tices, they may be concave and may include
nested holes�, often there is the need to decom-
pose the polygons into simpler components that
can be easily and rapidly handled. There are
many ideas how to perform this decomposition.
Planar polygons can be, for example, decom-
posed into triangles, trapezoids or even star-
shaped polygons. Computing the triangulation
of a polygon is a fundamental algorithm in the
computational geometry. It is also the most
investigated partitioning method. In computer
graphics, polygon triangulation algorithms are

widely used for tessellating curved geometries,
such as those described by spline.

The paper gives a brief summary of existing
triangulation techniques and a comparison be-
tween them. It is organized into eight sections.
The second chapter introduces the fundamen-
tal terminology, and in the third chapter diag-
onal inserting algorithms are dealt with. The
fourth section explains the constrained Delau-
nay triangulation. The fifth section describes
triangulation techniques that use Steiner points.
The sixth section summarizes the common fea-
tures of all three groups of polygon triangula-
tion algorithms. The seventh section contains
the comparison of triangulation methods based
on the diagonal insertion. An analysis concern-
ing speed, the quality of the output triangles,
and the ability to handle holes is done. The last
section summarizes the work.

2. Background

Every simple polygon P �a polygon is simple if
its edges cross only in their endpoints — ver-
tices� with n vertices has a triangulation. The
key for proving the existence of the triangula-
tion is the fact that every polygon has a diagonal,
which exists if the polygon has at least one con-
vex vertex. We can conclude that �OROU94�:

� every polygon has at least one strictly convex
vertex,

� every polygon with n � 4 vertices has a di-
agonal,

� every polygon P of n vertices may be parti-
tioned into triangles by adding the diagonals.

320 A Contribution to Triangulation Algorithms for Simple Polygons

Fig. 1. a� Low quality triangulation; b� High quality triangulation; c� Triangulation with Steiner’s Points.

There is a large number of different ways how
to triangulate a given polygon. What all these
possibilities have in common is that the number
of diagonals is n � 3 and the number of the tri-
angles being generated is n� 2. For details and
proofs see �OROU94�.

Following the fact of existence of the diagonal, a
basic triangulation algorithmcan be constructed
as follows:

Find a diagonal, cut the polygon into two
pieces, and recurs each.

Finding diagonals is a simple task, which is re-
peated until all diagonals of the polygon are
determined. This can be described as follows:

For every edge e of the polygon not inci-
dent to either end of the potential diagonal
s, check if e intersects s. As soon as an
intersection is detected, it is known that
s is not a diagonal. If no polygon edge
intersects s, then s is a diagonal.

A rough analysis shows that such algorithm
takes O�n4� time. Namely there are

�
n
2

�
�

O�n2� diagonal candidates. Testing each of
them with all polygon edges costs O�n� time.
Repeating this O�n3� process for each of the
n � 3 diagonals gives us an algorithm with at
most O�n4� running time. Such a direct ap-
proach is, of course, too inefficient and therefore
many authors proposed much faster triangula-
tion algorithms.

There are different possibilities how to triangu-
late a given polygon �see Fig. 1�. For some
applications it is essential that the minimum in-
terior angle of a triangle of the computed tri-
angulation is as large as possible which defines
quality. How the algorithms triangulated a sim-
ple polygon depended on the technique used by
the algorithm. In Figure 1a for example, the

triangulation can be considered as a low qual-
ity, because there are a lot of sliver triangles.
The algorithms based on Delaunay triangula-
tion ensure better triangulation �Figure 1b�. The
quality can be significantly improved by using
so-called Steiner’s points �Figure 1c�.

3. Polygon triangulation algorithms based
on diagonal inserting

History of the polygon triangulation algorithms
began in 1911 �LENN11�. In that year Lennes
proposed the “algorithm” which worked by re-
cursively inserting diagonals between pairs of
vertices of P and ran in O�n2�. At that time
mathematicians were interested in constructive
proofs of existence of triangulation for simple
polygons. Since then, this type of algorithm
reappeared in many papers and books. Induc-
tive proof for the existence of triangulation was
proposed by Meisters �MEIS75�. He proposed
an ear searching method and then cutting them
off. Vertex vi of simple polygon P is a principal
vertex if no other vertex of P lies in the interior
of the triangle vi�1, vi, vi�1 or in the interior
of the diagonal vi�1, vi�1. A principal vertex
vi of simple polygon P is an ear if the diago-
nal vi�1, vi�1 lies entirely in P. We say that
two ears vi, vj are non-overlapping if interior
�vi�1� vi� vi�1� � �vj�1� vj� vj�1� � 0 �see Figure
2�.

Fig. 2. Triangle v1v2v3 is an ear of polygon.

A Contribution to Triangulation Algorithms for Simple Polygons 321

Meisters proved the next theorem �MEIS75�:

Except for triangles, every simple poly-
gon P has at least two non-overlapping
ears.

A direct implementation of this idea leads to a
complexity of O�n3�. But in 1990 it was dis-
covered that prune and search technique finds
an ear in the linear time �GIND93�. It is based
on the following observation:

A good subpolygon P1 of a simple poly-
gon P is a subpolygon whose boundary
differs from that of P in one edge at the
most.

The basic observation here is that a good sub-
polygon P1 has at least one proper ear. Strategy
is as follows:

Split the polygon P of n vertices into two
subpolygons in O�n� time such that one
of these subpolygons is a good subpoly-
gon with at most bn�2c�1 vertices. Each
subpolygon is then solved recursively.

The worst case running time of the algorithm is
T�n� � cn�T�bn�2c�1�, where c is a constant.
This recurrence has solutionT�n� � O�n�. That
leads to implementation of Meisters’s algorithm
with the complexity of O�n2�.

Garey, Johnson, Preparata and Tarjan proposed
a divide— and—conquer algorithmwhich first
brokeO�n2� time complexity �1978� �GARE78�.
Algorithm runs in O�n logn� time. Their ap-
proach includes two steps: the first one de-
composes simple polygon into monotone sub-
polygons in O�n logn�. The second step tri-
angulates these monotone sub-polygons, which
can be done in a linear time. A different divide
— and — conquer approach by Chazelle also

achieves O�n logn� running time �CHAZ82�.
Very complicated data structures are used in
Tarjan and Van Wyk’s algorithm running in
O�n log log n� time �TARJ89�. However, Kirk-
patrik introduced an algorithm with the same
time complexity but with simple data structures
�KIRK90�.

Next improvement of speed was gained by algo-
rithms with time complexity O�n log �n�. Such
algorithms were not just faster but also sim-
pler to implement. They all have in common
a randomized �“Las Vegas”� approach. The
best known algorithm was suggested by Seidel
�SEID91�. His algorithm runs in practice almost
in linear time for the majority simple polygons.
The algorithm has three steps:

� trapezoidal decomposition of the polygon,

� determination of monotone polygon’s chains,
and finally,

� the triangulation of these monotone poly-
gon’s chains.

The efficiency of Seidel’s algorithm is achieved
by very efficient trapezoidal decomposition,
which works in two steps:

� first a random permutation of edges is deter-
mined, and

� these edges are inserted incrementally into
trapezoidal decomposition.

With two corresponding structures containing
current decomposition and search structure pre-
sented algorithm runs in O�n log �n� time.

Researches also searched for classes of poly-
gons that can be triangulated in a linear time.
They determined that monotone polygons �Fig.

Fig. 3. Star polygons �a�, edge visible polygons �b� and monotone polygons �c� can be triangulated in linear time.

322 A Contribution to Triangulation Algorithms for Simple Polygons

3c�, star-shaped polygons �each point in the
polygon can be connected to star point p that
no edge of polygon boundary is intersected�
�Fig. 3a�, spiral polygons, L-convex polygons,
edge visible polygons �each point in the poly-
gon can be connected to one point of edge e that
no edge of polygon boundary is intersected�
�Fig. 3b�, intersection-free polygons and palm-
shaped polygons could be triangulated in linear
time

Some researches designed adaptive algorithms
that run fast in many situations. Hertel and
Mehlhorn described a sweep-line based algo-
rithm that runs faster if a polygon has fewer
concave vertices �HERT83�. Algorithm’s run-
ning time is O�n � r log r� where r denotes the
number of concave vertices of P.

Chazelle and Incerpi also presented algorithm
where time complexity depends on shape of the
polygon �CHAZ84�. They describe a triangula-
tion algorithm that runs inO�n log s� timewhere
s � n. The quantity s measures the sinuosity of
the polygon representing how many times the
polygon’s boundary alternates between com-
plete spirals of opposite orientation. In practice,
quantity s is very small or a constant, even for
very winding polygons. Consider the m otion of
a straight line L�vi� vi�1� passing through edge
vi, vi�1 where 0 � i � n. Every time L reaches

the vertical position in a clockwise �counter-
clockwise� manner we decrement �increment�
a winding counter by one. L is spiraling �anti-
spiraling� if the winding counter is never decre-
mented �incremented� twice in succession. A
new polygonal chain is restarted only when the
previous chain ceases to be spiraling or anti-
spiraling.

Toussaint proposed in �TOUS91� another adap-
tive algorithm which runs in O�n�1� t0��; t0 �
n. The quantity t0 measures the shape-comple-
xity of the triangulation delivered by the algo-
rithm. More precisely, t0 is the number of tri-
angles contained in the triangulation that share
zero edges with the input polygon. The algo-
rithm runs in O�n2� in the worst case, but for
several classes of polygons it runs in the linear
time. The algorithm is very simple to imple-
ment, because it does not require sorting or the
use of balanced tree structures.

Kong, Everett and Toussaint algorithm is based
on the Graham scan �KONG90�. The Graham
scan is a fundamental backtracking technique
in computational geometry. It has been shown
how to use the Graham scan for triangulating
simple polygon in O�kn� time where k � 1 is
the number of concave vertices in P. Although
the worst case algorithm’s time complexity is
O�n2�, it is easy to be implemented and there-

Time complexity Author Year Technique/Algorithm
O�n2� Lennes 1911 Recursive diagonal insertion
O�n3� Meisters 1975 Ear cutting
O�n2� ElGindy, Everrett, Toussaint 1990 Prune and search

O�n logn� Garey, Johnson, Preparata, Tarjan 1978 Decomp. into monotone polygons
O�n logn� Chazelle 1982 Divide and conquer

O�n � r log r� Hertel & Mehlhorn 1983 Sweep — line
O�n log s� Chazelle & Incerpi 1983 —

O�n�1 � t0�� Toussaint 1988 —
O�kn� Kong, Everett, Toussaint 1990 Graham scan

O�n log log n� Tarjan, Van Wyk 1987 —
O�n log log n� Kirkpatrik 1990 —
O�n log �n� Clarkson, Tarjan, Van Wyk 1989 Randomized incremental
O�n log �n� Kirkpatrik, Klawe, Tarjan 1990 Using bounded integer coordinates
O�n log �n� Seidel 1990 Randomized incremental

O�n� Chazelle 1990 —

Table 1. Algorithms for computing triangulation of simple polygon based on diagonal inserting.

A Contribution to Triangulation Algorithms for Simple Polygons 323

fore it is useful in practice. The algorithmadapts
the Graham scan as following:

The vertices of polygon P are scanned in
order starting with v2. At each step the
current vertex is tested to determine if it
is the top of an ear. If it is not, the current
vertex is advanced, otherwise it is an ear
and can be cut off. In that case current
vertex is not advanced, except for a spe-
cial case where the next vertex following
cut ear is v0.

Finally, in 1991 Chazelle presented O�n�worst-
case algorithm �CHAZ91�. Basic idea is in
deterministic algorithm that computes structure
called visibility map. This structure is a gener-
alization of a trapezoidation �horizontal chords
towards both sides of each vertex in a polygonal
chain are drawn�. His algorithm mimics merge
sort. The polygon of n vertices is partitioned
into chains with n�2 vertices, and these into
chains of n�4 vertices, and so on. The visibility
map of a chain is found by merging the maps
of its subchains. This actually takes O�n logn�
time at the most. But Chazelle improves the
process by dividing it into two phases. The
first phase includes computing coarse approx-
imations of the visibility maps. This visibility
maps are coarse enough that merging can be ac-
complished in a linear time. The second phase
refines the coarse map into a complete visibility
map, also in the linear time. A triangulation is
then produced from the trapezoidation defined
by the visibility map. The algorithm has a lot
of details and therefore it remains open to find
a simple and fast algorithm for triangulating a
polygon in the linear time. All mentioned algo-
rithms are summarized in Table 1.

4. Polygon triangulation algorithms based
on Delaunay triangulation

Triangulation of the simple polygons can also be
achieved by the well-known Delaunay triangu-
lation �FLOR92� on a set of points. Namely, the
vertices of a polygon can be considered as indi-
vidual input points in the plane. When comput-
ing the Delaunay triangulation we have to con-
sider that some line segments �edges of poly-
gon� must exist at the output. That problem is
known as a constrained Delaunay triangulation
�CDT�.

Let V be a set of points in the plane and L
set of non-intersecting line segments having
their extreme vertices at points of V . The pair
G � �V� L� defines a constraint graph.

Two vertices PiPj � V are said to be mutually
visible if either segment PiPj does not intersect
any constraint segment or PiPj is a subsegment
of a constraint segment of L.

Now the visibility graph of G is a pair Gv �
�Vv� Ev�; Vv � V and Ev � f�Pi� Pj� j Pi� Pj �
Vv and Pi� Pj are mutually visible with respect
to set Lg �see Fig. 4b�.

An edge in Ev joins a pair of mutually visible
points of V with respect to all straight-line seg-
ments belonging to L.

So, triangulation of V constrained by L is de-
fined as a graph T�V; L� � �Vt� Et�; Vt � V
and Et is a maximal subset of Ev � L such that
L � Et, and no two edges of Et intersect, except
at their endpoints.

A CDT T�V; L� of set of pointsV with respect to
a set of straight-line segments L is a constrained

Fig. 4. a� Empty circle property; b� Visibility map; c� Constrained Delaunay triangulation.

324 A Contribution to Triangulation Algorithms for Simple Polygons

triangulation of V in which the circumcircle of
each triangle t of T does not contain in its in-
terior any other vertex P of T which is visible
from the three vertices of t �see Fig. 4c�. An-
other characterization of CDT is given by the
empty circle property: a triangle t in a con-
strained triangulation T is a Delaunay triangle
if there does not exist any ot her vertex of T
inside the circumcircle of t and visible from all
three vertices of t �see Fig. 4a�. See details in
�FLOR92�.

The Delaunay triangulation of simple polygon
can be generally computed as follows: the first
step computes CDT of edges of simple polygon
and the second step removes triangles that are
in exterior of simple polygon. The information
that input is a simple polygon �not just general
constraint graph� could be useful in step one and
therefore algorithms for building a CDT can be
subdivided into two groups:

� algorithms for computing the CDT when the
constraint graph is a simple polygon,

� algorithms for computing a CDT for general
constraint graph.

4.1. Constrained Delaunay triangulation
algorithms for simple polygons

Lewis and Robinson described an O�n2� al-
gorithm based on divide-and-conquer approach
with internal points of simple polygon �LEWI79�.
The boundary polygon is recursively subdivided
into almost equally sized subpolygons that are
separately triangulated together with their inter-
nal points. The resulting triangulation is then
optimized to produce CDT.

A recursive O�n2� algorithm for CDT based
on visibility approach is described by Floriani
�FLOR85�. The algorithm computes the visibil-
ity graph of the vertices of the simple polygon
Q in O�n2� time and the Voronoi diagram P of
set of its vertices in O�n logn�. The resulting
Delaunay triangulation is built by joining each
vertex Q of P to those vertices that are both
visible from Q and Voronoi neighbors of Q.

Another O�n logn� algorithm was described by
Lee and Lin in �FLOR92�. The algorithm is
based on Chazelle’s polygon cutting theorem.
Chazelle has shown that for any simple poly-
gon P with n vertices, two vertices t1 and t2 of P

can be found in a linear time such that segment
t1t2 is completely internal to P. Each of the
two simple subpolygons resulting from the cut
of P by t1t2 has at least n�3 vertices. Lee and
Lin’s algorithm subdivides the given polygon Q
into two subpolygons Ql and Qr and recursively
computes the constrained Delaunay triangula-
tions Tl and Tr. The resulting triangulation T
of Q is obtained by merging Tl and Tr. They
also proposed a similar algorithm for general
constraint graph which runs in O�n2�.

4.2. Constrained Delaunay triangulation
algorithms for general constraint
graphs

Chew describes an O�n logn� algorithm for the
CDTbased on the divide-and-conquer approach.
The constraint graph G � �V� L� is assumed
to be contained in a rectangle, which is subdi-
vided into vertical strips �CHEW87�. In each
strip there is exactly one vertex. The CDT is
computed for each strip and adjacent strips are
recursively merged together. After last merge
we got the final CDT. The major problemhere is
merging those strips that contain edges, which
cross some strip having no endpoint in it.

Algorithm for computing CDT, which includes
preprocessing on the constraint segments, is
proposed by Bossiant �BOIS88�. By prepro-
cessing CDT, the problem is transformed into
standard Delaunay problem on a set of points.
The idea is to modify the input data by adding
points lying on the constraint segments in such
a way that resulting Delaunay triangulation is
guaranteed to contain such segments. Con-
straint segment e is a Delaunay edge if the circle
having e as diameter does not intersect any other
constraint segment. If the circle attached to e
intersects some other segment, then e is split
into a finite number of subsegments such that
none of the circles attached to those segments
intersect any constraint. When two constraint
segments intersect at an endpoint, one newpoint
is inserted into both segments. The circumcircle
of the triangle defined by the common endpoint
and by the two new points does not intersect any
other constraint segment. This algorithm takes
at most O�n logn� time and generates at most
O�n� additional points.

For CDT all the above algorithms require that
all points are defined at the beginning of the

A Contribution to Triangulation Algorithms for Simple Polygons 325

triangulation process. An algorithm proposed
by Floriani and Puppo �FLOR92� resolves CDT
problemby incrementally updatingCDT as new
points and constraints are added. The problem
of incrementally building of CDT is reduced to
the following three subproblems:

– computation of an initial triangulation of the
domain,

– insertion of a point,

– insertion of a straight-line segment.

An initial triangulation of the domain can be
obtained by different approaches. For example,
we can determine a triangle or rectangle �made
of two triangles�, which contain the whole do-
main. Then, points and straight-lines are in-
crementally inserted. After each insertion we
get new CDT which has more elements than the
previous one. After inserting the last point or
straight-line, the bounding triangle is removed.
Algorithm runs at most in O�ln2� where n is
number of points and l the number of straight-
line segments in the final CDT.

Table 2 shows the algorithms for computing tri-
angulation of a simple polygon based on Delau-
nay triangulation.

5. Polygon triangulation algorithms by
using Steiner points

Finally, the algorithms that care also about the
quality of triangulation are considered. The
quality is checked regarding the minimum in-
terior angle of triangles in the output triangula-
tion. Generally, that feature is possible only if
the use of so-called Steiner points is allowed.

In that case the number of output triangles is in-
creased regarding the minimum number of tri-
angles in output triangulation. In other words,
we want to provide shape guarantee �minimum
interior angle is as high as possible� with mini-
mum triangles in the output triangulation �size
guarantee�.

One of such techniques of triangulation points
and straight-lines is Delaunay refinement tech-
nique. Chew presented a Delaunay refinement
algorithm that triangulates a given polygon into
a mesh. In mesh all triangles are between 30�

and 120�. The algorithm produces a uniform
mesh to obtain all triangles of the roughly the
same size �CHEW89�.

Ruppert extended Chew’s work �RUPP94� by
giving an algorithm such that all triangles in the
output have angles between π � 2α . Parame-
ter α can be chosen between 0� and 20�. The
triangulation maintained here is a Delaunay tri-
angulation set of points which is computed at
the beginning. Vertices for Delaunay triangu-
lation are in that case endpoints of segments
and possible isolated vertices. After comput-
ing Delaunay triangulation, vertices are added
for two reasons: to improve triangle shape, and
to ensure that all input segments are presented
in Delaunay triangulation. Two basic opera-
tions in the algorithm are splitting a segment
by adding a vertex at its midpoint, and splitting
a triangle with a vertex at its circumcenter. In
each case, the new vertex is added to set of ver-
tices. When a segment is split, it is replaced in
set of segments by two subsegments. Such algo-
rithms runs in O�M2� time, where M is number
of vertices at the output, but in practice are very
fast.

Time complexity Author Year Input
O�n2� Lewis, Robinson 1979 Simple polygon

O�n logn� Floriani 1985 Simple polygon
O�n logn� Lee, Lin 1980 Simple polygon

O�n2� Lee, Lin 1980 General
O�n logn� Chew 1987 General
O�n logn� Boissonnat 1988 General

O�ln2� Floriani, Puppo 1992 General

Table 2. Triangulation algorithms based on Delaunay triangulation.

326 A Contribution to Triangulation Algorithms for Simple Polygons

Time complexity Author Year Input
O�n logn � k� Bern, Eppstein 1991 General

O�n logn� Bern, Dobkin 1995 Simple polygon
O�n log 2n� Bern, Mitchell 1995 Simple polygon

O�M2� Chew 1989 Simple polygon
O�M2� Ruppert 1994 General

Table 3. Triangulation algorithms based on using Steiner points.

Some other algorithms that give shape guaran-
tees are available. They are more complicated
to implement and are not based on Delaunay
triangulation. Baker �BAKE88� has given an
algorithm to triangulate the interior of a simple
polygon with elements whose angles are be-
tween 13� and 90�. The number of triangles
used by their algorithm may be unnecessarily
large. But they suggested that quadtrees might
improve the size of the triangulation. Bern,
Eppstein and Gilbert �BERN92� followed up
this suggestion, as well as giving a new size
bound. They showed how to triangulate a pla-
nar point set or poligonally bounded domain
with triangles of bounded aspect ratio. Trian-
gulation has size �number of triangles� within
a constant factor of optimal and runs in opti-
mal time O�n logn� k� with input of size n and
output of size k. Bern, Dobkin, and Eppstein
�BERN95� showed how to triangulate polygonal
regionswith triangles of guaranteed quality. Al-
gorithm guarantees, using O�n� triangles, that
the smallest height �shortest dimension� of a tri-
angle in a triangulation of an n-vertex polygon
�with holes� is a constant factor of the largest
possible. Using O�n logn� triangles for sim-
ple polygons �O�n3�2� for polygons with holes�
they guarantee the largest angle is not greater
than 150�. Such triangulation can be obtained
in O�n logn� time �O�n logn� k� for polygons
with holes�. Another algorithm presented by
Bern, Mitchell and Ruppert �BEMI95� consid-
ers triangulation of n-vertex polygonal regions
so that no angle in the final triangulation mea-
sures more than π�2. The number of triangles in
the triangulation is only O�n� and the running
time is O�n log2 n�. Algorithm also considers
holes in polygons. Basic new technique used in
the algorithm is recursive subdivision by disks
and consists of two stages: first stage packs the
domain with non-overlapping disks, tangent to

each other and to sides of the domain. Disk
packing is such that each region not covered
has at most four sides. The algorithm then adds
edges between ce ntres of disks and points of
tangency on their boundaries, thereby dividing
the domain into small polygons. Second stage
triangulates the small polygons using Steiner
points located only interior to the polygons or
on the domain boundary.

Table 3 shows algorithms and their time com-
plexities described in this section.

6. Common features of groups of
algorithms for polygon triangulation

In this section, general properties of all three
groups of the algorithms for polygon triangula-
tion �algorithms based on diagonal insertion,
algorithms based on Delaunay triangulation,
and algorithms using Steiner points� are con-
sidered. Attributes interesting for comparisons
are �SHEW�:

� quality of a triangulation,

� number of output triangles, and

� the possibility of triangulating polygons with
holes.

Figure 5 shows �extended figure from �RUPP94��
how different triangulation is obtained while tri-
angulating the same polygon by different algo-
rithms:

� triangulation in Fig. 5a has been generated by
Seidel’s randomized incremental algorithm
generates the output in Fig. 5a �SEID91� �ba-
sed on diagonal inserting�,

� De Floriani and Puppo’s constrained Delau-
nay triangulation generated the Fig. 5b
�FLOR92� �based onDelaunay triangulation�,

A Contribution to Triangulation Algorithms for Simple Polygons 327

Fig. 5. a� Diagonal inserting �Seidel�; b� Constrained Delaunay triangulation �De Floriani & Puppo�; c� Delaunay
refinement �Ruppert�.

� Fig. 5c shows the output of Ruppert’s Delau-
nay refinement algorithm �RUPP94� �using
Steiner points�.

It is obvious; the algorithms that use Steiner
points achieve the best output triangulation.
They have built-inmechanismensuring the qual-
ity of the output triangulation. However, they
produced also the larger number of triangles.
Delaunay-based algorithms provide the highest
quality possible on the original vertices �Fig. 5c�.
During the construction of the triangulation,
they consider so-called Delaunay empty-circle
property already mentioned in Section 4. Al-
gorithms based on the diagonal insertion do not
care at all about the quality of the triangula-
tion and because of this, different outputs are
obtained by different algorithms �see section 7
where four algorithms from this group are com-
pared�. However, Delaunay-based algorithms
and the algorithms based on diagonal insertion
always generate exactly n � 2 triangles. If we
want to obtain the smallest number of trian-
gles possible, and we want to be sure about the
quality of the triangulation, then one of the al-
gorithms based on Delaunay triangulation has
to be used.

The algorithms based onDelaunay triangulation
and those using Steiner points handle polygons
with holes very easily. They triangulate also the
holes, but because we know which edges of the
polygon belong to the holes, the triangles inside
the holes can be easily removed. The majority
of algorithms based on diagonal insertion can-
not perform the triangulation of polygons con-
taining holes. One of the exceptions is Seidel’s
randomized incremental algorithm. Originally,
it has not being designed to handle polygons
with holes, but it turned out that this extension
is very simple. The solution is described in the
next section.

Concerning speed of the algorithms it is re-
ally difficult to compare them. In each group
there are the solutions working in O�n logn�
time �we do not take into account Chazelle’s
algorithm which has not yet been successfully
implemented�. However, concerning the im-
plementation, the algorithms based on diagonal
inserting are the easiest to implement.

328 A Contribution to Triangulation Algorithms for Simple Polygons

7. Comparison of triangulation algorithms
based on diagonal insertion

We have already mentioned that the algorithms
based on diagonal insertion do not use any cri-
teria regarding the quality of the generated tri-
angulation and therefore they produce also very
different results. This is the reason why in this
section some algorithms based on diagonal in-
sertion are analyzed.

The following algorithms have been chosen: a
recursive diagonal inserting algorithm �TOUS91�,
an ear cutting algorithm �MEIS75�, Kong’s Gra-

ham scan algorithm �KONG90�, and Seidel’s
randomized incremental algorithm �SEID91�.
All the algorithms have been implemented in
C�� using the same data structures. Figure 6
shows howdifferent output is generated by these
four algorithms.

We tested the speed of the algorithms on two
types of polygons: concave polygons and con-
vex polygons. We also took convex polygons to
determine how fast the algorithms are on poly-
gons where triangulation can be obtained in lin-
ear time with the simple algorithm �see table 4,
column Actual Running Time�.

Fig. 6. a� Diagonal inserting; b� Ear cutting; c� Graham scan; d� Randomized incremental.

Actual running time
in ms for 5000 pointsAlgorithm

Running
time

Average
angle Convex Concave

Holes

Recursive diagonal inserting O�n2� 3�40� 5523 5671 No
Ear cutting O�n3� 2�45� 10285 10325 No

Kong’s Graham scan O�kn� 4�06� 6970 6950 No
Seidel’s rand. Incremental O�n log�n� 7�94� 330 331 Yes

Table 4. Comparison of algorithms based on diagonal insertion.

A Contribution to Triangulation Algorithms for Simple Polygons 329

Fig. 7. Speed of algorithms �left — concave polygon; right — convex polygon�.

Fig. 7 presents the graph showing the running
time of the considered algorithms. For each
type of polygons we measured the speed when
polygons contain from 3 to 2000 vertices �with
step 50�. It is clearly seen that Seidel’s random-
ized algorithm is in practice the fastest algo-
rithm among all compared algorithms. Seidel’s
algorithm is also not sensitive to on the type of
the input polygon. Other three algorithms are
considerably slower and their run-time depends
on the shape of the input polygon �compare left
and right Fig. 7�.

As we already said, the algorithms from this
group do not contain any mechanism for ensur-
ing the quality, and because of different tech-
niques used, the algorithms provide different
quality of the output triangles. Table 4 shows
the average minimum interior angle of obtained
triangles for concave polygonswith 500 vertices
�test was repeated 100 times on different poly-
gons with 500 vertices�. Again, the Seidel’s
randomized incremental algorithm provides the
best result. The reason is that Seidel’s algo-
rithms first decompose the input polygon into
monotone polygons followed by partitioning of
polygons into triangles.

Only Seidel’s algorithm is capable to solve situ-
ations when the polygons containing holes are
considered �see Table 4, column holes�. This is
possible because Seidel’s randomized algorithm
takes edges randomly on input and builds trape-
zoidation. Therefore, we can also add edges of
holes on input. After building such trapezoi-

dation we only construct monotone polygons,
which are lying in the polygons but not in holes.

As shown from Table 4 the Seidel’s algorithm
is the best regarding all other three algorithms.
The price for this is more complicated imple-
mentation.

8. Conclusions

Triangulation of a simple polygon is the fre-
quent task in computational geometry and its
applications �geographic information systems,
finite element mesh generation� and today, a
large number of different algorithms are known.
These algorithms can be classified into three
major groups: methods based on diagonal inser-
tion, constrained Delaunay approaches, and al-
gorithms using Steiner points. All three groups
are considered in the paper and the most pop-
ular algorithms are briefly described. We have
pointed on the most important characteristics of
each group regarding the number of output tri-
angles, the quality of the triangulation, and the
possibility to handle the algorithms with holes.
Because algorithms based on diagonal insertion
do not include any strategy for optimization
their output, the resulting triangulations differ
noticeably. Because of this we compared four
algorithms from this group regarding the run
time, the quality of the output triangulation, and
the ability of solving the polygons with holes.
We have shown that Seidel’s algorithm is the
best in this category.

330 A Contribution to Triangulation Algorithms for Simple Polygons

The development of polygon triangulation algo-
rithms is still attractive research topic in com-
putational geometry. The real challenge is
Chazelle diagonal inserting algorithm �CHAZ91�.
Although theoretically known from 1991, up
to now there is no any successful implemen-
tation. The new algorithms are still expected
among the constraint Delaunay triangulation al-
gorithms and especially among the algorithms
using Steiner points.

9. Acknowledgement

This work has been carried out within a Valva-
sor�ALIS program supported by British Coun-
cil �title of the project Computational geometry
and its applications in medical visualization�.

References

�1� B. BAKER, E. GROSSE, C. RAFFERTY Nonobtuse
triangulation of polygons. Discrete and Comp. Ge-
ometry, 3 �1988�, 147-168.

�2� M. BERN, S. MITCHELL, J. RUPPERT Linear-Size
Nonobtuse Triangulation of Polygons. Discrete
Comput. Geometry, 14 �1995�, 411-428.

�3� M. BERG, M. KREVELD, M. OVERMARS, O.
SCHWARZKOPF, Computational Geometry, Algo-
rithms and Application. Springer Verlog, 1997.

�4� M. BERN, D. EPPSTEIN, J. R. GILBERT, Provably
good mesh generation. Presented at the Proceed-
ings of the 31st Annual Symposium on Foundation
of Computer Science, �1990�, 231-241.

�5� M. BERN, D. DOBKIN, D. EPPSTEIN, Triangulating
polygons without large Angles. Computationl Ge-
ometry & Applications, 5 �1995�, 171-192.

�6� J. D. BOISSONNAT, Shape reconstruction from pla-
nar cross sections. Comput. Vision Graphics Image
Process., 44 �1988�, 1-29.

�7� B. A. CHAZELLE, Theorem on polygon cutting with
applications. Presented at the Proceedings of the
23rd IEEE Symposium on Foundation of Computer
Science, �1982�, Chicago, 339-349.

�8� B. CHAZELLE, J. INCERPI, Triangulation and shape
complexity. ACM Transactions on Graphics, 3
�1984�, 135-152.

�9� B. CHAZELLE, Triangulating a simple polygon in
linear time. Discrete Computational Geometry, 6
�1991�, 485-524.

�10� L. P. CHEW, Constrained Delaunay triangulation.
Presented at the Proceedings, Third ACM Sympo-
sium on Computational Geometry, �1987�, Water-
loo, 216-222.

�11� L. P. CHEW, Guaranteed — quality triangular
meshes. Technical report, No. TR-89-983, Cornell
University, 1989.

�12� L. DE FLORIANI, B. FALCIDIENO, C. A. PIENOVI,
Delaunay-based representation of surfaces defined
over arbitrarily-shaped domains. Comput. Vision
Graphics Image Processing. 32 �1985�, 127-140.

�13� L. DE FLORIANI, E. PUPPO, An On-Line Algorithm
for Constrained Delaunay Triangulation, Graphical
Models and Image Processing, 3 �1992�, 290-300.

�14� M. R. GAREY, D. S. JOHNSON, F. P. PREPARATA, R.
E. TARJAN, Triangulating a simple polygon, Inform.
Process., 7 �1978�, 175-180.

�15� H. ELGINDY, H. EVERETT, G. T. TOUSSAINT, Slicing
an ear in linear time. Pattern Recognition Letters,
14 �1993�, 719-722.

�16� S. HERTEL, K. MEHLHORN, Fast triangulation of
simple polygons. Presented at Proceedings 4th In-
ternat. Conf. Theory, �1983� pp. 207-215.

�17� D. G. KIRKOATRICK, M. M. KLAWE, R. E. TAR-
JAN, O�n log log n� polygon triangulation with sim-
ple data structures. Presented at ACM Symposium
on Computational Geometry, 6 �1990� pp. 34-43,
Berkeley, California.

�18� X. KONG, H. EVERETT, G. T. TOUSSAINT, The gra-
ham scan triangulates simple polygons. Pattern
Recognition Letters, 11 �1990�, 713-716.

�19� N. J. LENNES, Theorems on the simple finite polygon
and polyhedron. American Journal of Mathematics,
33 �1911�, 37-62.

�20� B. A. LEWIS, J. S. ROBINSO, Triangulating of planar
regions with applications. Comput. J., 4 �1979�,
324-332.

�21� G. H. MEISTERS, Polygons have ears. American
Mathematical Monthly, 82 �1975�, 648-651.

�22� J. O’ROURKE, Computational Geometry in C. Cam-
bridge University Press, 1994.

�23� J. RUPPERT, A Delaunay Refinemt Algo-
rithm for Quality 2-Dimensional Mesh Gen-
eration. NASA Arnes Research Center, Sub-
mission to Journal of Algorithms, �1994�,
http���jit�arc�nasa�gov�nas�abs�html�

�24� R. SEIDEL, A simple and fast incremental random-
ized algorithm for computing trapezoidal decom-
positions and for triangulating polygons. Compu-
tational Geometry: Theory and Applications, 1
�1991�, 51-64.

�25� J. R. SHEWCHUK, Triangle: Engieering a 2D Qual-
ity Mesh Generator and Delaunay Triangulator.
Carnegie Mellon University, ftp�cs�cmu�edu�

�26� R. E. TARJAN, C. J. VAN WYK, An O�n log log n� —
time algorithm for a simple polygon triangulation
and its evaluation. IEICE Technical report, No.
PRU89-41, September 1989.

A Contribution to Triangulation Algorithms for Simple Polygons 331

�27� G. T. TOUSSAINT, Efficient triangulation of simple
polygons. The Visual Computer, 7 �1991�, 280-295.

Received: October, 2000
Accepted: November, 2000

Contact address:

Marko Lamot
Hermes Softlab

Litijska 51
1000 Ljubljana

Slovenia
Tel: �386 61 1865 815;
Fax: �386 61 1865 816;

e-mail: marko�lamot�hermes�si

Borut Žalik
University of Maribor

Faculty of Electrical Engineering and Computer Sciences
Smetanova 17
2000 Maribor

Slovenia

MARKO LAMOT currently works for at Hermes SoftLab computer com-
pany, Ljubljana, Slovenia. He received his BSc in computer engineering
in 1996 from the University of Maribor, Slovenia. Currently he is work-
ing on his PhD degree at University of Maribor. His research interests
include computational geometry especially triangulating algorithms and
uniform grids.

BORUT ŽALIK is currently an associate professor at the Faculty of Elec-
trical Engineering and Computer Science at the University of Maribor,
Slovenia. He also has a position of a senior research fellow at De Mont-
fort University, U. K. He received his BSc in electrical engineering in
1985, MSc and PhD in computer science, both from the University of
Maribor in 1989 and 1993, respectively. His research interests include
computational geometry, geometric modeling, GIS applications, and
multimedia applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

