Journal of Computing and Information Technology - CIT 9, 2001, 3, 185-195 185

Automatic Support for Verification
of Secure Transactions in Distributed
Environment using Symbolic

Model Checking

E. Di Sciascio, F. M. Donini, M. Mongiello and G. Piscitelli

Dip. Elettrotecnica ed Elettronica, Politecnico di Bari, ltaly

Electronic commerce needs the aid of software tools
to check the validity of business processes in order to
fully automate the exchange of information through the
network.

Symbolic model checking has been used to formally
verify specifications of secure transactions in a system
for business-to-business applications. The fundamental
principles behind symbolic model checking are presented
along with techniques used to model mutual exclusion
of processes and atomic transactions. The computational
resources required to check the example process are
presented, and the faults are detected through symbolic
verification.

Keywords: e-commerce, model checking, secure trans-
actions

1. Introduction

Electronic commerce is the ability to perform
business transactions involving the exchange of
goods and services between two or more par-
ties using electronic tools and techniques. In
electronic commerce information is conveyed
through electronic networks and computer sys-
tems and much of the transaction is automated.
The kernel of electronic business is the business
transaction and issues such as security and trust
are the most important challenges in conducting
an automated transaction. Electronic commerce
applications do not yet provide robust transac-
tions, messaging and data access services typi-
cal of contemporary client/service applications
(Manchala 00).

In this paper we propose to conduct a com-
plete search for process faults in the field of
business transactions using formal methods for
verifying safety and liveness properties of se-
cure transactions, in order to improve process
integrity. The approach we propose is based
on model checking, a powerful formal verifica-
tion method that determines whether a system
model satisfies certain specifications under all
circumstances (Emerson 86). Model checking
can locate subtle but critical flows that conven-
tional assurance methods such as testing and
simulation often miss. Model checkers, on the
other hand, are fully automated tools to verify
that a system model satisfies certain properties.
Automation makes this formal method particu-
larly attractive to business process.

We used a verification tool — Symbolic Model
Verifier (SMV) — to formally verify safety
properties of business transactions. To accom-
plish this, we used a model checking method:
we created finite-state models of the system of
interest and also identified and expressed rele-
vant properties to verify in a properly defined
logical language, CTL (Pnueli 77). We dis-
cuss the modeling of systems for internet-based
business and transaction processes. We also
show the formulation of specifications and dis-
cuss fundamental issues concerning the atomic
transactions. With respect to other modeling
techniques, such as UML (Conallen 99) or mod-
els based on object-oriented approach (Man-
chala 00), the approach based on model check-
ing guarantees the automation of the verification

186

Automatic Support for Verification of Secure Transactions

procedure. Our results from the verification are
included to show the current capabilities of the
modeling techniques and the model checker.

2. Symbolic Model Checking

The power of the method is that it is automatic
and fast. Automatic model checkers have been
implemented using algorithms for checking the
truth of temporal logic specifications on finite-
state models (Katoen 99). The model checker
helps in finding errors in the design of system by
producing a counter example that can be used
to correct the model. The first model check-
ers represented models as graphs, where nodes
in the graph represented states of the system
and edges denoted possible transitions between
states. Models are assumed to be Kripke struc-
tures, e.g. triples of the form M = (S, R, L)
where S is a set of states, R C § x S is a rela-
tion which defines legal state transitions (i.e. the
transition relation), and L is a function that la-
bels each state with the atomic propositions that
hold true on that state (Clarke 86). It is possible
to algorithmically check such a model for sat-
isfaction of temporal logic properties. It is also
possible to algorithmically generate counterex-
amples when a model does not satisfy a tem-
poral logic property. Therefore, given a model
M and temporal logic properties expressed in
an appropriate language, model checking pro-
cedures can be automated.

The model checking procedure carried out on
graphs was efficient, but since the number of
states in a finite-state model grows exponen-
tially with the number of state variables, only
small systems (10— 10° states) could be check-
ed (Clarke 99). In fact, the main challenge in
model checking is the state explosion problem.
That problem occurs because of the many com-
ponents that interact in a system or because of
the concurrency properties among them. The
state explosion problem was addressed by Mc-
Millan (1992), who introduced symbolic model
checking.

Symbolic model checking is a variation of model
checking where sets of states and the transi-
tion relation are represented implicitly using
Boolean formulas rather than an explicit graph
structure (Bryant 86). A set of states may be

represented by Boolean formulas that hold true
on those states.

Symbolic model checking reduces the state ex-
plosion problem. These Boolean formulas are
in turn represented and manipulated in a very
efficient manner with Ordered Binary Decision
Diagram (Bryant 92). Systems with as many as
1020 reachable states have been verified using
symbolic model verification techniques.

Transitions may be represented by a Relation
R(v, V") where v is the vector of current assign-
ments to the states components (atomic propo-
sitions) and V' is the vector of next state assign-
ments. An edge exists in the graph if R is true
for two state vectors v and v'. If the set of initial
states and the transition relation are given for a
model, the reachable state space may be found.

3. Computation Tree Logic (CTL)

Properties to be verified are expressed in a
propositional, branching, temporal logic named
Computation Tree Logic (CTL). We do not de-
fine here CTL; for an introduction, see (Clarke
99). Any propositional logic formula is a CTL
formula. CTL formulas may also contain path
quantifier followed by temporal operators. The
path quantifier E specifies some path from the
current state while the path quantifier A specifies
all paths from the current state. The temporal
operators are X, the next-time operator, U, the
until operator, and G, the always operator. X¢
specifies the ¢ holds in the next state along the
path. ¢ U ¢ specifies that ¢ holds on every state
along the path until ¢ is true. G¢ specifies that
¢ holds on every state along the path.

Given the above information, CTL can be de-
fined by the following statements:

e Every atomic proposition is a CTL formula.
An atomic proposition is the formula true or
a state variable assignment.

e If ¢ and ¢ are formulas, then —~¢ and ¢ A ¢
are formulas

e If ¢ and ¢ are formulas, then EX¢,E(¢ U ¢)
and EG¢ are formulas

The formulas false, ¢ A @, ¢ — @, ¢ © @,
¢ «—, EFp, AX¢, AGo, AF¢, A(¢p U ¢) can
be derived from the fundamental formulas given

Automatic Support for Verification of Secure Transactions

187

above. F¢ means that ¢ will hold at some future
state along the path.

Intuitively, the temporal expression AG¢ means
that the property ¢ is true in All paths, and
Globally (every state), while dually, EF ¢ means
that there Exists a path in which ¢ will become
true (in some Future state). X refers to the neXt
state, with the same meaning for A, E.

The following are some sample CTL formulas
with their English explanations.

e —EF(¢ A ¢): There does not exist a future
state on which ¢ and ¢ are simultaneously
true.

e EFEG(—¢): Some future state will be on a
path in which ¢ is never true.

e AG¢ : ¢ holds on every reachable state.

Symbolic Model Checking Implementation

The CTL model checking method has been im-
plemented in the package SMV (for symbolic
model verifier) (McMillan 92). SMV has its
own language for defining finite-state concur-
rent systems (i.e. the transition relation and the
set of initial states). Once the transition rela-
tion is built, SMV executes the model check-
ing procedures for the CTL properties. The
SMV input language has provisions for repre-
senting systems which are hierarchical, modu-
lar and nondeterministic. SMV also provides
counterexamples whenever necessary or possi-
ble.

SMYV uses Ordered Binary Decision Diagrams
(OBDDs) for efficient representation and ma-
nipulation of Boolean formulas. OBDDs are
directed, acyclic graphs, which are more com-
pact than other currently used representations
(Bryant 86). They are canonical w.r.z. a fixed
variable ordering, so identical functions are iso-
morphic (useful for recognizing fixpoints). The
number of nodes required to represent a func-
tion is sensitive to the variable ordering. Any
Boolean operation can be applied to OBDDs,
and functions may be substituted for variables,
which permits the implementation of existential
quantification routines (Bryant 92).

SMYV has been successfully used to verify elec-
trical and computer hardware including syn-
chronous protocols for distributed multiproces-
sors (SMV).

4. The Proposed Model

We have developed the finite-state model of an
atomic transaction and defined the set of speci-
fications expressed in CTL to define the correct
behavior of a system for business-to-consumer
and business-to-business applications. The ve-
rification has been carried out using the SMV
tool, to detect undesired events in the system
behavior, otherwise hardly detectable, and to
properly refine the model. Fig. 1. a) describes
the flow of operation in a generic business-to-
consumer transaction; Fig. 1. b) describes inter-
actions for a business-to-business application.
In this section we describe the variables, pro-
cesses and operating procedures that we use to
model a business process.

Mutual Exclusion of Concurrent Processes

We model the system using three concurrent
processes: Consumer, Producer and Server.
The processes share two resources: Buffer and
Database, in accordance with a well-known
textbook exercise (Huth 99).

Variables Involved in the System Model

The system behavior is described through the
set of variables in the Table 1.

Possible values for variables Buffer and Database
are: full, empty or not full. The information
concerning the authenticity of the signature —
Infosign — can be valid, not valid or unknown.
The kind of information, e.g. Typelnfo, can be
critical or not critical.

According to the mutual exclusion problem, we
model three processes Producer, Consumer and
Server that might be in three different states:
critical, trying, and non critical; since there are
two resources respectively, Buffer and Database
we distinguish such states as tryingl, trying?2
and criticall, critical2 depending on the re-
source the processes are waiting for, e.g, try-
ingl and criticall for the Buffer and trying2
and critical2 for the Database. Moreover we
use other five operating procedures to complete

188

Automatic Support for Verification of Secure Transactions

SETUP ORDERS

@ SEND/GET @
INFO
—’

Another~_ False . . .
%-> Write/Read info Client > Undo
e

+ Info Product
Tr

G=G+1

f

True
se
% Sign @

i=i+1
Read Pi Write CCB

+ Signature —» Undo
Available?

v

Save Pi

[rue ‘@ False

CHECK
Sign @

Read Info
Signature

v

Fig. 1. (a) Model of a Business-to-Consumer operation;

AddSign | true if it is necessary adopt a security mechanism

InfoSign | specify the authenticity of the signature

GetSign | true if it is necessary to check information referring to the validity of the signature
Typelnfo | specify whether the information may be critical

Balance | the amount of bank credit available for the purchaser

Request | true if a request arrives to the system

Table 1. The variables of the system.

Automatic Support for Verification of Secure Transactions

189

Set up
Operation
r-————————— 1
:_Server Y Execute | Market Request Server A/X
Operation

Info Client
and

Send

I
I
I
Buffer |
I
I
Info Client |

and
Operations S

Critical
Data

Operations

Bank Confirm

4_

Operation

DBMS
A/X

Update
Status

H

the transaction: BankTransfer, CheckSign, Get-
Regq, Transaction and SetupReq. BankTransfer
performs the payment task between the two ac-
tors of the transaction; CheckSign checks the
authenticity of the signature; GetReq extracts
from the Database the requests that arrive to
the Server, that should be served by Transac-
tion. Transaction is the process that executes
the transaction, by means of the other processes

and serves the request. SetupReq sets the infor-
mation necessary for the execution of a transac-
tion.

The overall model is constructed by asynchro-
nous steps (interleaving) among all the other
four processes: Checksign, Transaction, Se-
tupReq and GetReq. The process BankTransfer
has a synchronous execution and can be in one
of the following states: success, error, run, idle.

190

Automatic Support for Verification of Secure Transactions

Atomic Transactions

In Fig. 2 we show the transition diagram that de-
scribes how the system moves through its exe-
cution states. The first transition occurs as soon
as a request arrives to the system. The Pro-
ducer enters its critical region and the request is
queued to the Buffer. In the next transition the
Consumer enters the critical region to store the
request in the Database and the Server schedu-
les the request.

The Transaction procedure performs two dif-
ferent market operations — Purchase and Sell.
The system can be in two different states de-
pending on the operation. In case of Purchase a
Start Setup Request procedure provides proper
information to the supplier according to the re-
quest. For a Sell operation the diagram de-
scribes the execution states of an atomic trans-
action. The transaction goes in a run state after
it starts execution. Process Start Check Sign
checks the digital signature. Once the authen-

4
Setup

Producer
critical

Consumer
critical

Full

Server
critical

Restar Started

Update
Balance

Request

DataBase

Idle

No Idle

Request

Start
Setup info

27 1dle

Fig. 2. Business-to-Business transaction model.

Automatic Support for Verification of Secure Transactions

191

tication is obtained, Start Bank Transfer can be
executed. If the transaction ends successfully,
it goes in the commit state and then in the up-
date state so that all the changes executed by the
transaction will not be undone.

The Transaction enters the roll-back state after
the error one if an error occurred during the pro-

5. Tested Specifications

cesses execution. Two recovery states are avail-
able when the transaction is unsuccessful: undo
to undo the effects of a transaction and redo to
specify that some operations must be redone to
ensure that all the operations of a committed
transaction have been applied successfully.

In the following we exemplify how the properties to verify have been expressed in CTL.

Mutual Exclusion

A first set of properties to be verified regards mutual exclusion of concurrent processes, as described

in (Huth 99).

Access to Resources

The following set of properties ensures that each process tries to access to the shared resource iff
resources are available: i.e. the Producer cannot access to the Buffer if it is full or the Server cannot

access to the Database if it is empty.

For any state if process tries to access a resource then it will eventually be available

1.

AG(
2. AG(
3. AG(
4. AG(

Correctness of the States

G((Producer = tryingl) — AF((Producer = criticall) N (Buffer = full)))
(Consumer = tryingl) — AF((Consumer = criticall) N (Buffer = empty)))
(Consumer = trying2) — AF¥((Consumer = critical2) N (Database = full)))
G((Server = trying2) — AF((Server = critical2) A (Database = empty)))

The following properties ensure that each process reaches the correct states: the Producer tries to

access to the Buffer and not to the Database:
EF(Producer = criticall)

EF(Producer = tryingl)

EF(Server = critical2)

EF(Server = trying?2)
EF(

i

F(Consumer = criticall V Consumer = critical2)

10. EF(Consumer = tryingl V Consumer = trying?2)

For any state if the process does not try to access the wrong resource

11. AG— (Producer = critical2)
12. AG— (Producer = trying2)
13. AG— (Server = criticall)
14. AG— (Server = tryingl)

192 Automatic Support for Verification of Secure Transactions

Properties of Transactions

This set of properties specifies the properties that a transaction must satisfy:

For any state if a request arrives to the system then it will be served in some future state

15. AG(— Database= empty — EF(Transaction.state=started))

For any state if an error occurs during the transaction then it will eventually be rolled-back
16. AG((Transaction.state=error) — AF(Transaction.state=roll_back))

For any state if the transaction starts then it will be executed in some future state

17. AG((Transaction.state=started) — EF (Transaction.state=run))

For any state if the transaction enters the undo state then in some future state it will be ended or
redone

18. AG((Transaction.state=undo) — EF(Transaction.state=ended V Transaction.state=started))

For any state if the transaction is rolled-back then in some future state the operations already done
will be undone or redone

19. AG((Transaction.state=roll_back) — EF(Transaction.state=undo V Transaction.state=redo))

For any state if the sign is valid and there is money available in some future state the bank transfer
will be executed

20. AG((CheckSign.state=success A Balance=available) — EF(BankTransfer=success))
Eventually if the bank transfer starts then it will end in any case

21. AF((BankTransfer=run) — AG(BankTransfer=success \V BankTransfer=error))

For any state if the information is critical then it is possible to add the Signature

22. AG((Typelnfo=critical) — EF(AddSign=1))

In some future state there might be not critical information

23. EF(Typelnfo=not_critical)

For any state, if the transaction is successful then the system will update its resource in some future
state

24. AG((Transaction.state=commit) — EF(Transaction.state=update))

For any state if the bank transfer is successful then transaction will end in commit in some future
state

25. AG((BankTransfer=success A CheckSign.state=success A GetReq.state=success) —
EF(Transaction.state=commit))

Whatever happens, the bank transfer will not be executed if there is no credit available
26. AG((Balance=not_available) — AG—(BankTransfer=success))

Error Management

The following formulas are necessary to prevent errors in the system behavior. The properties
require that the specified situations should not occur, in fact they are formulated as the negation of
the undesirable event.

There does not exist a future state in which an error occurs and the transaction is successful

Automatic Support for Verification of Secure Transactions

193

27. = EF((GetRegq.state=error) A (Transaction.state=commit))

There does not exist a future state in which an error occurs during the transaction and it is successful

28. = EF((Transaction.state=error) A (Transaction.state=commit))

The following two formulas ensure that, if the sign is not authentic, then the transaction will not

end in commit

There does not exist a future state in which an error occurs in the sign verification and the

transaction ends successfully

29. = EF((CheckSign.state=error) A (Transaction.state=commit))

There does not exist a future state in which the information about the sign state that it is not valid

and the transaction ends successfully

30. -~ EF(InfoSign=not_valid A Transaction.state=commit)

The following two formulas ensure that if an error occurs during the bank transfer then the trans-

action will not end in commit

There does not exist a future state in which an error occurs in the bank transfer and the transaction

ends in commit

31. = EF((BankTransfer=error) A (Transaction.state=commit))

There does not exist a future state in which there is not credit available and transaction arrives in

the commit state

32. = EF(Balance=not_available A Transaction.state=commit)

6. Refinement and Evaluation of the Model

SMV was used to test the above specifications
with respect to the system model that was syn-
thesized, which is shown in Fig. 2 as a graph
model.

This section discusses the size and variation in
the model, the computational resources required
to check those variations, and the counterex-
amples that were found during the verification
process.

In the first-stage test, we modeled the trans-
action process as well behaved. As we might
expect, we found no counterexamples in this
predictable situation. A base-ease model was
established and then models containing more
details were tested. The level of detail was in-
creased incrementally to search for faults that
simpler models might not reveal and to observe
the effects of model complexity on computa-
tional resources. Model complexity was in-
creased by either adding more processes to the
model or by modeling additional behaviors.

The aim was to verify that the system performs
the transaction correctly or that the previous

state is recovered when the transaction is un-
successful.

To test the model validity we simulated some
abnormal behavior during a transaction. In a
business transaction, a critical issue is the sig-
nature authentication. We found counterexam-
ples when we introduced somewhat abnormal
behavior in this phase not unusual for b-2-b
transactions.

We modeled a process Checksign for the sig-

nature authentication to perform the following

steps:

e send a request to the certification authority
and wait for an acknowledge message

e decrypt the document using the same algo-
rithm of the sender.

The following are CTL formulas describing the
undesired events that could happen if an error
occurs during the two phases:

1. = EF((CheckSign.state=error) A
(Transaction.state=commit))

2. = EF(InfoSign=not_valid A
Transaction.state=commit)

Formulas 1 and 2 specify that the following con-
ditions are never true simultaneously: 1) the sig-

194

Automatic Support for Verification of Secure Transactions

nature is not valid and the Transaction reaches
the commit state; 2) Checksign process is in
error and the Transaction reaches the commit
state.

The model checker returned the three counter
examples. This was due to the logical model of
the transaction process. In the adopted model
the composition of the processes is interleaved:
a step represents a step by exactly one com-
ponent. For this reason, when SMV runs pro-
cesses, it does not consider their concurrent ex-
ecution and this might determine some errors.

To avoid the previously described undesired
events it was necessary to introduce a further
test on the state of each process. Once accom-
plished that all the conditions are verified, the
process will start. This refinement of the model
did not reveal incorrect behavior.

We simulated another error condition in the pro-
cess performing a bank transfer. The following
property verifies that the bank transfer will not
be executed if the signature is false:

3. = EF(InfoSign=not_valid A
(BankTransfer=run))

Once more we use the negation of the error con-
dition to ensure that the undesired event will not
ensue.

The following 2 specifications state that if the
desirable properties of a transaction are not sat-
isfied, the transaction cannot end with a commit
state. ACID properties of a transaction state that
resources should be in a consistent and durable
state after the execution of the transaction. This
means that the transaction cannot be in the com-
mit state if the transfer was not successful.

4. — EF((BankTransfer=error) A
(Transaction.state=commit))

5. = EF(Balance=not_available A
Transaction.state=commit)

6. — EF((Transaction.state=error) A
(Transaction.state=commit))

The last specification ensures that the transac-
tion will never be in the commit state if an error
occurs.

7. Conclusion

We used model checking for modeling the be-
havior of applications for business transactions.

The model created was checked against tem-
poral logic specifications, which identify the
desired system behavior. Through symbolic
model checking, counterexamples for some of
these specifications were found. Many of these
counterexamples would have been difficult to
identify through conventional fault identifica-
tion methods, because they were a result of
multiple events occurring concurrently or se-
quentially. In many cases, a counterexample
may point out a flaw in the model, which must
be corrected. For this reason, the counterex-
amples helped in refining the model by adding
further details; the final model ensures a reli-
able level of trust, since the model checker tests
all patterns which are implicitly defined in the
model.

Acknowledgements

This work has been carried out within the POP-
EV funded project SFIDA3 (Servizi di Firma
Digitale Applicati ad Aziende e Amministrazioni).

References

[1] R. E. BRYANT, (1986), Graph-based algorithms for
Boolean function manipulation, IEEE Trans. on
Computers, 35(8), 677-691.

[2] R. E. BRYANT, (1992) Symbolic Boolean manipula-
tion with Ordered Binary-Decision Diagrams, ACM
Computing Surveys, 24(3), 293-318.

[3] E. M. CLARKE, E. A. EMERSON, (1981) Design
and synthesis of synchronization skeletons using
branching time temporal logic.

[4] E. M. CLARKE E. A. EMERSON A. P. SISTLA, (1986)
Automatic Verification of Finite-State Concurrent
System using Temporal Logic Specifications. In
ACM Transaction on Programming Languages and
systems, vol. 8, N. 2.

[5] E. M. CLARKE, O. GRUMBERG AND D. A. PELED,
(1999) Model Checking, The MIT Press.

[6] E. M. CLARKE AND J. M. WING, (1996) Formal
Methods: state of the art and future directions,
ACM Computing Surveys, 28(4), 1-22.

[7] J. CONALLEN, (1999) Modeling Web Application
Architectures with UML, Comm. of the ACM, vol.
42, no. 10, 63-70.

Automatic Support for Verification of Secure Transactions

195

[8] E. A. EMERSON, (1996) Automated temporal rea-
soning about reactive systems. In G. Goods and
J. Hartmanis and J. van Leeuwen, eds., Logic for
concurrency: Sstructure versus automata, 41-92.
Moller Birtwistle.

[9] M. R. A. HUTH, M. D. RYAN, (1999) Logic in
Computer Science. Modeling and reasoning about
sytems, Cambridge University Press.

[10

D.JUTLA, P. BODORIK, C. HAJNAL, C. DAVIS, (1999)
Making Business Sense of Electronic Commerce,
IEEE Computer, 67-75.

11

J. P. KATOEN, (1999) Concepts, Algorithms and
Tools for Model Checking, Friederik Alexander
Universitat Erlangen — Niirnberg.

[12

S. KORPER, J. ELLIS, (2000) The E-commerce Book,
Academic Press.

[13] L. LAMPORT, (1975) Proving the correctness of
multiprocess programs. IEEE Trans. Soft Engin.,
vol. 3, 125-143.

[14] D. W. MANCHALA, (2000) E-Commerce Trust Met-
rics and Models, IEEE Internet Computing, vol.
3-4,36-44.

[15] Z. MANNA AND A. PNUELL, (1981) Verification of
concurrent programs, Partl: the temporal frame-
work, Technical report, Stanford University Depart-
ment of Computer Science.

[16] F. MANOLA, (1999) Technologies for a Web Object
Model, IEEE Internet Computing, vol. 1-2, 38-47.

[17] K. L. MCMILLAN, (1992) Symbolic Model Check-
ing — an approach to state explosion problem,
Ph.D. thesis, SCS, Carnegie-Mellon University.

[18] A. PNUELI, (1977) The Temporal Logic of Pro-

grams. In Procedings of 18" IEEE Symposium on
the Foundations of Computer Science, 46-57.

[19] SMV system draft.Available at:
http://www.cs.cmu.edu/ modelc|heck.

Received: June, 2001
Accepted: September, 2001

Contact address:

Eugenio Di Sciascio, Ph.D.

Associate Professor
Dip. Elettrotecnica ed Elettronica, Politecnico di Bari

Via E. Orabona 4, I-70125 Bari, Italy

Phone: +390805963641

Fax: +390805963410

e-mail: disciascio@poliba.it, disciascioQacm.org
Web: http://www-ictserv.poliba.it/disciascio

EUGENIO DI SCIASCIO received the laurea “cum laude” degree in elec-
tronic engineering from University of Bari in 1989 and the Ph.D. degree
in computer science in 1994 from Technical University of Bari. In 1992
he joined the University of Lecce as an assistant professor. He is
currently an associate professor of Information Systems at Technical
University of Bari. His research interests include image and video pro-
cessing, multimedia information retrieval, knowledge-based systems
for E-commerce. In these areas he has published several papers in
international journals and conferences.

FRANCESCO M. DONINI got the Master’s degree in electronics engin-
nering from the University of Rome “La Sapienza” in 1988. He got
the Ph.D. in computer science from the same university in 1992. From
1991 to 1998 he was researcher/assistant professor at the Department
of Computer and System Science of University of Rome “La Sapienza”.
Since 1998 he is associate professor at Technical University of Bari. He
is coauthor of many papers in international journals, as well as interna-
tional conferences. The paper “Tractable concept languages”, presented
at the conference IJCAI-91 (1991), received the best paper award. He
is responsible for local university research projects since 1996, and for
CNR research projects, too. He is editor of the area “Concept—Based
Knowledge Representation” in the journal ETAI — Electronic Trans-
actions on Artificial Intelligence — published by the Royal Swedish
Academy.

MARINA MONGIELLO received the laurea “cum laude” degree in com-
puter science from the University of Bari in 1993 and the Ph.D. degree
in electronics engineering from the University of Catania in 2001. She
is currently a research assistant at Technical University of Bari. Her
research interests include multimedia information retrieval, knowledge-
based systems for E-commerce and model checking of systems for
E-commerce.

GIACOMO PISCITELLI was born in Bari, Italy, in January 1943. In 1966
he received the degree in physics with honors from the University of
Bari. Currently, he is Professor of operating systems at the Depart-
ment of Electrical and Electronic Engineering, Technical University of
Bari. His primary areas of research and teaching are operating systems,
information systems, software engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

