Journal of Computing and Information Technology - CIT 9, 2001, 1, 71-80 71

On the Conversion of Program
Specifications into Pseudo Code Using
Jackson Structured Programming’

Kenneth Sorensen and Jan Verelst

Department of Operations Research, Logistics and Information Systems, University of Antwerp — RUCA, Belgium

In this paper, we present a technique to automatically
translate program specifications into pseudo code. This
technique is developed in the context of the well-known
1()r0gr>amming method Jackson Structured Programming
JSP).

The objective of our research is to investigate to what
extent a programming method can be automated. Cur-
rent CASE tools are only able to automate programming
methods to a very limited extent, whereas our technique
automates the entire programming cycle by creating
pseudo code from program specifications. We show that
the JSP programming method can be transformed into a
set of formal rules when the scope of the technique is
limited to a well-defined area of problems. The rules are
implemented in a CASE tool, called JSPTool, which is
currently operative, although still in a prototyping phase.
We believe that the strength of the CASE tool lies in the
fact that it is able to automate the programming process
completely, although its scope possibly is still rather
limited.

In this paper, the technique is explained by solving an
example programming problem. The source language
that has been developed to enter program specifications
is briefly explained. Also, the differences between other
JSP CASE tools and JSPTool are dealt with. Some
additional features of the method are discussed and
suggestions for future research are given.

Keywords: Program specifications, Jackson Structured
Programming, JSP, pseudo code, automatic program-
ming, CASE tool

1. Introduction

Many programming methods exist that instruct
the programmer on the different steps to per-
form when writing a program. Most of these
methods, however, leave a lot of room for sub-
jective interpretation and human intervention.

This suggests that human knowledge and expe-
rience play a large role in these methods, which
in turn results in different correct solutions to
the same problem. The influence of knowledge
and experience on the programming process has
been widely researched [Adelson & Soloway,
1985; Chatel & Détienne, 1996; Guindon, 1990;
McKeithen et al., 1981; Rist, 1990]. In this pa-
per, we investigate to what extent the different
steps of the programming method JSP can be
expressed as a set of rules. It is traditionally
assumed that only the later, more determinis-
tic steps of JSP can be automated. The most
surprising conclusion of this research is that
JSP can be completely automated (i.e. program
specifications can be automatically transformed
into a pseudo-code program) when the scope is
limited to a well-defined area of programming
problems. We develop a technique that uses a
set of rules to derive a pseudo-code program
from a program specification text. The pro-
gram specification text uses a notation that was
especially developed to allow for complete au-
tomation of the programming process. In other
words, when correctly dressed up, the program-
ming specification text contains enough infor-
mation for a CASE tool to be able to generate
a computer program from it. This technique is
not a new programming method, rather it is an
automation of an existing one.

In this paper, we choose a depth-first approach,
limiting the number of programming problems
that can be solved by the CASE tool in favour
of the depth of the automation. The scope of
a CASE tool based on our technique is limited

“The authors wish to thank M.A. Jackson for his useful suggestions.

72 On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

to administrative programming problems that
transform sequential input files into sequential
output files, using some simple mathematical
and aggregation functions. When translated
into a program specification text, these prob-
lems are solved by the CASE tool without any
further intervention from the programmer.

2. Jackson Structured Programming (JSP)

2.1. Introduction

JSP was developed by Michael Jackson and
published in 1975 [Jackson, 1975]. JSP builds
on the foundations of structured programming,
but goes further in that it solves many prob-
lems and uncertainties of it [Jansen, 1986: 1].
Structured programming is a generic name for
any programming method that divides a pro-
gram into sequences, iterations and selections.
Although there was already a broad awareness
that the problem statement should influence the
structure of the program [Welsh & McKeag,
1980: 24-25] programming remained a rather
subjective activity: programming methods were
’vague’ in that they could lead to several differ-
ent and correct sets of sequences, iterations and
selections. Jackson was the first to show ex-
actly when each of these three components had
to be used to obtain the most flexible and the
most maintainable program structure [Jansen,
1983: 8]. His ideas are simple. As a program
does nothing more than transform input into out-
put, input and output should force their struc-
ture onto program [Jackson, 1975: 10]. JSP is
a ’data first” method (as opposed to *function
first” methods) and is mainly used for adminis-
trative programming problems, which are char-
acterised by complex input and output flows,
but relatively simple transformation logic. Data
is regarded to be the more stable part of an in-
formation system and, therefore, an information
system is modelled around the structure of the
data. In later years, Jackson, together with John
R. Cameron, developed JSD (Jackson System
Development), an extension of JSP which cov-
ers most of the software lifecycle [Cameron,
1986; Cameron, 1983; Jackson, 1983].

2.2. Why JSP?

The aim of our research is to investigate to which
extent a programming method can be automated
and transformed into a set of formal rules, which
can serve as the basis for a CASE tool.

We chose to base our research on JSP because
of several reasons. Firstly, JSP tells the user
what to do in almost every possible situation,
except in some special cases like data structure
clashes and program inversion problems. For
the latter cases, Jackson provides specific guide-
lines. Other methods leave a much greater part
of the decisions to be made to the user, making
them less suitable for automation. On the other
hand, JSP is not a completely formal method
like VDM or Z, allowing us to reach some inter-
esting results. Secondly, JSP is a rather simple
method, which is also a great advantage when
implementing it in a CASE tool. Thirdly, JSP
(and JSD) have been thoroughly examined aca-
demically and many methods were developed
to test programs written using JSP [Hughes,
1979; Roper & Smith, 1987]. Fourthly, recent
studies show that JSP and JSD are still widely
used and rate very good on comparative tests
[Hoorelbeke, 1993: 731; Song & Osterweil,
1994: 377].

2.3. CASE Tools for JSP

There are several other CASE tools based on
the JSP programming method. JSP-COBOL is
a commercial program, developed by Michael
Jackson Systems Ltd. It is able to generate
a program from a program structure and pro-
vides a variety of testing aids and some inter-
esting programming aids [Triance, 1979: 198].
MAJIC, developed at the University of Manch-
ester, has much the same functionality as JSP-
COBOL [Sutcliffe & Davies, 1987: 122-123]. In
the development process of this tool, some re-
search has been done on which changes can be
made to program structures without having to
go through the method all over again [Davies,
1990: 175-192]. Of a more recent date is JSP-
editor, which allows the user to draw program
structures. It also generates Pascal and C code
from these structures. The program is written
in Java and can be evaluated and used online
[http://www.ida.his.se/ida/"henrike/JSP/].

On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

73

2.4. The Jackson Structured Programming
Method Adapted for Automatic
Conversion of Program Specifications
Into Pseudo Code

Our technique slightly modifies the order in
which some of the steps of JSP are performed to
allow for a more efficient implementation. The
technique consists of the following steps:

From the program specification text:

1. Make a separate data structure for each data
flow.

2. For each data flow, make a list of input or
output instructions and allocate them to the
corresponding data structure.

3. Join the input structures to form the com-
bined input structure.

4. For each iteration component, allocate an
iteration condition to the combined input
structure.

5. Join the combined input structure with the
output structure(s), forming the program struc-
ture.

6. Make a list of all logical instructions and
allocate them to the program structure.

7. Add selection conditions to the selection
components of the program structure.

8. Transform the program from the program
structure representation to a code or a pseudo
code representation.

The proposed changes do not affect the essen-
tial mechanisms of the JSP method. The most
important change is that input and output in-
structions are allocated to their respective data
structures independently. This means that for
every flow (either input or output), a separate
list of input or output instructions is made and
that these instructions are then allocated to the
proper data structures. Some instructions how-
ever, cannot be allocated before the structures
are merged, because they are neither input nor
output instructions. These logical instructions
are allocated to the program structure (which
1s, as stated earlier, the union of all data struc-
tures). Also, iteration conditions are attached to
the combined input structure (the union of all in-
put structures) instead of the program structure.
New iterations are never created in an output

structure, so this does not change the outcome
of the JSP process.

This approach to JSP is equivalent to the original
in that the program structure with allocated in-
structions (and accordingly the program itself)
found by the altered JSP method is identical to
the one found by the original JSP method. This
is due to the fact that only the order of some of
the steps of JSP is slightly altered. The advan-
tage of the modified method is that a CASE tool
which is based on the altered version of JSP, can
disregard other data structures when allocating
the input and output instructions of a certain file.
We found that this greatly simplifies the rules
for our CASE tool.

3. Automatically Converting Program
Specifications Into Pseudo Code
Using JSP

3.1. Introduction

In this section, we discuss how a pseudo code
program can be derived automatically from pro-
gram specifications using the steps mentioned
in the previous paragraphs. This is done by
solving a simple example problem. The rules
that allow for an automatic conversion of pro-
gram specifications into pseudo code are often
trivial and would take up too much space. We
will therefore skip the description of the greater
part of these rules.

Program specifications serve as input to the
CASE tool by means of a program specification
text. The source language for entering program
specifications is explained briefly. Because of
the limited amount of space available, some fea-
tures are not discussed. These features include
program inversion and data structure clashes.
For these problems, the source language offers
specific tools (pseudo-variables, sub-files, etc.)
that are beyond the scope of this article.

3.2. Scope of the Technique

While other tools exist that automate JSP, the
scope of the technique described here differs
from all of them in that its purpose is to automate
JSP completely. This is a basically different op-
tion. Most tools are able to assist the user in any

74 On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

programming problem, however, they do not
completely automate the task of programming,
i.e. certain programming tasks are not supported
(e.g. the conversion of program specifications
into data structures). The programs that our tool
can create are those that convert one or more se-
quential input files into one or more sequential
output files, performing some simple calcula-
tions. Although this is a rather limited scope,
the programming problems that are supported
are solved completely automatically, i.e. with-
out any intervention of the user after providing
the program specification.

3.3. An Example: Article Mutations in a
Warehouse

The example is adapted from Jackson [1975,
p-59].

In a warehouse, several products are stored with
different article numbers. The mutations (in or
out) of the articles in the warehouse over the
past period are stored in a file called mutations.
This file contains one line per mutation.

| Article number Mutation code Amount |

152652 In 500
251365 Out 1200
251365 Out 570
999999 7777 0

The file is sorted by article number (artnr).
The mutation code (mutcode) can take values
In or Out (except for the last mutcode, where it
is put equal to Z2ZZZ). The file ends with article
number equal to 999999. The objective of the
program to be written is to transform this file
into a file, which contains:

e a heading (with titles Article number and
Resulting mutation)

e aline per article containing the resulting mu-
tation (i.e. the sum of all amounts for ingo-
ing mutations minus the sum of all amounts
for outgoing mutations)

e a line containing the number of active arti-
cles (i.e. articles with at least one mutation).

3.4. The Program Specification Text and
the Source Language

The program specification text, which allows
the CASE tool to derive the example program,
is:

INPUT: mutations

= (artnr * (mutcode, amount));

mutcode = In’ OR ’0Out’;

LAST (artnr) = 2999999’ ;

OUTPUT: results

= heading (artnr, resmut) artcounter;
resmut = totIN - totOUT;

totIN = SUM (amount, mutcode = ’In’);
tot0UT = SUM (amount, mutcode = ’0ut’);
artcounter = COUNT (artnr);

This source text contains the following parts:

1. A description of all input files: all input files
are described (INPUT: filename=descrip-
tion, where description is instantiated by
a succession of all variables in the file). If
the variables are repeated more than once,
they are put between round brackets. Vari-
ables that always appear on the same level
in the file, are separated by a comma. The
asterisk behind artnr signifies that it is re-
peated for each mutation. artnr is, however,
not between the same brackets as mutcode
and amount because it repeats (or iterates)
on a different level, i.e. there are multiple
mutations in the file for each article. Using
brackets, the user can indicate the different
iteration levels of the input file.

2. An enumeration of the possible values for
enumerated types in the input files: it is pos-
sible to indicate the finite set of values that
some variables can take on by separating
these values by OR. In this case, the variable
mutcode can take on only two values: In
and Out. It is also allowed to use ELSE as
a value. The values (including ELSE) can
be used in selections later on in the program
specification text.

3. End-of-file conditions for input files: an
end-of-file condition can be specified, using
the reserved word LAST.

4. A description of all output files: The syntax
is identical to the syntax for the description
of input files.

On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming 75

5. The formulas that calculate variables in the
output file(s): some variables in the out-
put file(s) are the results of calculations us-
ing variables in the input file(s) and tempo-
rary variables. Arithmetic operators are pro-
vided, as well as SUM and COUNT functions.
The SUM functions used in this example are
conditional, e.g. totIN is incremented with
amount only if mutcode equals In.

3.5. Transformation of the Program
Specification Text Into a Pseudo
Code Program

In the following paragraphs, we closely exam-
ine the program specification text and the way
to convert it automatically into its pseudo code
equivalent, i.e. the program that converts the
input file into the output file.

Step 1: Make a data structure for input and
output flows

The input flow is a file called mutations. The
output flow is the file to be created by the pro-
gram. We have called this file results. For
each file, a data structure has to be made. Data
structures (sometimes called Jackson structures)

K

INPUT:
mutations

.

dataon *
1 artnr

I

dataon *
1 mutcode

K 3
‘ mutcode

—

o o
In Out

[artnr

amount ‘

Fig. 1. Input data structure.

combine sequence, iteration and selection com-
ponents. Data structures carefully reflect the
structure of the file they represent. The data
structure for the example input file is:

In Jackson structures, iteration components are
represented by an asterisk in the upper right cor-
ner. Selection components are represented by
a small circle. The information supplied to the
tool should reflect the structure of the file. In
the source language, variables that take part in
a sequence are separated by commas, iterations
are put between round brackets. The asterisk
behind artnr (article number) in the program
specification text means that the article number
is repeated for each mutation

If this is not the case, the asterisk should be
omitted. The third line tells us that mutcode can
only take values In or Out.

The data structure for the output file results is:

~

OUTPUT:
results

| |

] L}

results on *
1 artnr

—

Heading artcounter

artnr resmut

Fig. 2. Output data structure.

The rules for deriving the input and output struc-
tures from the program specification text are
very simple, as the user is forced to indicate the
structure of these files by using brackets and
other structure indicators. We will not describe
these rules in detail.

Step 2: Make a list of input and output in-
structions and allocate them to the corre-
sponding structure

The input and output instructions are easy to
find. All files have to be opened and closed.
Variables in an input file have to be read from
this file and variables in an output file have to
be written to this output file. Variables that it-
erate at the same level and are not separated

76 On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

by a lower-level iteration can be read or written
together. The input instructions are:

1. Open file: mutations

. Close file: mutations

3. Read (mutations): artnr, mutcode,
amount

N

It can be easily seen how this reasoning can be
extrapolated to other problems. The allocation
of the input instructions is the next step. Files
are always opened at the beginning of the pro-
gram and closed at the end. The first instruction
is allocated at the beginning of component IN-
PUT: mutations. Similarly, the second instruc-
tion is allocated at the end of this component.
The third instruction is allocated twice, because
a read-ahead is needed to evaluate the iteration

INPUT:
mutations

dataon *

1 artnr ,2)

CC

dataon1 *
mutcode
! |
artnr mutcode amount 3 ’
L)]
[¢} o
In Out

Fig. 3. Input structure with allocated input instructions.

condition. The result of the allocation of the
input instructions is:

The output instructions are obtained in the same
way. The rules for allocation of the instructions
are identical to those used for input instructions.
There are, however, several write instructions.
The instructions are:

Open file: results

Close file: results

Write (results): heading
Write (results): artnr, resmut
Write (results): artcounter

0 ~N O O

The automatic allocation of these instructions
to their correct components yields Figure 4.

Step 3: Join the input structures, forming
the combined input structure.

As we only have one input structure here, this
step does not apply. However, the joining of
input structures happens exactly the same way
as the joining of input with output structure(s)
in step 5.

Step 4: For each iteration component, allo-
cate an iteration condition to the combined
input structure.

The input structure has two iterations: data on
1 artnr and data on 1 mutcode. The itera-
tion for the former one repeats until the end
of the file has been reached. In this case, the
end of the file is marked by the article number
999999. The iteration condition that is added to
the combined input structure is:

OUTPUT:
results

‘4) Heading

results on *
1 artnr

(5
artcounter \ J

artnr |

—

| 2

resmut

Fig. 4. Output structure with allocated output instructions.

On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

77

INPUT:
mutations

dataon *
1 mutcode

N
/

artnr mutcode

OUTPUT:
results

results on *
1 artnr

Heading

artcounter

Fig. 5. Merging input and output structures.

While artnr <> 999999

The next iteration condition deals with the data
on 1 mutcode component. This iteration con-
dition checks whether the program is still deal-
ing with the same article. If the artnr read is
the same as the previous one, this is the case.
Therefore, the program must compare the cur-
rent article number with the previous one, which
we call the reference article number artnrREF.
The iteration condition is:

While artnr = artnrREF

This condition cannot be evaluated yet, because

the reference article number is not yet assigned.
A new instruction needs to be created:

9. ArtnrREF = artnr

With this instruction added, the program is able
to check whether the artnr read is still the
same as the previous one. Because the refer-
ence article number changes when a new article
number is read, this instruction is allocated at
the beginning of the data on 1 artnr iteration
component. This reasoning can be easily gener-
alised. Each iteration component (except for the
highest level iteration) needs a reference vari-
able to evaluate whether the iteration should be
stopped or continued. The instruction changing
the value of this variable is always the same.
It is always allocated at the beginning of the
iteration component of this variable.

Step 5: Join the combined input structure
with the output structure(s), forming the pro-
gram structure.

Searching for correspondences between struc-
tures is very easy because data structure compo-
nents are labelled by variable names. Iteration
components that have the same name (except
for the data on 1 or results on 1 part) are
connected. The result is Figure 5.

Merging the structures into the program struc-
ture is done by taking the union of both struc-
tures, thereby merging two corresponding com-
ponents into one. The rules for this operation

PROGRAM

procedure *
1 artnr

procedure *
1 mutcode

Heading artcounter

Fig. 6. Program structure with allocated input and
output instructions.

78 On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

are not discussed here. For more complex cor-
respondences between program structures, in-
volving e.g. structure clashes, there are specific
rules. These rules are beyond the scope of this
article. The result of joining the input and out-
put structures is given in the figure 6.

Note that the lowest level sequence is left out
to save space and instruction 9 is added, i.e.
the instruction that updates the reference arti-
cle number. Also, the data on 1 and results
on 1 prefixes are changed into procedure 1 to
make clear that the iteration components are no
longer input or output components, but program
components.

Step 6: Make a list of logical instructions and
allocate them to the program structure.

The logical instructions serve to calculate the
resulting mutation for each article and the num-
ber of active articles. The first variable, resmut,
is calculated as the sum of all mutations In, mi-
nus the sum of all mutations Out for each arti-
cle. The following line is added to the program
specification text:

Resmut = totIN - totOUT;

Two new variables: totIN and tot0OUT have to
be declared. To do this, we define the condi-
tional SUM function. The lines in the program
specification text are:

’In’);
’Out’);

totIN = SUM (amount, mutcode =
tot0UT = SUM (amount, mutcode =

Given these lines, the tool has sufficient infor-
mation to make a list of all instructions needed
to calculate resmut and allocate them to the
program structure. The list of instructions:

10. Resmut = totIN - totOUT

11. TotIN = O

12. TotIN = totIN + amount
13. TotOUT = 0O

14. TotOUT = tot0OUT + amount

The first instruction is copied without change
from the program specification text. In gen-
eral, all calculations without a SUM function (or

a COUNT function, see later) can be copied lit-
erally from the program specification text. In-
structions 11 and 13 initialise respectively the
variables totIN and totOUT. This is necessary
because instructions 12 and 14 use these vari-
ables both in the right and left hand side of
the equation. These instructions can be allo-
cated automatically without any extra informa-
tion added to the program specification text.
The tool has to check at which level the vari-
ables iterate. As a general rule, a variable on
the right hand side of an equation iterates at the
same level as the variable on the left hand side.
So, totIN and totOUT iterate at the same level
as resmut. As resmut and artnr are between
the same pair of brackets in the program speci-
fication, both variables iterate at the same level.
The initialisation instructions are allocated to
the beginning of the iteration component that it-
erates at the same level (i.e., instructions 11 and
13 are allocated to the beginning of the artnr it-
eration component). Instructions 12 and 14 are
allocated to the selection components mutcode
= Inandmutcode = Outrespectively. Thisrea-
soning applies to each instruction of this type,
derived from the conditional SUM function. The
only variable left to be calculated is artcounter.
The calculation of this variable is very similar to
that of resmut. We will not go into any further
detail. The final program structures, with all
instructions allocated, is given in the following
figure:

PROGRAM
- e ! ! -\-\‘\?,
(1 * |2
\) Heading pr:)cae':ir:re artcounter \)
a e
(a3 (s
P — N
—, (6 - (15)(8)
() o N .
L AV
9 procedure *) 10’
M3 1 mutcode '\)f,
- (18
= —r— 9
< A
(o o
\) In Out \)

Fig. 7. Program structure with all instructions allocated.

On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming 79

Step 7: Add selection conditions to the selec-
tion components of the program structure.

In the example, only two selection components
exist. Their conditions are respectively: mut-
code = Inand mutcode = Out.

Step 8: Transform the program structure
representation into a code or pseudo code
representation.

The final step in JSP is to read the program
structure counter clockwise and write down any
instruction, selection and/or iteration condition
encountered. The result is a pseudo-code pro-
gram that transforms the input file into the out-
put file using the transformation rules described
in the program specification text:

Open file: mutations
Open file: results
Read (mutations): artnr, mutcode, amount
artcounter = 0
Write (results): heading
Itr while artnr <> 2999999’
totIN = 0
totOUT = 0
artcounter = artcounter + 1
artnrREF = artnr
Itr while artnrREF = artnr
Sel
if mutcode = ’In’
totIN = totIN + amount
if mutcode = ’0Out’
tot0OUT = totOUT + amount

Endsel
Read (mutations): artnr, mutcode,
amount
Enditr

resmut = totIN - totOUT

write (results): artnr, resmut
Enditr
Write (results): artcounter
Close file: mutations
Close file: results

3.6. Additional Features of the Technique

The example solved here uses only part of the
possibilities of the technique we developed. As
mentioned before, for programming problems

involving more complex input and output struc-
tures, other constructs are available in the source
language. This allows the user to deal with
problems involving program inversion and pro-
gram structure clashes.

3.7. JSPTool

Based on the technique described in this paper, a
program has been developed which follows the
rules presented earlier. This program is called
JSPTool. Itis conceived as a simple command-
line compiler, which generates a target file from
a source file. The source file contains the pro-
gram specification text in the source language
described in this paper. JSPTool works like a
compiler. It parses the input file sequentially
to find tokens (meaningful units). Depending
on the token found, different actions are taken.
Most of these actions update internal data struc-
tures, which are used to perform the steps of the
modified JSP algorithm. We will not go into the
technical details of the implementation of these
data structures.

We have succeeded in solving a large number of
problems within a limited problem class and be-
lieve that creating a source file is a lot easier and
less error-prone than traversing the entire JSP
process. At this stage, the scope of the CASE
tool is probably too limited to be of much use
in commercial projects. We believe, however,
that similar techniques and CASE tools can be
devised that are able to solve a much broader
class of problems.

4. Conclusion and Further Research

In this paper, the development of a technique for
automatically transforming program specifica-
tions into pseudo code using JSP is described.
This technique is explained by means of an ex-
ample. We have illustrated how a CASE tool
based on this technique can convert a program
specification text, describing input and output
files, into a pseudo-code program using JSP as a
programming method. Based on our technique,
a prototype program has been developed, JSP-
Tool, which implements the technique in prac-
tice.

From the beginning, our objective has been to
completely automate a programming method.

80 On the Conversion of Program Specifications into Pseudo Code Using Jackson Structured Programming

We believe the strength of our technique lies in
the fact that, for a limited number of problems,
the programming work is done completely au-
tomatically.

As mentioned before, we believe that a similar
technique and similar CASE tools can be de-
veloped for more complex programming prob-
lems. Such CASE tools would allow for large-
scale commercial projects to be performed in
less time and with fewer errors.

References

[1] ADELSON, B. & SOLOWAY, E., The role of domain
experience in software design, IEEE Transactions
on Software Engineering, vol. 11, no. 11, 1985, pp.
1351-1360.

[2] CAMERON, J.R., JSP & JSD — The Jackson Ap-
proach to Software Development, Silver Spring,
IEEE Computer Society Press, 1983, vi +257 pp.

[3] CAMERON, J.R., An Overview of ISD, IEEE Trans-
actions on Software Engineering vol. 12, no. 2,
1986, pp. 222-240.

[4] CHATEL, S & DETIENNE, F,, Strategies in object-
oriented design, Acta Psychologica, vol. 91, 1996,
pp. 245-269.

[5] DAVIES, C.G., Problems of Maintenance of JSP
Structures, Software Maintenance, Research and
Practice, vol. 2, 1990, pp. 175-192.

[6] GUINDON, R., Knowledge exploited by experts dur-
ing software system design, Int. J. Man-Machine
Studies, vol 33, 1990, pp. 279-304.

[7] HOORELBEKE, G., Gebruik van CASE in Belgié,
Informatie, vol. 35, 1993, pp. 729-735.

[8] HUGHES, J.W., A formalization and explication of
the Michael Jackson method of program design,
Software Practice and Experience, vol. 9, 1979, pp.
191-202.

[9] JACKSON, M.A., Principles of Program Design,
London, Academic Press, A.PI.C. Studies in Data
Processing No. 12, 1975, xii +299 pp.

[10] JACKSON, M.A., System Development, 1983, Lon-
don, Prentice Hall, xiv +418 pp.

[11] JANSEN, H., JSP — Jackson Structureel Program-
meren, Den Haag, Academic Service, 1986, xvi
+455 pp.

[12] MCKEITHEN, K.B., REITHMAN, J.S., RUETER, H.H.
& HIRTLE, S.C., Knowledge organization and skill

differences in computer programmers, Cognitive
Psychology, vol. 13, 1981, pp. 307-325.

[13] RIST, R.S, Variability in program design: the
interaction of process with knowledge, Int. J. Man-
Machine Studies, vol. 33, 1990, pp. 305-322.

[14] ROPER, M. & SMITH, P, A Structural Testing
Method for JSP Designed Programs, Software
Practice and Experience, vol. 17, no. 2, 1987,
pp. 135-157.

[15] SONG, X. & OSTERWEIL, J., Experience with an Ap-
proach to Comparing Software Design Methodolo-
gies, IEEE Transactions on Software Engineering,
vol. 20, no. 5, 1994, pp. 364-384.

SUTCLIFFE, A.G., & DAVIES, C.G., MAJIC — an
integrated program support environment, Informa-
tion and Software Technology, vol. 29, no. 3, 1987,
pp- 122-136.

[17] TRIANCE, JM., Structured programming in
COBOL — the current options, The Computer
Journal, vol. 23, no. 3, 1979, pp.194-200.

=
D

[18] WELSH, J. & MCKEAG, RM., Structured System
Programming, London, Prentice Hall, 1980, xii +
324 pp.

Received: February, 1999
Revised: May, 2000
Accepted: June, 2000

Contact address:

Kenneth Sorensen and Jan Verelst

Department of Operations Research

Logistics and Information Systems

University of Antwerp — RUCA

Middelheimlaan 1 — B-2020 Antwerp — Belgium

e-mail: ksorense@ruca.ua.ac.be — verelst@ruca.ua.ac.be
http://tew.ruca.ua.ac.be/orlis

KENNETH SORENSEN (1974) graduated as a commercial engineer in
information science from the University of Antwerp — RUCA. Af-
ter spending some time in a software consulting firm, he returned to
the University of Antwerp, where he is now working as an assistant
teacher/researcher in the department of Operations Research, Logistics
and Information Systems. He is interested in automation of program-
ming and CASE tools and is also working in the field of logistics and
supply chain management.

JAN VERELST (1970) received the PhD degree from the University of
Antwerp — RUCA in 1999. He is currently working as doctor-assistant
at the same university. His research interests include program de-
sign, conceptual models of information systems, object-orientation and
evolvability of information systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

