Journal of Computing and Information Technology - CIT 9, 2000, 1, 43-54 43

Resource Management
in Message Passing Environments’

Ivan Zoraja!, Ursula Seitz?, Arndt Bode?, Petar Slapnicar!

IFESB, Department of Electronics and Computer Science University of Split, Croatia
2LRR-TUM, Institut fiir Informatik, Technische Universitat Miinchen, Germany

This paper discusses the need for resource management
support for parallel applications running on workstation
clusters and communicating by message passing among
tasks. Many resource management systems are only
able to start a message passing runtime environment
and parallel applications, but dynamic reconfiguration
fails because of the missing cooperation between the
resource manager and the runtime environment. In order
to utilize computational resources in message passing
environments efficiently, to control execution of parallel
applications by rescheduling tasks at runtime, and to
minimize their execution time, a resource management
system has been developed and preliminary tests results
have been carried out. Most of our efforts in this
regard have been to design an efficient approach to load
measurement and process scheduling and implement the
resource management system in a manner such that it
can easily be adapted to any message passing framework.
Although our first version is based on the PVM system,
we also intend to implement an MPI — based resource
management system.

Keywords: resource management, load balancing, pro-
cess migration, message passing, PVM, MPI, workstation
clusters.

1. Introduction

Although hardware power incessantly increases,
there are always applications which still re-
quire a larger amount of computing capacity.
Parallelization is a way to shorten the compu-
tation time of long running and resource in-
tense applications by dividing the underlying
data region or decomposing the application’s
functions and computing each of the resulting

smaller modules by a separate process on dif-
ferent processors which, without having shared
memory segments, perform communication by
sending messages. Especially appropriate for
parallelization are scientific computing appli-
cations because they often exceed the resource
availability of a single host and the underlying
computational grid can easily be partitioned into
smaller modules.

Owing to its very high aggregate performance,
massively parallel systems (MPPs) have been
built to run high performance parallel appli-
cations, but, their widespread use has been
prohibited by their high price and poor cost-
performance ratio. Recently, networks of work-
stations (NOWs) have been used as a unified
concurrent computing resource and have evolved
into a very effective and tenable environments
for both high performance scientific computa-
tion and commercial and business general based
data processing. These computing environ-
ments are typically based upon hardware con-
sisting of a collection of heterogeneous worksta-
tions interconnected by a high speed local area
network and are able to achieve a supercom-
puter’s performance at significantly less cost.
The most common programming paradigms are
those that provide a process or thread-based
message exchange among tasks that reside in
different address spaces.

The execution of a parallel application is inher-
ently more complex than of a sequential one,
because more than one host is involved in the
computation and more than one thread of con-

* This work has been funded by the German Federal Department of Education, Science, Research and Technology (BMBF)
within the research project SEMPA and by the Croatian Ministry of Science via the project FeedBack.

44

Resource Management in Message Passing Environments

trol must be started and terminated. A message-
passing environment primarily supports the mes-
sage exchange between the processes, but be-
yond that, it also performs some resource man-
agement functionalities, e.g. the configuration
of the runtime environment that controls the
hosts and the running processes of a parallel
application. However, the resource manage-
ment functionality in current message-passing
environment is rather poor and requires great
support by the user.

In a NOW, a resource management system con-
trols host pool and applications and tries to as-
sign idle resources to an application waiting
to be computed. Usually, a resource manage-
ment system works in combination with a batch
queuing component, i.e. the user specifies the
resources needed for the execution, e.g. ma-
chine architecture, and submits the application
as a batch job to the resource management sys-
tem where the job is queued until resources are
available. The resource manager also decides
on rescheduling or migration in case the system
is overloaded or an interactive user has logged
in. There are various resource management sys-
tems available, e.g. CODINE [6] Condor [12],
LSF [8] but most of these systems have been
designed for sequential (uniprocessor) applica-
tions and lack some functions that are important
for parallel applications [10].

In essence, there is no interaction between the
resource management system and the message
passing runtime system, which prevents both
the resource management system of having full
control over parallel applications and the paral-
lel application of using resource management
functionalities. The most suitable and gen-
eral way to get resource management and mes-
sage passing systems connected is to define a
layer between them with interfaces that could
be adapted to various resource management Sys-
tems and message passing environments. In this
paper, we address the problems resulting from
the design and implementation of the SEMPA
Resource Manager which connects the CO-
DINE system with the PVM system [22, 1] and
includes the CoCheck checkpointing facilities
and process migration mechanisms [20, 21].

The remaining article is structured as follows.
Section 2 compares message passing systems
and libraries such as PVM and MPI [3, 4, 7]
and their suitability for a resource management

implementation. Since our first implementa-
tion is based on PVM, some background ma-
terial on PVM has been included. The aims
and techniques of resource management sys-
tems in a NOW are given in section 3. The
SEMPA Resource Manager , an example for a
resource management system that closely co-
operates with the PVM message passing envi-
ronment, is explained in section 4. Section 5
shows some performance measurements with
the SEMPA Resource Manager . Discussion
and an outlook on future work are presented in
section 6; section 7 closes the article with a brief
summary.

2. Message Passing Paradigms

According to the way processors communicate
with one another, hardware architectures with
multiple processors can be classified as tightly-
or loosely-coupled. In tightly-coupled systems,
memory is accessible to all processors and com-
munication is performed through shared data,
while in loosely-coupled systems processes run
in disjoint address spaces and communicate by
sending explicit messages to one another. On
the software side, many efforts have been un-
dertaken to create a standard parallel process-
ing environment, such as parallelizing compil-
ers, libraries, language extensions and tools to
manage parallel resources and to identify pro-
gram errors and performance bottlenecks. PVM
and MPI have emerged to be widely used in
the realm of message passing libraries mostly
because they address portability, heterogene-
ity, and scalability issues and both tend to be
a standard for programming parallel distributed
memory machines.

The main difference between them is that MPI
is a specification which hardware vendors can
implement on their parallel machines in order to
achieve high throughput and low latency in mes-
sage exchange. MPI has a large variety of point-
to-point and group communication primitives
and allows the programmer to specify a logical
communication topology. On the other hand,
PVM is designed to run in heterogeneous envi-
ronments and provides dynamic process control
and some resource management facilities. The
central notion in PVM is a virtual machine, a
pool of heterogeneous machines connected by

Resource Management in Message Passing Environments

45

a network that can dynamically be reconfigured
both in terms of machines and parallel tasks.
These characteristics, coupled with the possi-
bility of creating special tasks which can in-
tercept PVM library calls, are the reason why
our first implementation was PVM based, es-
pecially since the MPI specification (MPI-1) at
the time of our development did not support any
dynamic host or process facilities.

2.1. Parallel Virtual Machine

The PVM system presents a general library-
based message passing interface to enable dis-
tributed memory computing on parallel com-
puters as well as on heterogeneous workstations
and PC clusters. With thousands of users PVM
has become the de facto standard and widely
prevalent parallel programming paradigm. Start-
ing tasks in parallel, message exchange among
tasks as well as synchronization, virtual ma-
chine management, process management and
other miscellaneous functions are accomplished
by the PVM library in conjunction with PVM
daemons that run on each computing node and
cooperate to emulate a parallel machine. With
reference to Figure 1, where the structure of
PVM is depicted by making use of the UML
[2] class diagram, the first PVM daemon, called

master, is started manually and the others (sla-
ves) are started by the master on a user-defined
host pool using remote login, remote shell pro-
gram or the rexec system call.

Parallelizing an application based on functional
and data parallelism results in several cooperat-
ing PVM tasks that can run in parallel, syn-
chronize and send messages to one another.
Tasks can be dynamically started and destroyed
by calling the pvm_spawn and pvm kill library
functions, respectively. The PVM library then
forwards the requests to the daemon specified
in the parameter list. If a special task called
tasker is not registered, new tasks are started
and killed by the daemon calling the appropriate
UNIX system calls. If the tasker runs, the dae-
mon forwards the requests to the tasker which
controls the execution of the tasks running on
its host. The tasker is the direct parent of any
process it controls and can be used to implement
a distributed debugging system.

Interprocess communication in PVM is accom-
plished with the pvm_send and pvm_recv calls
that support messages containing multiple data
types, but require explicit encoding and decod-
ing calls for buffer construction and extraction.
Without setting the options that allow message
exchange to use direct process to process stream

1 <<process>> 1 starts »
sends
. Tasker a message to
starts | exchange messages v
1 : 1
<<process>> exchange messages <<process>>
Slave Daemon Task 1.*
1.7 exchange Al
messages intercepts messages from
exchange |starts <<process>> 1
messages | ¥ N Resource Manager
. exchange
Messages struct pvmhostinfo *theHost;
<<process>> pvm_reg_rm (&theHost);
Master Daemon while (TRUE) {
1 | starts rbuf = pvm_nrecv (-1, -1);
117 } Il call the appropriate handler
<<process>>
Hoster

Fig. 1. The Structure of the PVM System.

46

Resource Management in Message Passing Environments

connection, i.e. TCP, data is transfered via dae-
mons which operate on top of the UDP protocol.
Messages are reliably delivered and buffered,
so a task can use both blocking and nonblock-
ing calls to receive messages. Each message
is labeled with a user-supplied message tag and
with a system-supplied context tag. The mes-
sage tag and the sender identifier are used to
discriminate among multiple messages arriving
at the same time. The context tag discriminates
among libraries which use PVM message pass-
ing capabilities and are linked together in the
same executable. PVM provides dynamic and
static group operations, which are useful when
more than one sender or receiver is involved
in message exchange or collaborative computa-
tion.

Any task can dynamically configure the virtual
machine by calling pvm_addhosts and pvm dele-
te calls to the library which forwards those re-
quests to the master daemon. In order to prevent
system inconsistency the master daemon uses a
two phase commit protocol to set up the new
virtual machine, but since any task can recon-
figure the virtual machine at any time, races
are possible. As the tasker helps a daemon to
manage the tasks, another special task, named
hoster, can be registered by the master daemon
to control the hosts’ configuration.

By default, the task and host scheduling in PVM
is accomplished by a simple round robin algo-
rithm. Beginning with version 3.3, PVM sup-
ports a resource manager interface, which al-
lows special tasks to be registered by the sys-
tem and be responsible for the task and host
placement decisions. If a resource manager
is registered, each library call that manipulates
processes or hosts is intercepted by the PVM
library and sent to the resource manager task
using special messages. Typically, one resource
manager is registered for an entire virtual ma-
chine, but each daemon can have its own. The
daemons without resource manager are handled
by the resource manager associated with the
master daemon. Any task can be registered with
PVM as a tasker, a hoster or a resource manager
by calling pvm_reg_tasker, pvm_reg hoster or
pvm_reg_rm library call, respectively.

3. Resource Management and Load
Balancing

Resource management and load balancing are
very important techniques to efficiently utilize
the resources in a NOW and to minimize the
execution time of parallel applications. Taking
scheduling decisions and controlling resources
and applications in such a way that the load
is evenly distributed are two major issues that
must be taken into account with the design and
implementation of resource management sys-
tems. The mapping between hosts and appli-
cation tasks is performed by a scheduling al-
gorithm, which typically selects an application
waiting in the batch queue, configures a runtime
environment for the application, and starts it up.

The scheduling algorithms require static infor-
mation about hardware configuration and host’s
performance data as well as dynamic informa-
tion about the actual resource utilization and
load distribution in the NOW. Besides the in-
formation about the hosts, the scheduler also
needs information about the applications’ re-
source requirements. Usually, resource require-
ments must be specified by the user and given in
terms of such issues as the size of main memory,
machine architecture, minimum and maximum
number of nodes, and the host running the mas-
ter process. There are a number of scheduling
algorithms covering various management and
mapping strategies, but a thorough treatment of
these issues is out of the scope of this work.

A scheduler in a resource management system
is not only responsible for the initial placement
of applications but also for load balancing which
requires a remapping of applications at runtime.
Load balancing is crucial for message passing
applications because the slowest process could
determine the execution time of the whole par-
allel application and, thus, defer the synchro-
nization between the processes, thereby yield-
ing poor performance. Therefore, cooperating
processes in a parallel application should be
started on hosts with comparable performance
and load so that synchronization delays can be
minimized and the load situation remains in a
balanced state.

The basis for load balancing algorithms is infor-
mation about the load distribution in the NOW
that is often characterized by load values, e.g.

Resource Management in Message Passing Environments

47

the average length of the CPU run queue or the
CPU utilization of the running processes. The
load is measured periodically and load evalua-
tion algorithms create a load map of the system
by comparing the load values with each other
or with predefined threshold values. Load bal-
ancing is a complex optimization problem with
a given cost function to equalize the load on
the hosts. This optimization problem is NP-
complete and has to be solved by using subop-
timal or heuristic algorithms. A survey of load
balancing algorithms is presented in [19].

An unbalanced load distribution in a NOW re-
quires load migration by, for instance, remap-
ping processes to other machines. Important
issues in process migration are the migration
costs and the costs for the reconfiguration of
the virtual machine, since both are quite ex-
pensive and produce additional load. Process
migration should be avoided, if the process fin-
ishes soon, but predicting the remaining run-
time of a process is a difficult problem [9]. A
further reason for process migration is the inter-
active use of target hosts. As a NOW usually is
non-dedicated, interactive users expect to have
priority over resource-intense applications that
are primarily intended to use idle resources. If
an interactive user starts working on a host exe-
cuting parallel processes, the processes must be
migrated to an idle host to ensure the interactive
user a reasonable response time.

The most prevalent facility for the migration
and the checkpointing of a single process is the
Condor [12] single checkpointer that is avail-
able for almost every hardware platform. Con-
dor’s job is able to transparently vacate a work-
station when the user attempts to use it. In
this case, Condor will either transparently mi-
grate the job to another idle workstation or
just keep it in a queue until an idle worksta-
tion has been found. Clearly, the computa-
tion already performed should not be sacrificed
and the job has to continue execution from the
point where it was forced to vacate the ma-
chine. Some hardware vendors provide their
own checkpointing mechanisms for sequential
processes, €.g. the user-transparent Checkpoint-
Restart mechanism of SGI [23]. Process mi-
gration in message passing parallel applications
is more complex than in the sequential ones,
mostly because parallel processes communi-
cate with each other and process migration has

to deal with the communication routes. At
the LRR-TUM the CoCheck [20, 21] system
Consistent Checkpoints) has been developed
for process migration in message passing en-
vironments while Coral [25] migrate processes
in software DSM (Distributed Shared Memory)
environments.

Scheduling algorithms in existing resource man-
agement systems are only able to perform the
initial task-host placement for parallel applica-
tions. Dynamic load balancing at runtime is not
supported because of the missing control over
parallel processes. Sequential applications are
started and are fully controlled by the resource
management system. Within parallel applica-
tions, only the first process is started by the
resource management system, while other pro-
cesses are started by the application’s tasks or by
the message passing runtime system and there-
fore are unknown to the resource management
system.

Full control over parallel processes is a crucial
issue for resource management systems because
without full control, they are not able to kill the
whole application or to migrate processes. Fur-
thermore, full control over parallel applications
is required for writing periodic checkpoints in
order to be able to continue the execution of
an application after a failure, without restarting
it form the very beginning. Finally, resource
limitations can only be set and controlled if
the resource management system knows of each
process.

4. The SEMPA Resource Manager

SEMPA (Software Engineering Methods for
Parallel Applications in Scientific Computing)
is a research project funded by the German
Federal Department of Education, Science, Re-
search, and Technology to define software engi-
neering methods for the parallelization of scien-
tific computing applications [11, 14, 13]. One of
the aims in the SEMPA project is to design and
implement a resource management system with
full support for message passing applications.
The SEMPA Resource Manager has been de-
veloped to connect the PVM message passing
environment and the CODINE resource man-
agement system.

48

Resource Management in Message Passing Environments

CODINE is a batch queuing and resource man-
agement system that supports the execution of
sequential and parallel applications in heteroge-
neous NOWs. Itis developed and distributed by

managed by the gmaster process, which is CO-
DINE’s central component. Using this informa-
tion and the user defined resource requirements,
the CODINE scheduler gschedd determines the

GENIAS [6]. All the information about hosts host pool where the job is to be computed. The
and their utilization and jobs and their status is CODINE execd running on every host in the
<<process>> -« 2.3.7: connect
g:qmaster
* 1.: start
<<process>> <<process>>
:execd m:Master Daemon
y | 2:start 2.1: start
<<process>> i <<process>>
:shepherd 2.2: start :Load Watcher
. ECC UL
Y| 2.4: start 3-3: start
<<process>> <<process>>
0:Task r:Resource Manager

2.4.": intercept

—

Fig. 2. The Structure of SEMPA Res

ource Manager on the Master Host.

Master Host
Slave Host ¥|2.3.2: start V| 2.3.3: start
<<process>>
s:Slave Daemon
¥|3.1:start y| 3-2start A
<<process>> =]
:execd 3]
— 3
E
* 4.: start <
struct nlist nl [2] = { {"avenrun},{NULL} }; J——— -
long avenrun [3];
:shepherd
fd = open ("/dev/kmem", O_RDONLY, 0); :Shepherd
nlist ("/dev/ksyms", nl); ¥ | 5.:start
Iseek (fd, nl[0].n_value, SEEK_SET);
read (fd, (char *) avenrun, sizeof (avnenrun); - <<process>>
i:-Task

Fig. 3. Structure of SEMPA Resource Manager on a Slave Host.

Resource Management in Message Passing Environments

49

NOW measures the load on the host periodi-
cally and controls the execution of jobs on the
host in cooperation with shepherd processes.

With reference to Figures 2 and 3, where the
structure of our resource management approach
for both the master host and slave hosts is de-
picted, we make use of the PVM resource man-
ager interface to connect CODINE and PVM.
We also integrate some additional functionality
into our resource management scheme, e.g. load
management including load evaluation and load
migration capabilities [15, 16].

The basis for load evaluation algorithms are load
values that can be received from the CODINE
execd or an external load measurement compo-
nent. However, we have implemented a load
watching component, called load watcher, in
order to faster react on the load changes in the
virtual machine because obtaining the load val-
ues measured by the CODINE execd via the
CODINE gmaster takes more time and since
we did not want to directly interact with execd .

The SEMPA Resource Manager makes use of
CoCheck for process migration. CoCheck is
a protocol that writes consistent yet transpar-
ent checkpoints of a parallel application based
on the message passing paradigm and uses the
checkpointing facilities of Condor to write the
state of a single process to a file or a socket.
During process migration, the checkpoint state
is transferred to the target host and restarted
with the same state as it was before the migra-
tion. Since the process selected to be migrated
communicates with other processes, all affected
processes must be stopped and all correspond-
ing communication routes must be destroyed.
However, after migration, these routes must be
rebuilt and the processes affected by migration
must be able to continue execution.

In Figures 2 and 3 we make use of UML ob-
ject diagrams to depict the overall structure of
the SEMPA Resource Manager as well as to
show the interaction patterns between its com-
ponents. The chronological sequence of ac-
tions, performed to start the system up, is indi-
cated by sequence numbers from 1 to 5. Before
a PVM application (a group of tasks) is started,
its runtime environment, according to the user
requirements, must be configured. When the
application is selected by the CODINE sched-
uler, the runtime configuration is passed to the

PVM resource manager that builds up the run-
time environment. The first process (0 : Task)
of the parallel application is then started by
the CODINE execd and controlled by a shep-
herd process. Other application processes are
spawned when a pvm task calls the pvm_spawn
routine. This routine, in our scheme, is inter-
cepted by the PVM resource manager which
then selects the host on which to start the re-
quested task.

The SEMPA Resource Manager has three op-
tions for host selection. It can utilize the PVM
default option, e.g. a simple round robin mech-
anism without taking into account the current
load distribution. Furthermore, the PVM re-
source manager may consult CODINE to select
the host considering the load distribution in the
whole system controlled by CODINE. Finally,
our resource manager is extended with a load
evaluation component, which may select an ap-
propriate host within the actual runtime environ-
ment. If there is no appropriate host in the actual
runtime environment, the PVM resource man-
ager may requests a new host from CODINE.
After a host has been selected, the PVM tasker
on the selected host creates the task (i : Task)
in conjunction with the CODINE execd and a
new shepherd process.

When the process terminates, the shepherd pro-
cess passes information to the PVM tasker which
forwards it to the PVM resource manager. Re-
source statistics about the process are collected
by the shepherd process and handed on to the
execd which periodically delivers it to the CO-
DINE gmaster . PVM daemons are started with
an application and terminate when the applica-
tion finishes.

5. Measurements and Evaluation

The primary objective of the measurement stud-
ies was to compare the overheads in the startup
of the PVM virtual machine and in the library
calls caused by the added resource management
functionalities. The testbed consisted of het-
erogeneous workstations (SUN and SGI) con-
nected by Ethernet. The first group of measure-
ments dealt with starting of the PVM virtual
machine and its dynamic reconfiguration with
and without the PVM resource manager and
performance results are depicted in Figure 1.

50

Resource Management in Message Passing Environments

3.5 T T T T T T

3r pvm_addhost without RM ——
pvm_addhost with RM ----x---
resource manager startup ---x----

Time (seconds)

6 7 8 9 10

Number of hosts

Fig. 4. Adding Hosts to the PVM Environment — Comparison.

The curve marked “pvm_addhost without RM”
indicates the time needed to enhance the PVM
virtual machine calling pvm_addhost library call
from an application task, but, without the re-
source management layer. The same test is re-
peated, but this time with the resource manager
layer between tasks and the PVM runtime sys-
tem. The graphs show that the performance
is only slightly diminished by the improved
functionality and that the average overhead is
about 10-30 %. For the curve marked “resource
management startup”’, the measurement is per-
formed in the resource manager. However, this
time the virtual machine is built by the resource
manager at the startup and the time getting the
virtual machine started, including RM initial-
ization time is about 20 % bigger than the one
when the virtual machine is dynamically en-
hanced.

Table 1 shows the duration of the PVM
pvm_spawn call in different scenarios; on the
local or remote machine with and without the
PVM resource management layer. In this test,
especially for the remote spawn the overhead is
more than 100%. This is primarily caused by

the algorithm for the task-host matching used in
the resource manager. It would be even more
pronounced if the resource manager cooperated
with the CODINE to get the best host in the
whole system. Presently, our resource man-
ager selects the best host from the host set re-
ceived from CODINE at the startup, but this
overhead in negligible in comparison with the
benefit from starting a long-running task is on
the appropriate machine.

The load situation in a NOW must be perma-
nently controlled in order to have an insight
into the resource utilization and to detect load
imbalance. Our load measurement component
runs at each host in the virtual machine and
measures the load at regular time intervals (i.e.
5 seconds). The load on SGI machines is mea-
sured in terms of the CPU utilization and takes
about 170 us. On SUN machines the load is
measured as the average length of the CPU run
queue (avenrun) and takes about 10 us. Load
measurement on SGI machines is obtained us-
ing the /proc file system, while the one on SUN
machines is based on the /dev/kmen file that
contains an image of the kernel virtual mem-

| Spawn Time (ms)

| local host | remote host |

without the SEMPA Resource Manager

24

35

with the SEMPA Resource Manager

42

93

Table 1. Starting of a PVM process.

Resource Management in Message Passing Environments

51

| Time (us) | Measurement | Evaluation | Sending |

SUN host 10

0.38 0.78

SGI host 170

0.21 0.61

Table 2. Management of Load Values.

ory of the computing node. As an example of
load measurement, we show in Figure 2 a code
snippet which obtains the average length of the
running queue from the Solaris kernel. The ad-
dress of these three long integers can be, using
the nlist function, found in the /dev/ksyms file
which contains kernel symbols and their actual
addresses.

If the load situation changes or if an interac-
tive user starts working, a PVM message is sent
to the PVM resource manager, which migrates
processes using CoCheck mechanisms based on
Condor checkpoint files. The time needed to
migrate a process depends on the process size,
network bandwidth and latency and on the num-
ber of communication routes the process has
with another PVM tasks. The performance re-
sults for process migration using CoCheck can
be found in [21]. Table 1 shows the time needed
for the load measurement and evaluation as well
as the time for sending the load value to the
PVM resource manager. The time needed for
the load evaluation and sending can is negligi-
ble in comparison with the time needed for its
measurement.

6. Discussion and Future Work

While the design and implementation of the
SEMPA Resource Manager have proven to be
successful in controlling and rescheduling par-
allel processes, we intend to continue to enhance
our project along several lines.

One of the first enhancements to be undertaken
is the cooperation between the PVM resource
manager and CODINE in allocating resources
for a parallel application. Presently, the PVM
resource manager only gets a host pool from
CODINE at startup but the virtual machine can-
not be extended automatically at runtime. The
second issue is heterogeneous process migra-
tion. Currently, CoCheck is only able to migrate
processes to machines with the same processor
and the same operating system version. Finally,

our implementation is PVM based mostly be-
cause at the time of our implementation, the
MPI standard (MPI-1) did not support any rou-
tine for dynamic host or process manipulation
which is crucial for our implementation scheme.
The only way was to extend an existing MPI
implementation by non-standard functions to
support resource management what would cir-
cumvent the standardization efforts of the MPI
Forum. The improved standard MPI-2 offers
some interfaces for user-defined extensions and
primitives for dynamic process management [4].
A further interesting function makes it possible
to build up a connection between processes in
different MPI applications. This function could
be used to implement a daemon with the same
functionality as the PVM resource manager.

The SEMPA Resource Manager has many ad-
vantages over other resource management sys-
tems which in many cases do not have con-
trol over parallel applications. For instance, the
PSCHED standard proposal aims at standardiz-
ing the interaction between the different compo-
nents involved in the scheduling of parallel ap-
plications [5]. Interfaces are defined among a re-
source manager, a message passing system and
a scheduler to allow the cooperation of different
systems and to make it easier to exchange com-
ponents with standardized interfaces. PSCHED
is just an interface standard, and, at the time of
writing, an implementation is not available as
yet.

CARMI (Condor Resource Management Inter-
face) is an interface between Condor and PVM
to bring together the functionalities of aresource
management system and a message passing en-
vironment [18]. The PVM functions are di-
vided into a group of communication calls and
a group of resource management calls. With the
use of the PVM resource manager, the resource
management functions of PVM are executed by
Condor. In contrast to the SEMPA Resource
Manager CARMI only supports resource allo-
cation but not scheduling or dynamic load bal-
ancing at runtime.

52

Resource Management in Message Passing Environments

The Prospero Resource Manager supports re-
source allocation and scheduling in large net-
works and multiprocessor systems [17]. The
basic concept of the Prospero Resource Man-
ager is similar to the SEMPA Resource Man-
ager : a job manager controls the resources of a
parallel application and requests resources from
a system manager on demand. A major draw-
back of the Prospero Resource Manager is that
a process migration component is missing.

Approaches similar to the SEMPA Resource
Manager are utilized by the Coral [26, 24] pro-
ject. Coral (Cooperative Onine Monitoring
Actions Layer) is aimed at the design and im-
plementation of online monitoring systems for
applications based on the DSM programming
paradigm. Coral only instruments parallel ac-
tivities and constructs while the sequential ones
are intended to be included by utilizing legacy
sequential software. Coral is primarily focused
on the interaction among parallel applications
and DSM runtime systems, the transparent man-
agement of DSM mechanism including process
migration and consistent checkpointing, and the
consistency of monitoring actions in a multiple-
tool environment, but, in contrast to the SEMPA
Resource Manager , does not deal with schedul-
ing strategies.

7. Conclusion

Message passing environments support the par-
allelization of applications and provide runtime
environments for their execution. Resource
management functionalities are especially re-
quired in NOWSs to configure the runtime en-
vironment and schedule the applications to ap-
propriate hosts. Load balancing is an extremely
importantissue for parallel applications to avoid
waiting times potentially caused by synchro-
nizations among parallel activities. However,
there is no interface to make the information of
a resource management system available to a
message passing environment.

In this article, we discussed the problems arising
from the missing cooperation between resource
management systems and message passing en-
vironments and presented the SEMPA Resource
Manager to overcome these deficiencies. The
performance measurements show that there is
negligible overhead caused by the cooperation.

Up to now, there is only an implementation of
the SEMPA Resource Manager for PVM be-
cause the current (at the time of our develop-
ment) MPI-1 standard lacks dynamic host and
process management facilities and misses exter-
nal interfaces. The MPI-2 standard provides the
functionalities required for an interface to a re-
source management system, however, only part
of MPI-2 has already been implemented and is
available as a message-passing environment.

References

[1] A. BEGUELIN AND J. DONGARA AND A. GEIST AND
R. MANCHEK AND W. JIANG AND V. S. SUNDERAM,
PVM: A User’s Guide and Tutorial for Networked
Parallel Computing, MIT Press, 1994.

[2] G.BOOCH AND J. RUMBAUGH AND L. JACOBSON, The
Unified Modeling Language User Guide, Addison-
Wesley, 1999.

[3] The MPI Forum. MPI: A Message-Passing In-
terface Standard, Version 1.1, Tehnical Report,
University of Tennessee, Knoxville, TN, June
1995. http://www.mpi-forum.org/docs/
mpi-11.ps.Z

[4] The MPI Forum. MPI-2: Extensions to the Message-
Passing Interface, Tehnical Report, University of
Tennessee, Knoxville, TN, July 1997.

[5] D. G. FEITELSON AND L. RUDOLPH AND U.
SCHWIEGELSHOHN AND K. C. SEVCIK AND P. WONG,
Theory and Practice in Parallel Job Schedul-
ing, In IPPS’97 3rd Workshop on Job Schedul-
ing Strategies for Parallel Processing, vol-
ume 1291, of Lecture Notes in Computer
Science, pages 1-34, Springer-Verlag, 1997.
http://www.cs.huji.ac.il/~feit/
parsched.html

[6] GENIAS Software GmbH, D-93073 Neutraubling,
Germany. CODINE Manual, Version 4.0.2, 1997.

[7] W. Gropp and E. Lusk and N. Doss and A. Skjel-
lum, A High-Performance, Portable Implementation
of the MPI Message Passing Interface Standard,
Tehnical Report, Argonne National Lab, July 1996.

[8] T. P. GREEN AND J. SNYDER, DQS, A Distributed
Queuing System, Technical Report FSU-SCRI-92-
115, Supercomputer Computations Research Insti-
tute, Florida State University, 1992.

[9] M. HARCHOL-BALTER AND A. B. DOWNEY, Exploit-
ing Process Lifetime Distributions for Dynamic
Load Balancing, in 1996 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer
Systems, Philadelphia, PA, USA, pages 13-24. ACM
Press, 1996.

Resource Management in Message Passing Environments

53

[10]

[13

[16]

J. P. JONES, NAS Requirements Checklist
for Job Queuing/Scheduling Software, Techni-
cal Report NAS-96-003, NAS High Perfor-
mance Processing Group, NASA Ames Re-
search Center, Moffett Field, CA, April 1996.
http://science.nas.nasa.gov/Pubs/

TechReports/NASreports/NAS-96-003.

P. LUKSCH AND U. MAIER AND S. RATHMAYER AND
M. WEIDMANN AND F. UNGER, Software Engineer-
ing Methods for Parallel Applications in Scien-
tific Computing — Project SEMPA. IEEE Con-
currency, pages 64-72, July-September 1997.
http://wwwbode.informatik.tu-muenchen.
de/archiv/artikel/ieee-concurrency/
sempa.ps.gz

M. L1TZKOW AND T. TANNENBAUM AND J. BASNEY
AND M. LIVNY, Checkpoint and Migration of UNIX
Processes in the Condor Distributed Environment,
Technical Report 1346, University of Wisconsin-
Madison, Computer Sciences Department, 1997.
http://www.cs.wisc.edu/condor/
publications.html

U. MAIER, Konzepte zur Ressourcenverwaltung
fiir wissenschaftlich-technische Anwendungen in
verteilten Rechensystemen, PhD Thesis, Technis-
che Universitidt Miinchen, 1999.

U. MAIER AND P. LUKSCH AND A. BODE, Expe-
riences with the SEMPA Resource Manager for
Real World Scientific Computing in Networks of
Workstations, Parallel and Distributed Computing
Practices, 1999. to appear.

U. MAIER AND G. STELLNER AND I. ZORAJA, Batch
Queuing and Resource Management for PVM
Applications in a Network of Workstations, in
Mitteilungen — Gesellschaft f ur Informatik e.V,,
Parallel-Algorithmen und Rechnerstrukturen, vol-
ume 16, pages 11-20, Gesellschaft f ur Infor-
matik e.V., Parallel-Algorithmen, Rechenstruk-
turen und Systemsoftware, December, 1997.
http://wwwbode.informatik.tu-muenchen.
de/archiv/artikel/pars97/maier.ps.gz

U. MAIER AND G. STELLNER AND I. ZORAJA, Re-
source Allocation, Scheduling and Load Bal-
ancing based on the PVM Resource Man-
ager, in Parallel Computing: Fundamen-
tals, Applications and New Directions, volume
12, pages 711-718, Elsevier Publishers, 1998.
http://wwwbode.informatik.tu-muenchen.

de/archiv/artikel/parco97/maier.ps.gz

B. C. NEUMAN AND S. RAO, The Prospero Resource
Manager: A Scalable Framework for Processor
Allocation in Distributed Systems, Concurrency:
Practice and Experience, 6(4):339-355, June 1994.
ftp://prospero.isi.edu/pub/papers/prm

J. PRUYNE AND M. LIVNY,
dor and PVM to harness the cycles of
workstation clusters, Future Generations of
Computer Systems, 12(1):67-85, May 1996.
http://www.cs.wisc.edu/condor/
publications.html

Interfacing Con-

[19]

20

[26]

B. A. SHIRAZI AND A. R. HURSON AND K. M. KaAvrI,
Scheduling and Load Balancing in Parallel and Dis-
tributed Systems, IEEE Computer Society Press,
1995.

G. STELLNER AND J. PRUYNE, Resource Manage-
ment and Checkpointing for PVM, In Proceedings
of EuroPVM’95, volume 5, pages 131-136, Hermes,
September 1995.

G. STELLNER. CoCheck: Checkpointing and Pro-
cess Migration for MPL. In Proceedings of the In-
ternational Parallel Processing Symposium, pages
526-531, IEEE Computer Society Press, April
1996.

V. S. SUNDERAM, PVM: A Framework for Parallel

Distributed Computing, Concurrency: Practice and
Experience, 2(4):315-339, December 1990.

BILL TUTHILL, IRIX Checkpoint and Restart™
Operation Guide, Silicon Graphics, Inc., 1996.
http://techpubs.sgi.com/library/lib/
makepage.cgi?007-3236-001

I. ZORAJA AND A. BODE AND V. SUNDERAM, A
Framework for Process Migration in Software DSM
Environments, Proceedings of the 8th Euromicro
Workshop on Parallel and Distributed Processing,
pages 158-165, IEEE Computer Society, January
2000.

I. ZORAJA, Online Monitoring in Software DSM
Systems, PhD Thesis, Technische Universit at M
unchen, submitted, March 2000.

I. ZoRAJA AND G. RACKL AND T. LUDWIG. Towards
Monitoring in Parallel and Distributed Systems, in
Proceedings of Soft COM ’99, pages 133—-141.FESB
Split, October 1999.

Received: March, 1998
Revised: May, 2000
Accepted: February, 2001

Contact address:

Ivan Zoraja

FESB,

Department of Electronics and Computer Science
University of Split

21000 Split

Croatia

e-mail: {zorajalpslap}@fesb.hr

Ursula Seitz

LRR-TUM

Institut f ur Informatik
Technische Universit at M unchen
80290 M unchen

Germany

Arndt Bode

LRR-TUM

Institut f ur Informatik

Technische Universit at M unchen
80290 M unchen

Germany

e-mail: {maier|bode}@in.tum.de

54

Resource Management in Message Passing Environments

Petar Slapniar

FESB,

Department of Electronics and Computer Science
University of Split

21000 Split

Croatia

DR. IVAN ZORAJA obtained his diploma degree in electronics from FESB
in Split, his master degree in computer science from FER in Zagreb,
both in Croatia, and his Ph.D degree (Dr. rer. nat) in computer science
from the Technical University of Munich in Germany. His education
includes several research stays in Germany (three years) and USA (two
years). He is currently employed at FESB in Split in Croatia. His pri-
mary research interests are parallel and distributed systems including
distributed shared memory systems and distributed object computing.

DR. URSULA SEITZ obtained her diploma degree (Dipl. Inform) in 1994
and her Ph.D (Dr. rer. nat) in 1999 both from the Technical Univer-
sity of Munich. The title of her PhD thesis is “Resource Management
for Scientific Computing”. She is currently at Kratzer Automation AG,
working on software development for pthe automation of industrial pro-
cesses. Her major points of interest are parallel applications, distributed
systems, and metacomputing.

PROF. DR. ARNDT BODE obtained his diploma degree (Dipl. Inform.)
in 1972 and his Ph.D (Dr. rer.nat.) in 1975 both from the Technical Uni-
versity of Karlsruhe, his Dr.-Ing. habil in 1985 from the University of
Erlangen-N urnberg in Germany. He used to work for the Universities
of Gie sen and Erlangen and is a full professor in computer science at
the Technical University of Munich since 1987 and also a vice-president
since 1999. His main research interests are computer architecture, mi-
croprocessing, and parallel and distributed systems. He is the author
and co-author of more than 175 publications including 10 books about
the said topics.

PROF. DR. PETAR SLAPNICAR obtained his diploma degree (Dipl. Ing.)
in 1957, his master degree in 1964, and his Ph.D in 1977 all from the
Faculty of Electrical Engineering in Zagreb, Croatia. Since 1978 he isa
full professor at the Faculty of Electrical Engineering, Mechanical En-
gineering and, Naval Architecture in Split, Croatia. His main research
interests are pulse and digital electronics, CAD for electronic devices,
and parallel and distributed computing. He is the author and co-author
of more than 50 scientific publications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

