
Journal of Computing and Information Technology - CIT 9, 2001, 4, 263–287 263

Supporting the DSL Spectrum1

David S. Wile
Teknowledge Corp., Marina del Rey, CA 90292, USA

A language tailored to the problem domain can focus on
its idioms and jargon, avoiding clumsy, overly general
constructs needed to support general-purpose language.
The leverage provided by DSLs over conventional
programming languages is often extreme; application
engineers may specify as little as 2% of the code that one
would need to program the same thing in a conventional
programming language! But commitment to a DSL
approach can be rather expensive.

It is often difficult to know when to invest in exactly
how much infrastructure support for a product or product
family. All of the concerns that are germane to general-
purpose programming language design and support may
become important in the support of a specific DSL. At
the same time, there is a wide spectrum of approaches
to providing DSL support. This paper relates the various
DSL design approaches to alternatives for tool support,
providing a kind of “DSL tool support selection frame-
work,” indicating where one might expect to need to
invest heavily to obtain adequate support and illustrating
the spectrum of tradeoffs and situations in which each is
appropriate.

Keywords: domain-specific language, language exten-
sion, COTS adoption, XML, general-purpose language

1. Where to Begin?

The design and use of domain-specific lan-
guages can be seen as the natural culmina-
tion of the use of domain-specific techniques
for program and product development. By
focusing on a problem domain’s idioms and
jargon, DSLs avoid the notational “noise” re-
quired when using overly general constructs of
a general-purpose language to express the same
thing. Moreover, DSLs are not necessarily pro-
gramming languages: they are languages tai-

lored to express something about the solution
to a problem. Indeed for some uses of DSLs
there is really no comparison with an equivalent
“program.” For example, music notation con-
stitutes a DSL for music; it is nearly irrelevant
that modern computers can play the “program”
represented by the music. Even before MIDI
existed �allowing computers of various sorts to
play the music�, editors existed for this DSL,
so printers could render the compositions with-
out humans having to “retype” them on scored
music sheets each time they changed them.

It is generally very clear that DSL usage is
very effective for the users, the practitioners
in the problem domain who write specifica-
tions in the languages. With a language we
designed for NATO message parsing and type-
checking2, we experienced a 50 to 1 improve-
ment in lines of generated code vs. lines of
specification �Balzer94�. Additionally, confi-
dence in the correctness of the specifications is
greatly improved when all the extra syntactic
noise is eliminated from the specifications.

However, commitment to a DSL approach can
be rather expensive, depending on the level of
infrastructure support provided for a product or
product family. All of the concerns that are
germane to general-purpose programming lan-
guage design and support may become impor-
tant in the support of a specific DSL. These
concerns include designing and specifying the
actual syntax of the DSL itself; designing ab-
stract or internal representations; compilation
concerns, such as parsing, type checking, and

1 This work was sponsored by DARPA contract numbers F30602-96-2-0224 and F30602-00-C-0200.
2 NATO has a standard for messages transmitted between all kinds of vehicles and processing stations, from tanks, to planes,

to command centers. These messages consist of related individual lines of text; each line of text comprises several “fields.” The
structure of the lines in terms of fields, and of individual message types as sequences of particular typed lines, was captured for the
experiment described. A set of message types was then automatically translated into Ada to form the basis for the comparison
mentioned in the text.

264 Supporting the DSL Spectrum

code generation; the design of other analyz-
ers, such as usage graphs; means for debugging
DSL “programs,” often entailing an “unpars-
ing” activity to map back out of the internal
representation; support for persistence, versions
and multiple authors; and often mechanisms for
simulating or executing DSL programs.

To add to the confusion, there is a wide spec-
trum of approaches for providing DSL support.
Beyond ad hoc approaches— rarelyworthwhile
investments — there are traditional methods us-
ing programming language development tool
technology, such as LEX�YACC-based deriva-
tives �Aho86, Sharnoff01�, programming en-
vironment generator designs such as �Reps88,
Klint93�, and other language support environ-
ments �van den Brand01, Mernik00a, Wile93�.
A fairly popular technique is to extend exist-
ing languages with abstract data types and op-
erators, or object classes and methods, char-
acterizing the domain so thoroughly that ap-
plication engineers can become programmers
without learning too much of the underlying
languages �Hudak00�. A related technique of
recent interest in the research community is the
use of so-called “generic programming” to pro-
vide higher-level abstractions whose mappings
into the language affect DSL-like constructs
�Jeuring95�. Another related technique is to
capture problem domain idioms using database
schema and presentationmechanisms or spread-
sheet templates. And, finally, XML-based ap-
proaches are becoming popular, alongwith tools
for mapping over the abstract syntax captured in
the XML representation �Attalli01, XMLSoft-
ware�. We at Teknowledge are pursuing yet an-
other approach, the use of a graphical interface
in which “styles,” comprising icons and differ-
ent kinds of arrows, can be mixed with textual
and graphical attributes to form a kind of hybrid
DSL technology �Goldman99�.3

In the following, advantages to DSL approaches
are first discussed in Section 2. Then, in Section
3, some of the various DSL design approaches
just mentioned will be elaborated in more de-
tail. In order to compare the various advantages
of the different approaches, Section 4 presents a
brief discussion of the different issues that arise
when considering adopting a particular technol-
ogy. Section 5 compares the various approaches

with respect to how they handle these issues.
With each approach I will indicate where one
might expect to need to invest heavily to obtain
adequate support and try to illustrate the spec-
trumof tradeoffs and alternative approaches that
might be pursued.

2. DSL Advantages

So, just what are the advantages of using a DSL,
specifically?

First, with conciseness come a lot of advan-
tages. Foremost is comprehensibility: one can
read more at once and relate pieces whose con-
nections may be completely lost in formal noise
when couched in the terms of a more general-
purpose language. As an aside, it is worth
mentioning that there are many general-purpose
problem �solution� specification languages; e.g.
Prolog �Bowen01� has a bit of the flavor of one,
where the evaluation model is somewhat far
from the von Neuman machine model. Some
of these languages are not even “evaluable”:
they may allow expressing solutions in sec-
ond order predicate calculus �Bowen01�. Even
these much higher-level languages are often ex-
tremely clumsy compared with a language tai-
lored to the domain. To return to the thread, a
second benefit to conciseness is ease of writ-
ing and, consequently, introduction of fewer
clerical mistakes. Finally, conciseness leads to
greater productivity. The common rubric that
claims that the number of lines of code per
programmer per day is nearly constant, inde-
pendent of the language used, probably carries
over into other specification domains.4

A second broad category of advantages accrues
due to the fact that the natural internal rep-
resentations for the linguistic constructs, their
“abstract syntax” taken in a very broad sense,
are much more attuned to the kinds of analy-
sis and processing that will go on in designing
analyzers, simulators, animators, and transla-
tors for the languages. This has two implica-
tions: �1� the analyzers can be written more
easily and directly than when decoding a more
general-purpose representation and �2� a more

3 In fact, we are going one step further and relating these styles to specific knowledge representation “ontologies,” but I will not
go into that further in this paper �Tallis01�.

4 But I admittedly have no proof or even anecdotal backup for this conjecture.

Supporting the DSL Spectrum 265

thorough-going job can be done of their im-
plementation, since less time need be devoted
to circumventing a clumsy original representa-
tion. In addition, the errors can more readily be
related directly to the users in problem domain
terms rather than in the terms of the supporting
general-purpose language. In fact, this ability
to develop ancillary tool support for the appli-
cation engineer, tools tailored to the domain —
perhaps meaningless outside the domain, repre-
sents a tremendous advantage over alternative
approaches.

But of course, the single greatest advantage pro-
vided by the use of domain-specific languages is
that the expert at solving the problem can write
specifications rather than requiring a combined
expert-programmer team to code. This is not
to claim that the role of programmer becomes
irrelevant; far from it. The overall program-
mer time investment is quite reduced indeed,
but necessary for up-front infrastructure devel-
opment. And in fact, the programmer skills
required to provide the infrastructure are more
expensive, requiring greater expertise than the
normal program support staff. In some sense,
the rest of the paper is devoted to illustrating just
what these skills are and just how much or little
of them might be needed when deciding how to
provide support for the use of a domain-specific
language.

3. DSL Approaches

As I mentioned above, the spectrum of ap-
proaches available for providing DSL support
ranges from the development of infrastructure
using ad hoc methods to language development
environments, to language extension, through
Common Off-The-Shelf �COTS� product us-
age — like Access, Excel, or PowerPoint —

and bottoms out at interchange representations.
Before discussing these approaches it is worth-
while to try to characterize what constitutes a
DSL. And in order to do this, it will be illustra-
tive to pick a particular �toy� problem domain
to illustrate some of the issues.

So first, a problem domain. There are many
problem domains that are “obviously” candi-
dates for domain- specific languages, such as
music composition and performance, inventory
control, scheduling, accounting, signal process-
ing, flight control, weather prediction, etc. The
obvious nature of these for linguistic support
comes from the fact that strong mathematical or
otherwise formal languages have been used to
describe problem solutions in them, and the ex-
perts already know — indeed have been trained
in — these dialects. Other obvious candi-
dates include computer-specific domains, such
as compilation �YACC�, regular expressions
�Klarlund99�, web computing �Cardelli99�, ca-
che coherence protocols �Chandra99�, and de-
vice driver design �Thibault99�. However, other
less obviously likely candidates have already
been given DSL support: multimedia anima-
tion �Elliott99�, music performance �Hudak95�,
NATOmessage processing �Balzer94,Kieburtz-
94�, naval ship formation movement analysis
�Feather86�, Interlocking in Railway Applica-
tions �van den Brand96�, and census survey in-
strument definition �Wile00�.

Unfortunately for our purposes here, all of these
suffer from two defects: they require exten-
sive domain understanding, too considerable to
present here �even if I could� and they are some-
what large themselves. So, consider the ad-
mittedly contrived domain of “satellite ground

Fig. 1. Sattellite Communication System.

266 Supporting the DSL Spectrum

controllers” illustrated graphically in Figure 1.5

Satellites are represented using cruciform boxes
and ground stations are represented using sim-
ple rectangles. There are two kinds of satel-
lites — communications satellites �darker, like
ATTs0088� and probes �lighter�—and two kinds
of ground stations — regular ones �lighter� and
command processors �darker, like FortCollins9�.
There are communications links among satel-
lites and ground stations indicated by dashed
double-headed arrows. In some cases these are
made and broken dynamically, as they travel
into and out of the ranges of each others’ re-
ceivers and transmitters as the satellites revolve
about the earth. Here the dynamic links are
represented with dashed connectors; the static
ones with dotted connectors. The problem
is to support the specification of the various
satellites and ground stations — called “ele-
ments” from now on — in order to reason about
such things as: when linkages can be estab-
lished, whether the transmissions are appropri-
ately secure, when they can be “reprogrammed,”
how much bandwidth is required, etc. Several
aspects may require specification: elements’
structure and properties, such as communica-
tion protocols; their configuration into a sys-
tem; their interaction and interconnection con-
straints; and some aspects of their behaviors.
These common elements of language design
will be used in the following to evaluate the
appropriateness of various approaches to pro-
viding DSL support. Also, in the following
discussion the strengths of the approaches will
generally be emphasized; later discussion will
compare the strengths and weaknesses.

3.1. Full Language Design Approach

The domain-specific language approach to this
example — with emphasis on developing a new
specification language — might allow language
users to produce something like the specifica-
tion in Figure 2. The overall specification has
a bit of the look-and-feel of a set of declara-
tions in a programming language. Each ele-
ment type has its own particular attributes that
may be specified. For some reason the country
owning the element — e.g. Australia, and pos-
sibly the corporate identity of the owner — e.g.

USA’s DoD �Department of Defense�, seemed
important enough for it to be specified as the
first atom�s� in the descriptions. Then comes
the specific type of element, such as surveillance
controller, and then a unique identifier or name.
Other than ownership, this same information is
conveyed in the diagram in Figure 1.

There are several features of this specification
that deserve emphasis. Notice that everything
has a position attribute and a protocols attribute.
Since this example is contrived, it is difficult
to say exactly what these protocols might be,
but my intent is for them to refer to the secu-
rity of the transmissions necessary to relay the
data. After the common element specifications,
each element is further described with syntax
germane to the element’s type, so, for example,
some of the attributes used by ground stations
are irrelevant to satellites — such as Field of
View �see Figure 2� — and cannot be specified
with them. �The field of view of the transmit-
ter�receivers are given with the ground stations
to reason about valid linkages.6� Notice also
that position information does not include the
altitude of ground stations nor communications
satellites �presumably at a fixed altitude to stay
in a stationary earth orbit�. It is typical of DSLs
to have specialized syntax for even conceptually
“shared” fields.

One kind of analysis that will be important to
perform on systems described using this lan-
guage concerns policy analysis to determine
which controllers can talk to which satellites,
and through exactly which ground stations. So-
me of these paths are declared explicitly. Notice
that there are three link statements after the ele-
ments are described in Figure 2; the intent here
is to describe links that are predefined. When
these occur with satellites, the satellites must
actually be in a stationary earth orbit. Hence,
the protocols that the ground stations affect, and
the transformations in them that one can expect,
are explicitly spelled out. There are two forms
of these specifications used for the ground sta-
tions here: one says which protocols can be
sent up and down by indicating the transfor-
mations of the input signals to the uplinks and
the transformations to the output signals from
the downlinks. The other form simply specifies

5 The intent here is to appeal to a universal shallow understanding of this domain. Deeper knowledge of the domain will
probably be a hindrance!

6 Again, this is quite naive; a much more precise and differentiated set of coordinates and angles would probably be required.

Supporting the DSL Spectrum 267

USA surveillance controller FortCollins9
Position: N40.5800 W105.0833
Protocols: out secret S1

in secret P8
Hours: 7:00 am to 9:00 pm CST

USA ground station Oakland2
Position: N37 48’ W122 16’
Protocols: up secret P8

down secret S1
out fpublic S1, secret P8g
in fsecret S1, public S1g

Field of view: 60
Australia ground station Alice1

Position: 23� 48’ S 133� 53’ E
Protocols: up fpublic P8 �> private S1, public P8 �> public S1, private S1 �> private S1g

down fprivate S1 �> private S1g
Field of view: 120

* * *
USA communications satellite ATTs0088

Corporation: ATT
Position: N21 18’ W157 52’
Multiplex 4096
Rate: 100 MBS
Protocols: Private P8

USDoD surveillance satellite AF1102
At: 655446765 UT
Position � �14:06.33992 hours x 27.9943 degrees x 75.66668 miles�
Velocity � � .2 hours x .3 degrees x - .00025 miles � � hour
Protocol: down secret P8

up secret S1
Sequencing:
Transmitter: f on -Light-> off, off -receiver�data ready�-> ong
Receiver: f on -noinput-> data ready, ...g

EU surveillance satellite Djkarta4
Position � 6� 11’ S 106� 50’ E x 75.66668 miles
Velocity � stationary
Protocol: down private P8

up public S1
Sequencing �
Camera: f on -Dark-> off, off -Light-> awaitTarget, . . .g

* * *
Australia link Alice1 to Djkarta4
USA link FortCollins9 to Oakland2
USA link Oakland2 to ATTs0088
Compatibilities: public �> f Australia, EU, USA g

secret �> f Australia, EU g
private ATT �> f Australia, EU, USAg ATT

Fig. 2. A Satellite Groundstation Configuration Specification.

what the input, output, up and down protocols
are, and one assumes �unless otherwise con-
strained� that the cross product of the “in” with
the “up” and the “down” with the “out” proto-
cols are all possible.

This provision for syntactic sugar is common
in DSLs. Notice as well that several forms
of syntax have been provided for angles, lati-

tudes, longitudes, etc. �e.g. “23� 48’S 133�

53’E” or “N21 18’W157 52’ ”�. This is typi-
cal in DSLs, because the application engineers
are generally accustomed to using different for-
mats, e.g. from different instruments.

Notice also that there are aspects of behavior
specified for satellites, such as initial position
and velocity at a particular time and experiment

268 Supporting the DSL Spectrum

sequencing information. Naturally, it would
take a domain- specific interpreter tomake sense
of this information for analysis and simulation
purposes.

The last lines of the specification describe some
domain-specific constraints that specifications
must satisfy: namely, when using public com-
munication lines, all communications among
elements owned by Australia, the EU and the
USA are allowed. For some reason, even secret
transmissions between Australian and EU ele-
ments are allowed. And, finally, private ATT
communications are permitted among all three
owners as well. This is a very concise way to
say this and is very typical of the expressiveness
of a DSL.

For now, take this sample specification as in-
dicative of a rather small, but not insignificant
language tailored to the domain of satellites.
Next, we consider how one might implement
the language support for reasoning about spec-
ifications in the language.

To provide support for this language as it was
presented here, one would use traditional pro-
gramming language development tool technol-
ogy, such as LEX�YACC-based derivatives, or
perhaps the Cornell Program Synthesizer. The
latter entails defining an abstract syntax for the
language, for which one gets a free syntax-
directed editor for specifications in the lan-
guage. One must also provide a concrete syn-
tax for the language, matching the syntax given
here, and sets of attribute grammar rules to ef-
fect various analyses and simulations that one
might perform. For many situations, this is the
appropriate choice to make. However, the pro-
gramming expertise to deal with both the syn-
tactic and semantic concerns is fairly expensive.
Moreover, in some sense, the language design
itself constitutes a heavy investment, and it has
already been taken “for granted” here.

3.2. Language Extension Approaches

A less expensive alternative can be found in
a broad category of alternatives loosely char-
acterized as extension of an existing language

to specialized constructs for the problem do-
main. Technically, the trick used is to refine the
language with specific abstract data types and
operators, or object classes and methods, char-
acterizing the domain so thoroughly that ap-
plication engineers can become programmers
without learning too much of the underlying
languages. They use the extended language —
the original plus the refinements — to express
their specifications and invoke their analyses
and simulations. In the following, Java and
Haskell will be used to illustrate the extension
technique, chosen as current representatives of
the OO programming approach and the declar-
ative programming approach, respectively.

Java as a DSL. To approach our example, we
might design the Java class specified in Figure
3a �Gosling96�.7 Based on these declarations a
domain engineer could create �part of� the spec-
ification of Figure 2 using the method invoca-
tions in Figure 3b. Although this may be a bit
clumsy, to make data entry easier, a form-based
interface could be designed for little cost.

Notice that there is an inheritance hierarchy in
the Java classes that would mirror the abstract
syntax in a funny, inverted way. �The abstract
syntax for the subclass would normally have
a field whose instance was an instance of the
superclass.� Notice that the definition of ele-
ment is quite complex, including methods for
adding and removing links in addition to an ini-
tialization procedure, written “element(String id,
Integer own, String corp, . . .)” where the ellipsis
would include all the instance variables of the
class. One would write such an initializer for
each of the classes — e.g. CommunicationsSa-
tellite and Protocol — �not done here, for brevity�
and then invoke them as in Figure 3b. Also, no-
tice that in order to link the elements together
into a graph structure, one has to have an ele-
ments structure holding all the elements and a
facility to look them up, elementNamed.8

Some interesting implementation decisions have
been made when building this set of class def-
initions. First, instead of defining a class for
each of the set-type fields, such as protocols and
sequence elements, the implementation uses a
“Hashset” collection device, and then relies on

7 One would generally not make the instance variables public — used here for brevity — but would rather use constructors for
each class and public accessor functions to expose the parts. The examples throughout the paper are intended to be “indicative” by
nature. I am not a true expert in any of the languages or support tools! The examples are incomplete, but every attempt has been
made to keep them mutually consistent.

8 Not defined in Figure 3a.

Supporting the DSL Spectrum 269

public class Element
f

public String uniqueID;
public Integer owner;

�� 1 �> Australia; 2 �> EU; 3 �> USA
public String ownerCorp;
public Position pos;
public Hashset inProtocols; �� of protocol
public Hashset outProtocols; �� of protocol
public Hashset inLinks; �� of linkage
public Hashset outLinks; �� of linkage
Element�String id, Integer own, String corp� �� ...
f uniqueID � id;
owner � own;
ownerCorp � corp;
��...
g;
public void addInLink�Element iEl�
finLinks.add�iEl�;g

public void addOutLink�Element oEl�
foutLinks.add�oEl�;g

public void delInLink�Element iEl�
Iterator it;

Object recent;
fit � inLinks.iterator��;
while �it.hasNext��� f

recent � ��Element�it.next���;
if �recent �� iEl�

it.remove��;g
g
public void delOutLink�Element oEl�
f �� see above

g
g
public class Satellite extends Element
f

public Time initial;
public Velocity v0;
public Hashset sequencing; �� of SequencingRule

g
public class SurveillanceSatellite extends Satellite
f
g
public class CommunicationsSatellite extends Satellite
f

public Integer multiplex;
public Integer rate; �� in MBS

g

Fig. 3a. Java Domain Model �1�.

casting to make sure the elements are of the
right type. Of course, this increases the poten-
tial for errors to creep in, but one might be able
to isolate the programmer entirely from the de-
cision, for example, if a form-based interface
were always used to construct the virtual spec-
ifications. Some interesting little shortcuts in
the concrete syntax show up even in this small
example �Figure 3b�. The latitude and longi-

public class SurveillanceController extends Element
f

public Time openFrom;
public Time openTo;
�� openFrom must be less than openTo

g
public class GroundStation extends Element
f

public Hashset upProtocols;
public Hashset downProtocols;
public Hashset upLinks;
public Hashset downLinks;
public Angle FieldOfView;
public void addUpLink�Element fEl�
fupLinks.add�fEl�;g

public void addDownLink�Element dEl�
fdownLinks.add�dEl�;g

public void delUpLink�Element fEl�
f �� see delInLink in element definition

g
public void delDownLink�Element dEl�
f �� see delInLink in element definition

g
g
public class Protocol
f

public Integer security; �� 1 �> public, 2 �> private,
�� 3 �> secret

public String pathType; �� S1 or P8
g
public class Velocity
f

public Time latitudinal;
public Angle longitudinal;
public Double altitudinal;

g
public class SequencingRule
f

public State whenState;
public Hashset actions;

g

Fig. 3a. Java Domain Model �2�.

tude were converted to a decimal representation
to input the position. The singleton protocol
“P8” was introduced into each hashset to repre-
sent the “Up” and “Down” protocol links. Here
the country and privacy descriptions were con-
verted to the appropriate integers — normally
represented as enumerated type elements in lan-
guages that have them. Although one might use
final public static variables for this, an important

270 Supporting the DSL Spectrum

inP � new Hashset;
outP � new Hashset;
proto � Protocol�2,"p8"�;
inP.add�proto�;
outP.add�proto�;
el � CommunicationsSatellite�"ATTs0088", 3, "ATT", Position�21.3, -157.867�, inP, outP, 4096, 100�;
elements.add�el�;
* * *
el.addOutLink �elements.elementNamed�"Alice1"��;
el.addInLink�elements.elementNamed�"Alice1"��;

Fig. 3b. Java Satellite Program Fragment.

point here is that there is wide latitude available
for mapping into an OO representation.

Haskell as a DSL. A language with which this
approach to DSL design has been particularly
successful is Haskell �Elliot99, Hudak00�. The
approach is simply to design a set of data struc-
tures and functions whose use with one another
characterizes the execution structures of the lan-
guage. These functions are organized into a so-
called “combinator library” for use by the ap-
plication engineers. Haskell is especially useful
when a “scripting language” is an appropriate
model for domain activities; such languages are
normally associated with simple state machine
commands, such as with operating system shell
scripts, but they are quite frequently useful for
describing simple processes in particular do-
mains.

One could consider using such an approach for
the behavioral part of the specification in Fig-
ure 2. The structural part must be characterized
as well, but it will primarily just be a syntac-
tic variant of the Java declarations above.9 An
important aspect of analyzing dynamic aspects
of the Satellite domain, such as which ground
stations can talk to which satellites at any given
time, will be to determine the exact position of
the satellites. This is essentially a straightfor-
ward �though very complex, in reality� physics
calculation, which can be expressed as read-
ily in Haskell as in any other language. In the
early 1990s, Haskell was used to describe cov-
erage by AEGIS ships of enemy target regions
�Carlson93�. A rather elegant conceptualiza-
tion allowed them to pass functions where most
languages would require data structures to be
passed. The idea is simple: think of a Region

as a mapping between a Point and a Boolean,
whose value, when applied to any particular
point, tells whether the point is in the region
or not. One expresses that the Region is a map-
ping from Points to Booleans in Haskell as:

Region :: Point -> Boolean

They defined combinators to represent various
common region shapes, such as circle of radius
R, centered about the point.

circle :: Radius -> Region

Notice that this function, that returns a func-
tion as its value, is easily expressed in some
languages, but its correct usage is fully type-
checked in Haskell. In the satellite domain, we
could use this same notion to describe the dy-
namic coverage of a satellite as the intersection
of the satellite’s broadcast cone with the earth;
call this function its coverage.

Coverage :: Satellite -> Region

One could then determinewhich ground stations
can listen to the satellite by simply enumerat-
ing the set of ground stations and keeping only
those where the satellite’s region of coverage
included the ground station’s location, viz.

��sat,gs� | gs<-groundstations,

sat<-satellites,

�coverage sat��location gs��

One reads this “list comprehension” as: the set
of all satellite — ground station pairs, �sat, gs�,
for which the region “coverage sat” applied to
the point “location of gs” is true, i.e. the ground
station is within the circle covered by the satel-
lite’s transmitter. Imagining a sphere centered
about the earth with the satellite’s distance from

9 Actually, because of the lack of inheritance in Haskell’s algebraic data types, the structure will rather resemble the flattened-out
instance structure described below for Access in the section on COTS-based approaches or will be encoded in datatype extensions
and overloaded classes.

Supporting the DSL Spectrum 271

the center of the earth as radius, the samemecha-
nism could be used to determinewhich satellites
can hear which ground stations’ transmitters.

These are all the technical calculations of cover-
age. The point here is that they can be expressed
elegantly, but they will probably not be used by
the application engineer. Rather, a language
fragment characterizing the sequencing infor-
mation given in Figure 2 might be required.
Briefly, the intent of the sequencing informa-
tion is to provide enough of a model of the ac-
tivities on-board a satellite to know when there
will be enough power for operating transmitters
and receivers, as well as predicting the neces-
sity for such activities. The model allows the
specifier to introduce arbitrary “instruments,”
such as “camera,” and characterize them with
simple finite state machines. These machines
can transition from one state to another based
on specific external stimuli — such as the solar
cells being in sunlight or darkness, and signals
being received or transmitted — and on transi-
tions of other instruments on board the satellite
between states �in the previous transition� —
e.g. the receiver entered the “data ready” state.

To express the collection of state machines in
Haskell, one mightwrite the Haskell program in
Figure 4b. To understand it, first consider Figu-

re 4a. Often, one extends Haskell to become a
DSL by constructing what is called a “monad,”
a datatype that allows one to hide state informa-
tionwhile still affording an applicative language
interface. Constructing these is nontrivial and
requires at least as much — but different! —
expertise as using any other syntax-based sup-
port mechanism. The type Simulation in Figure
4a is such a type; it involves a Snapshot of the
status of all of the modeled elements, along with
the stimuli added since the last snapshot and the
time the snapshot was taken. It is not impor-
tant here to understand why a mapping between
Snapshots is needed �nor what the extraneous
type variable a is used for�, just that Snapshot
must capture all of the varying state information
required to perform a simulation.

So the type Snapshot comprises a list of Status
tuples along with a list of Stimulus descriptions
and a universal time. Each Status tuple com-
prises a string — the element name -, position,
velocity, and a list of all the instruments associated
with the element, togetherwith the State they are
in as of the last “tick.” The tick function is our
way of causing a simulation to progress. Given a
time interval since the last Snapshot was taken,
tick must update the Status of all the elements,
it must compute a new set of stimuli based on

type Simulation a � Snapshot -> �Snapshot, a� - the simulation "monad"
type Snapshot � ��Status�, �Stimulus�, UniversalTime�
tick :: Time -> Simulation ��
tick deltaT � n sn @�e,ut�. ��map e updateStatus, ut�deltaT�, ���

where updateStatus �n, p,v,is� � �newp p v ut deltaT, newv p v ut deltaT, map is nexts�
nexts � . . . - must incorporate new stimuli and determine what new triggers arose . . .

observe :: Simulation Snapshot - like getChar
command :: String -> Simulation �� – like putChar
type Status � �String, Position, Velocity, ��Instrument, State���
type Rule � �State , �Reaction��
type Reaction � �Stimulus, State�
data Stimulus � Dark | Light | Receiving | Transmitting | Otherwise | Change Instrument State
data Instrument � Inst fname: String, current: State, rules: �Rule�g
data Owners � Australia | EU | USA
data Element � GroundStation funiqueID, ownerCorp:String, owner: Owners, . . . , stat:Status, rules: �Rule� g|

CommunicationSatellite funiqueID, ownerCorp:String, owner: Owners, . . . , stat:Status, rules:
�Rule� g|

. . .
next :: Instrument -> �Stimulus� -> State
next inst � – Find appropriate rule and test for reactions
type State � String
type Instrument � String
ut0 � 333252323 – zero universal time
comsatA � 110 – communications satellite standard altitude

Fig. 4a. Haskell Simulation Specification Fragment.

272 Supporting the DSL Spectrum

elements � ��CommunicationSatellite "ATTs0088" USA "ATT" ...
��Position 21.3 -157.867 comsatA�, �Velocity 0 0 0�, ��"transmitter", "off"�; �"receiver", "on"���
��"transmitter", �� "on" , ��Light , "off"��; �"off", ���Change "receiver" "data ready" � ,"on"�����
�"receiver", ��"on", ��"data end", "data ready"��; �"data ready", ��Otherwise, "off"��; . . .�����

�SurveillanceSatellite "AF1102" ...
��"camera" ��"on", ��Dark, "off"�� ...��� ...�

Fig. 4b. Haskell Satellite Specification Fragment.

which instruments changed state, and it must
add the time delta to the universal time. Again,
the function definition here is mostly suggestive
and need not be understood. The roles of anal-
yses and input to the simulation are captured
in the observe and command functions, respec-
tively. They respectively map information out
of the Simulation and insert stimuli into it.

The rest of the program in Figure 4b is straight-
forward, using Haskell’s data and type state-
ments to define the structures somewhat simi-
larly to the Java specification in Figure 3a. No-
tice that the abstract datatype construct, data,
allows one to enumerate values easily, as inOwn-
ers. Notice that Stimulus is a similar list with the
additional possibility of adding a Change record
describingwhich Instrument enteredwhichState.
Probably the most interesting thing is that a do-
main engineer need not really understand what
technically are the lists of tuples that are being
entered in the elements declaration, but simply
needs to understand the form used to express
them. Since the specification in Figure 4b is
all that needs to be written by the domain ex-
pert, very little of the complexity �or elegance�
of Haskell for expressing this language comes
through. That is, for representing the domain,
this language extension is not too bad.

Of recent interest in the research community
is the use of so-called “generic programming”
�Jeuring95, Lopez97� techniques, wherein func-
tions have arguments that are programs, types,
type constructors, class hierarchies, or even
grammars. It is possible that these can be used
to provide higher-level abstractionswhose map-
pings into the language effect DSL-like con-
structs. This approach can provide more exten-
sibility than one would get from simply staying
within the language. For example, although the
expression above is not too far from the specifi-
cation language in Figure 2, using generic pro-
gramming one might be able to make it exactly
the same. The generic program’s evaluation
would simply produce the description in Figure

4b from the description in Figure 2 as an inter-
mediate result in the computation of the Simula-
tion. Aswe shall see, this has all the benefits and
pitfalls that a LEX�YACC approach has, when
no intermediate representation is generated and
maintained.

3.3. COTS-based Approaches

Another approach comprising several alterna-
tives, that has gained some popularity is to ex-
press the structural aspects of a DSL in terms
of Common Off-The-Shelf �COTS� products,
such as Microsoft Access or, more commonly,
spreadsheet representations.

Microsoft Access as DSL. Figure 5a illustrates
some of the major structures of the satellite
domain expressed in Access database schemas
�Microsoft Access�, where types correspond
with “Tables”; Figure 5b illustrates the Commu-
nications Satellite type of Figure 2 from the rela-
tion schema Design view of Access. It is worth
comparing this definition with the correspond-
ing definitions from Java, for example. Here,
the entire supertype structure has been unfolded
into the lowest level type. In particular, the at-
tributes from Elements and from Satellites are all
present in the CommunicationsSatellite “Table.”
Even though this is not necessarily how one
would design a schema for this DSL in Access,
it certainly represents a viable option. The al-
ternative is to reference Satellite fields, and then
Satellite could reference the Element fields, us-
ing keys of the relations. The present definition
makes data entry easier. Fortunately, Access
has a quite intuitive interface for creating in-
stances and thus is not much more cumbersome
than conventional languages to use. Notice that
there are no fields for the Protocols. This will be
discussed shortly.

Supporting the DSL Spectrum 273

Fig. 5a. Access Tables for Elements and Enumerated Types.

Fig. 5b. Communications Satellite Table Fields.

274 Supporting the DSL Spectrum

Fig. 5c. Protocol Table.

Some other shortcuts have been used in design-
ing this representation. For example, whatwas a
Position type in Java, with latitude and longitude
fields, has been unfolded into the definition of
the satellite. Notice also that there is some flex-
ibility in using SQL, the well-known database
query language, to somewhat constrain the field
values. In Figure 5b, we are focused on the
posLatitude field. Notice at the bottom of the
screen image that there is a “Validation Rule”
restricting the values in this slot to be between
-90 and 90 �degrees�. �“Between x And y” is a
formal SQL constraint.�

Figure 5c shows how the protocols could be
dealt with. When designing relational schemata
there are always two choices that can be made.
A single relation with several fields can be used
to characterize objects that form “keys” of the
relations, that is, a value that is present ex-
actly once in any given row. The other way
to organize relations is the so-called “entity-
relationship” style, where simple binary rela-
tions relate objects to property values. The rela-
tion name is the property. This is better for rep-
resenting multiple-valued attributes, such as the
protocols and links in this example. The elemen-
tIDs do not form keys in this kind of relationship.

The schema for the relation used in Figure 5c is
an adaptation of the entity-relationship style in
which the last three columns really form a sin-
gle “value” expanded in a fashion similar to that
done to Positions above. Figure 5c itself shows
how one would enter the data itself, rather than
the schema definition. Another feature of the
database metaphor is that a table of constants
— up, down, in, and out — has been defined
and the values of the column InOut have been
restricted to these values. The cursor is poised
over the InOut column for the last entry, whence
the drop-down list of choices is being offered to
the user entering the data.

XML as DSL. Another example of COTS-
based tool approaches to specifying DSLs are
the purely abstract-syntax-based XML approa-
ches that have been becoming popular recently,
along with, for example, DOM-based tools for
mapping over the abstract-syntax-captured in
theXMLrepresentation �XMLSoftware�. These
represent the minimal interface and syntax ap-
proach, leaving the meanings of things entirely
to the interpretation of the tools they are used
with. There is also a variety of structuring
mechanisms, that take on the role of grammars
or abstract syntax specifications, such as RDF

Supporting the DSL Spectrum 275

<CommunicationsSatellite id� "satellite. ATTs0088.007.XX3"
name � "ATTs0088"
owner � "USA"
multiplex � "4096"
rate � "100 MBS">

<ownerCorp> ATT <�ownerCorp>
<position latitude � "21.3" longitude � "-157.867" �>
<inProtocol> Private P8 <�inProtocol>
<outProtocol> Private P8 <�outProtocol>
<outLink to � "groundstation.Oakland2.007.XX7" �>
<inLink from � "groundstation.Oakland2.007.XX7" �>

<�CommunicationsSatellite>

Fig. 6. Possible XML version of the ATTs0088.

and XML- schema. One has a difficult problem
mapping to these representations if there is no
more flexible interface available than text edit-
ing — i.e. they make horrible languages for
humans to write — but this approach is very
valuable as an adjunct approach to other ap-
proaches. As one can see from Figure 6, an
XML expression of just the ATT satellite above
is quite a bit more verbose than even the Java
version, and considerably more so than the true
DSL specification in Figure 2.

Microsoft PowerPoint asDSL.WeatTeknowl-
edge are pursuing a hybrid approach, between
COTS-based user interfaces �in particular Pow-

erPoint �Microsoft PowerPoint�� and our tradi-
tional syntax-based approach developed in the
1980s and 1990s using program transformations
for analysis and translation in the Popart system
�Wile86,Wile93�. Within our extension to Pow-
erPoint, called the Design Editor �Goldman99�,
the application designer designs a graphical in-
terface comprising icons and different kinds of
arrows. The designer also declares what at-
tributes may be used to decorate the various
classes and superclasses of component and con-
nector �icon and arrow� types. Domain types
can also be enumerated. This, so-called “archi-
tecture style”10 or “domain design” takes the

Fig. 7a. Satellite Domain Specification in PowerPoint Design Editor.

10 We originally designed this to provide specific notations and analyses for software architectural styles inAcme �Garlan00�,
but later recognized its potential for designing structural portions of DSLs.

276 Supporting the DSL Spectrum

place of a syntax for the structural aspects of
the domain. Specifications can then mix graph-
ics with textual and graphical attributes in this
hybrid DSL technology. Figure 7a illustrates
the style specification for the satellite domain;
Figure 1 is an instance of a design expressed in
these domain terms. Various icons here repre-
sent classes of the “style” domain. The “clouds”
are abstract classes with which the domain de-
signer can associate attributes; here, all the slot
variables of the Java specification are attributes.
The mechanism for specifying these attributes
is form-based and rather “clunky,” but one can
express that an attribute can be optional, re-
quired and � or multiple valued. Its type can be
proscribed and ranges given for numeric types.

There are four different kinds of components,
linked to the clouds via subtype arrows. Each
has an associated icon �in different colors� —
cruciform shapes for satellites and rectangles
for controllers. There is only one kind of con-
nector, called a “Link,” represented by a dotted,
double-arrow. The three rounded rectangles la-
beled Security Level, Protocol, and Organization
ID are enumerated types for this domain. Right

clicking on them brings up a menu to enter the
constants. The two icons labeled Designer Stud-
ies and Path Studies are “analysis groups;” they
will become major menu labels at the top of the
PowerPoint screen when editing designs in the
Satellite style. The menus will contain various
analyses as selections, Attribute Validity, Autho-
rization, etc. With each analysis one can as-
sociate parameters that must be filled in when
the analysis is invoked during satellite system
design and analysis time.

Figure 7b shows the original design being an-
alyzed for Throughput. Notice that the Pow-
erPoint frame segment shows the editing tools
specialized for this domain in the upper left-
hand corner just above the editing window. The
Djkarta1 satellite and the FortCollins9 ground sta-
tion have been selected, so after mousing the
Path Studies > Throughput analysis menu in the
menu bar at the top of the frame, the analy-
sis computed throughput values in both up and
down directions between these two elements.11

Recall that the inclusion of this menu was indi-
cated by the presence of the analysis hierarchy
on the domain design in Figure 7a. When we se-

Fig. 7b. Throughput Analysis.

11 There is not enough information in our model to do this. The example illustrated is from a style that is slightly more complex
in some dimensions than the one discussed here.

Supporting the DSL Spectrum 277

lected the second analysis result in the analysis
window �at the bottom of the screen� the path
with the maximum throughput �here, the only
path� was highlighted on the original diagram,
i.e. the feedback from analyzers is presented
right on the original diagram whenever possi-
ble.

Our approach is part of a broader category of ap-
proaches that also includes techniques involving
the use of UML �Booch99� with, for example,
COM-based domain-specific analyzers.

4. DSL Support Issues

Each of the techniques presented in the previ-
ous section has advantages and drawbacks that
will be detailed further in the sequel, but first it
is important to recapitulate why providing DSL
support is potentially so difficult. Generally,
there are three kinds of issues that make DSL
support difficult: issues specific to the fact that
we are designing a DSL, more generic issues
that have already arisen in providing support
for general-purpose programming languages,
and pragmatic issues that transcend technical
arguments for particular solutions. Before dis-
cussing in further detail how each of the DSL
support approaches above impacts these issues,
a slightly more careful discussion of each issue
is presented in the following sections. In the
following section, Section 5 — Support Advan-
tages for DSL Approaches, a table is presented
that lists various issues as row headings and
various support techniques as column headings.
The boldface labels in the sections below will
be used as the issue labels in that table.

4.1. DSL-Specific Issues

Above we focused on the design and specifica-
tion of the syntax of the DSL and abstract or
internal representations, demonstrating in par-
ticular, that the appropriateness of the specifi-
cation language is very domain-specific, some-
times even “sub-domain-specific.” Some as-
pects are easily characterized with traditional
BNF-like syntax, others yield better to tabular
approaches, and still others, to graphical repre-
sentations. Worse, most domains have some as-
pects of well-known languages already present,

e.g. infix operator notation, with only a limited
amount of truly new syntax added for the prob-
lem domain. Some ideally require a mixture of
graphical, syntactic and even tabular entry.

It will be useful below to separate the language
design issues into four separate concerns: speci-
fying the structure of objects or concepts of the
problem domain, specifying relationships be-
tween objects or concepts in the domain, spec-
ifying �other� constraints on objects or among
concepts of the domain, and specifying behav-
ior of domain objects or agents. Some DSLs
have little or none of one or even two of these
issues; they are all almost always present, but
may be implicitly dealt with by the infrastruc-
ture. For example, one need not specify in
the satellite domain the constraints that actually
yield computations of total path bandwidth; the
analytical infrastructure provided by the DSL
support designer will provide the algorithms.

Specific problems that arise include:

� Sub-languages present in a DSL are “rein-
vented” rather than adopted directly, viz. the
languages for constraints, for process, and
for the various constants. It would often
be better to adapt or adopt well-known lan-
guages for such purposes, especially if there
are no precedents for expressing these in the
problem domain jargon.

� The language itself may be a bit artificial for
the domain. In particular, the syntax used in
the example in Figure 2 for how to connect
the different elements is clumsier than sim-
ply drawing the connections as was done in
the motivating Figure 1.

� Designing analyzers and simulators is made
more or less easy by how well the implemen-
tation technology matches the natural model
underlying computations in the domain. For
example, if the underlying model is the si-
multaneous solution of a set of differential
equations, as with many control system ap-
plications, translation into an implementa-
tion mechanism like MatLab may be the best
approach. Here, for example, the Haskell
simulator technology would be quite appro-
priate for designing the tracking analyzers.

� Debugging simulations and analysis is made
difficult because problems and errors have to

278 Supporting the DSL Spectrum

be related back to the problemdomain, rather
than in terms from the evaluationmechanism
itself.

4.2. General-purpose Language Support
Issues

All of the concerns that are germane to general-
purpose programming language �GPPL� design
and support may become important in the sup-
port of a specific DSL. The tool support nec-
essary can often be classified in GPPL support
terms: editing, dereferencing, saving; compila-
tion concerns, such as parsing, type checking,
and code generation; static analyzer designs,
such as usage graphs; means for debuggingDSL
“programs,” often entailing an “unparsing” ac-
tivity to map back out of the internal representa-
tion; support for persistence and versions; and
mechanisms for simulating or executing DSL
programs. These issues will be elaborated in
more detail below.

4.3. Pragmatic Support Issues

A final category of problematic issue, often
critical in the decision of what approach to
take to provide DSL support, is purely prag-
matic: sometimes a particular implementation
platform is important or sometimes the ability to
spread effort among members of a team is crit-
ical. These constraints often cause technically
surprising choices to be made.

� There may be sources of data and analy-
ses independent from those with which the
technology must interact. This is some-
what related to issues that arise in Computer-
SupportedCooperativeWork �CSCW� �Ben-
Shaul95� where support of multiple sources
for changes to the specification is required.

� Depending on applications, several engineers
may need to cooperate to come up with a
specification. The technologies for computer-
supported cooperativework �CSCW�—trans-
action control and version management —
are not incorporated, for example, in theCor-
nell Program Synthesizer Generator. This

may argue for a much more fragmented ap-
proach than might seem ideal, possibly re-
quiring different support options for differ-
ent portions of larger DSL.

� The technology must run on the platforms
the application engineers are familiar with.
One almost never has the luxury of defining
an entire programming and hardware sup-
port environment for the accomplishment of
particular tasks. Interoperation with partic-
ular file formats, efficiency considerations,
and operating systemconcerns can each dom-
inate a technology choice decision.

Many of these problems will pertain to any of
the alternative approaches to providing DSL
support mentioned above. However, each ap-
proach will tend to solve or ameliorate at least
one of them. It isworth revisiting each approach
above to see whether problems are aided, exac-
erbated or untouched by the approach.

5. Support Advantages for DSL
Approaches

Table 1 is an attempt to indicate how effec-
tive various approaches to providing DSL sup-
port are. The issues listed in the left column
are keyed to the discussion above. Structure,
Constraints, and Behavior all refer to how well
different language aspects can be expressed in
DSLs supported by the technology to the left,
not how readily the semantic support behind
these sublanguages can be expressed. Other
rows refer to howdifficult it is to provide support
for the labeled activity, not whether it is already
provided by the technology. The “�” symbol
indicates that outstanding support is provided
by the technology; the “�” means excellent;
“�,”good; “�,” fair; and “�,” poor or difficult
to provide.12 The table is meant to be purely
indicative and certainly represents just my opin-
ion based on my own experience with some of
them. There is a wide variety of other specific
support tools and several of the issues above
have not been dealt with because of my lack of
personal experience.

A word on why the columns were chosen is
plausible. The choices simply represent a group
of tools with which I have some limited famil-
iarity. This has some major implications with

12 Think of the scale in terms of “thumbs up” through “thumbs down.”

Supporting the DSL Spectrum 279

Y
A

C
C

Sy
n.

G
en

.

H
as

ke
ll

Ja
va

A
cc

es
s

Po
w

er
Pt

.D
E

X
M

L

C
O

M

Structure � � � � � � � �
Relationships � � � � � � � � DSL-
Constraints � � � � � � � � Specific
Behavior � � � � � � � �
Edit � � � � � � � �
TypeCheck � � � � � � � �
Analyze � � � � � � � � GPL
Simulate � � � � � � � � Support
Unparse � � � � � � � �
Persistence � � � � � � � � Pragmatic
Versions � � � � � � � � Support

Language Language COTS-based
Design Extension Approaches

Table 1. Effectiveness of Approaches
� — Outstanding, � — Excellent,� — Average, � — Fair, � — Poor.

how the table should be considered. Notice in
particular that the “PowerPoint Design Editor”
labels one column. It is important to realize that
were the comparison simplywith PowerPoint it-
self, a much more bleak support picture might
be painted, something akin to those of XML or
COM. By the same token, were I familiar with
SmartTools �Attalli01�, that effects an automatic
conversion from DTD �Document Type Defini-
tion� to abstract syntax trees and vice versa is
supported, I might have rated its combination
with XML comparable to the advantages from
the Synthesizer Generator.

Other examples abound. Excel would make an
excellent column label as well, but I have not
used it in this context at all. Moreover, there are
modern research versions of language process-
ing tools, such as ASF�SDF �Heering89, van
den Brand01� and LISA �Mernik00a� that may
actually be superior to the Synthesizer Genera-
tor, if pragmatically acceptable to an organiza-
tion. For a recent overview of such systems, see
�Heering00�.

In the following, each row of the table will be
discussed in turn, since the table ismost “indica-
tive” of what to expect when using the various
techniques.

5.1. Describing Structure

Explicit syntax is ideal for expressing complex
declarative structures, such as in the element
specifications above, where the delineation of
attributes such as location, type, name, position,
velocity, and sequencing are sometimes speci-
fied. Since explicit syntax is easily provided for
in YACC and the Synthesizer Generator, they
do an outstanding job of representing structure.
Syntactic representations are especially useful
when several optional parts of the structure may
be present or where there are complex con-
straints between the attributes. Continuing the
example, the hours, field of view, multiplex, rate,
and sequencing are all optional and dependent
on the element’s type; syntax can easily provide
for the facile expression of that fact. Syntax
can also provide for correlations between at-
tributes, such as the required presence of state
declarations when states are used in sequenc-
ing instructions. Lists of items are also handled
syntactically, especially when ordering is im-
plied, but these are sometime handled better as
relationships �see next item�.

Programming language extensions are some-
what awkward in this regard, but they are per-
fectly usable when other features can be used

280 Supporting the DSL Spectrum

effectively. Moreover, it is not difficult to de-
scribe form-based interfaces to these in gen-
eral. Java’s inheritance mechanism renders it
a bit more concisely for expressing these fixed
structures than Haskell, so the former was rated
excellent and the latter merely good. Our form-
based PowerPoint Design Editor is about the
same as Java to use for specifying attributes of
objects, assuming Java forms are created for at-
tribute entry for each object type.

When attributes are very regular, a tabular pre-
sentation is often useful, so Access can shine
through here and is also given an outstanding
rating. Access has built-in forms for data en-
try and allows further customization of these
by the designer. Access is quite awkward for
interrelating both simple attributes and lists of
attributes simultaneously, as was seen in the ex-
ample above - Figure 5b, but recasting the lists
of elements as relationships unto themselves —
Figure 5c — redeems Access in this respect as
well. Similar comments could also be made for
COTS spreadsheet programs, useful when spe-
cial simulations or analyses are easily expressed
as relaxations.

XML and COM fare rather poorly here in that
even though they can be used to express the
same information as the others, the interfaces
are quite verbose to say the same thing. They
can be boosted easily enough with a good form-
based interface, so they should not be discounted
out-of-hand.

5.2. Describing Relationships

Pictorial representations seem to be preferred to
syntactic ones when detailed relationships be-
tween objects are described. Hence, our Pow-
erPoint Design Editor is rated outstanding here.
PowerPoint itself would not be, for there the
logical structure is intertwined with the phys-
ical layout structure so implicitly that there is
considerable noise within the internal represen-
tation. The preference for graphical support
pertains even with medium-sized specifications,
where the direct interactions can be seen as
arrows or lines between the involved compo-
nents. Larger containment structures can be
represented by implicit links between “slides”
in PowerPoint as well, where one slide is the
definition of an icon on another. Beyond that,

PowerPoint joins the rest of the techniques in
requiring some sort of file management to de-
scribe aggregates.

Syntactic support for describing relationships
usually requires that objects be named uniquely
or relatively to some enclosing structure. Gen-
erally, application engineers must use awkward
techniques for finding what objects are referred
to, by looking up their definitions. The pro-
gramming language approaches must use simi-
lar naming conventions. Although Haskell can
be used to express cyclic relationships, occa-
sionally it is a bit mind-numbing to understand
how it works. On the other hand, Haskell can
deal with lists of objects better than any of
the other representations, so it is considered as
“good” as the rest of the syntactic and language
extension approaches. There may be explicit
tool support provided for finding object defini-
tions in Java orAccess environments, so that can
make relationships easier for application engi-
neers to deal with.

XML is the worst of the bunch for expressing
relationships, for one must reinvent some notion
of unique identifier each time such relationships
are desired. COM’s references are straightfor-
ward, but accessible only through programmatic
means; they can look approximately like Java
object creation code.

5.3. Expressing Constraints

Constraints — with essentially complex struc-
tures — are often best expressed syntactically,
and hence, tools providing syntactic support are
ranked outstanding, as the best way one can
provide domain-specific support. Of course,
specific domains may contradict this general-
ization and make considerable headway with
iconic constraint symbols.

Language extension can occasionally be just as
good at expressing constraints — that occasion
being when no specific jargon of the domain
has already been developed for expressing con-
straints and reliance on a “standard way” of say-
ing them is desirable. Haskell is especially nice
in this regard, and, accordingly, has been rated
excellent. Haskell’s lists, logical connectives
and list comprehensions �see example above�
are very useful here. Java can do all right here
as well, but it is usually considerably more awk-
ward, especially since it uses unconventional

Supporting the DSL Spectrum 281

syntax for conditionals and statements. Access
allows some local constraint specifications us-
ing SQL; moreover, a programmatic interface
is available, that allows designers to provide for
SQL’s use on a more global scale. Hence, these
two are still good for representing constraints.

The PowerPoint Design Editor and the inter-
change languages, XML and COM, are all equ-
ally bad here — the designer really has to pro-
vide an ad hoc constraint definition facility. Of
course, one of the other techniques could be
used for this in a hybrid approach, so no par-
ticular method should be discounted a priori.
The fact that the interchange mechanisms exist
makes the potential for combining effects very
promising.

5.4. Describing Behavior

Almost exact comments that apply to constraints
hold for behavioral representations too. Since
Access has no way of expressing behavior, it is
rated merely fair in this column, but otherwise
all the entries are the same for the behavior row
in the table as for the constraints. In fact, some
people prefer flowcharts to a structured syntax
for expressing sequencing, so the PowerPoint
Design Editor could be bumped up a notch for
some uses. Researchers raised in the structured
programming era tend to eschew such potential
complexities.13 Even though graphical idioms
may turn up occasionally, people tend to use a
syntactic way to describe procedures, so I have
generally concluded that syntax is an outstand-
ing means for specifying behavior.

It is worth mentioning that although Haskell
is rated excellent for expressing behavior, it is
not for the same reasons as for constraints, for
a completely different dialect of the language
will usually be useful for expressing behavior.
The most common usage is for scripting, using
the monad construct described briefly above.

5.5. Editing

This is the forte of the Synthesizer Generator
in that it understands the structure of the syntax

and can prevent entry of erroneous text in the
first place; hence, it is rated outstanding in this
category. At least one other editor, the ubiq-
uitous emacs, has been provided with “modes”
that approximate syntactic understanding of the
more popular languages. Sometimes a DSL
can be designed to similar standards �like C�
and take advantage of the fonting and bracket-
matching features of emacs. In fact, since it
is open- source, an expert can probably design
such a package for a new DSL rather easily.
For this reason, LEX�YACC and Haskell are
rated good in this aspect. A Java emacs mode
is also available, but Java is ranked excellent
because there are programming environments
built specifically for it, which facilitate editing
to a much greater extent �Sun Forte�.

Access and PowerPoint both have nice editing
interfaces; to me PowerPoint’s feels much less
clumsy than Access, so I rated the former out-
standing with Access only excellent. Naturally,
as with almost everything, the interchange lan-
guages require that you design your own. How-
ever, if the XML used matches an html applica-
tion to some extent, specific form editors may
be around to make editing it a somewhat less
unpleasant chore than it is normally using a text
editor!

5.6. Defining Type Checkers

This is another area where the Synthesizer Gen-
erator excels, in that providing a set of attribute
grammar declarations to do type checking is
generally rather straightforward, but tedious.
The computation of the attribute has to be ex-
pressed for each construct in the language, but
their expression is equational in terms of at-
tributes of parent nodes �inherited� or children
nodes �synthesized�. The relaxation computa-
tion proceeds until it converges.

In fact, LEX�YACC has been used long enough
so that this activity is not too difficult for experts
there either, perhaps requiring frequent refer-
ence to “the Dragon Book” �Aho86�. This is the
area where support tooling really requires un-
usual �read, “expensive”� expertise, however,

13 This raises an interesting issue: to what extent should the DSL designer imbue the language with good design principles?
Generally, if there is already an established practice in the domain, we have found it best not to perturb it; dealing with the
technology itself is often such a hurdle for application engineers that learning new notations can be the “straw that broke the
camel’s back.”

282 Supporting the DSL Spectrum

and is probably the main drawback to providing
syntax-based DSL support.

There are two issues related to using language
extensions for DSL support in this category: �1�
how much of the language’s own type check-
ing can be used to provide effective DSL type
checking and �2� how hard is it to express what
is left over? The table rankings are for �1�,
where Haskell’s native type checker is noth-
ing less than astounding — programs that type
check often run correctly the first time! Java’s
strict adherence to class accessor syntax can
also provide good support for type checking.
Regarding �2� these languages can often be re-
garded as poor for the following reason: with
the exception of the data structure declarations,
for which type checking programs can be writ-
ten, when the user writes an actual program in
the language, there is no abstract syntax repre-
sentation of the program that a type checker can
refer to. So, for example, if only one of two spe-
cific functions should ever be called in a partic-
ular context, establishing that domain-specific
type constraint might require the introduction of
extraneous variables at run-time to signify the
correct context and the number of times one of
the functions had been called. These variables
have nothing to do with functionality, and if the
type constraint is critical, it may be too late to
delay such constraint checking. This inability
to separate concerns can be damning for a lan-
guage extension approach. The next best thing
is to write an interpreter in the language over
an abstract syntactic representation so this kind
of type checking can be data-driven at analysis
time.

Access and the PowerPoint Design Editor are
rated good simply because their interfaces are
good at enforcing adherence to a rigid syntax.
Otherwise they are only fair, possibly requiring
extensive programming; XML and COM can
require similar amounts of programming.

5.7. Describing Analyzers

Most analyses — for usage relations, inacces-
sible code regions, improper initializations, etc.
— share the same technology and criticisms just
enumerated for type checking, because in some
sense, type checking is the quintessential static
analysis activity. The rows differ only in that

Haskell and Java representations share the prob-
lem mentioned above: their lack of an abstract
syntactic representation of the program makes it
difficult to perform analyses directly. With one
caveat: if the sole purpose of the specification
is to perform a particular analysis, the evalua-
tion of the functions themselves may perform
the analysis.

An example may help clarify this. Assume that
we have a program extension for a musical di-
alect in Haskell comprised of functions C, C#,
D, D#, E, F, F#, G, G#, A, A#, B �with some
equivalent functions, such as Db�. Each func-
tion takes two integers: one represents an octave
and the other a tone duration. One could then
construct a tune as a sequence of applications
of these functions in a “MIDI monad,” e.g.

C 3 4; C 3 4; E 3 4; E 3 4; F 3 4; F 3 4; E 3 4
� � �

�Twinkle, twinkle little star�

�Do not be concerned if the technical details
seem obscure — the point is that a program
could play the song you entered using this some-
what clumsy technique.�

Ifwewant to analyze this program to seewhether
it contains any scale progressions �a particular
pattern of notes�, what can we do? All we have
is a big composed function and no data repre-
sentation for it. However, if all we wanted to do
was analyze the program for scale patterns, we
could define the functions themselves to check
for them. But then imagine we want to check
for repeated themes. We have the same prob-
lem. Of course, there may be more generic
ways of handling this problem, perhaps making
these functions of a class or perhaps even us-
ing generic programming, but the applications
of program extension so far have not dealt with
this problem — i.e., they have all been single-
use extensions.

5.8. Simulation

Simulation is the quintessential dynamic analy-
sis activity. As we demonstrated in the satellite
example above, Haskell is regarded as an ex-
cellent language for simulation. It is outstand-
ing in some contexts, but awkward in others,
especially those requiring relaxation or search.
Sometimes these can be programmed by relying
heavily on the lazy evaluation mechanism or by

Supporting the DSL Spectrum 283

building the search into a monad,14 but other
languages such as Prolog �Lämmel01� or simu-
lation packages such as MatLab may be a better
choice for some tasks. Java is another reason-
able language for using the language extension
as a direct program in the domain. Again, we
are relying on the application engineer to write
programs �as in Figure 4b� whose evaluation
runs a simulation of the implied behavior.

All other approaches require programming the
simulator in some language and provide no spe-
cific leverage on their own for this or other eval-
uation activities.

5.9. Unparsing

Sometimes one needs to report errors or results
of analyses back in terms of the original do-
main. This unparsing activity is not difficult for
approaches that keep an abstract syntax repre-
sentation of the original program, such as Ac-
cess and the DesignEditor, and in fact, the XML
and COM representations as well. The Design
Editor, moreover, provides a facility for high-
lighting the original objects on the PowerPoint
slides, so it has been ranked as excellent for
supporting analysis result reporting.

It is more difficult for the syntactic approaches
to provide unparsing facilities, especially the
YACC approach that does not even require in-
venting an abstract syntax in the first place.
The Synthesizer Generator does provide a link-
age between abstract and concrete syntax, so it
could be programmed there. Again, since the
language extensions generally have no abstract
syntax, reporting can be nearly impossible to
phrase in domain terms with them. If the exten-
sions are used extensively for representing data
structures of the domain, the debugging facil-
ities of the programming environment for the
language may suffice to describe the problem
structures. This is an especially serious prob-
lem with generic programming approaches.

5.10. Persistence

The Synthesizer Generator, Java programming
environments, Access and PowerPoint all pro-
vide means for saving files, so they are at least

good choices if the specifications in the DSL
need to be kept persistent. �It is not a fore-
gone conclusion that persistence is necessary;
the purpose of the DSL may just be to express
web search queries, for example, something of
generally transient utility.� YACC and Haskell
require extraneous mechanisms, and thus are
only rated fair. XML is rated good because
there are emergent facilities for keeping XML
databases persistent �Dashofy01�. I know of
no persistence mechanisms for general COM
structures, so I presume such facilities must be
programmed from scratch. This will be a non-
trivial activity in general, since the structures
may be cyclic and not refer to printable items,
but on an ad hoc basis they should be manage-
able.

5.11. Versions

Versions is a placeholder here for all the scaling
issues allowing large development efforts to use
DSLs. This requirement is almost non-existent
in the efforts to date, that have used a DSL-
based approach. It is even possible to argue that
it will never be a serious problem: large problem
solutions are the result of many small problem
solutions, each of which is best expressed in a
DSL close to the individual problem space.

Even with this argument, there will be problems
of intercommunication of shared data, version
management, translation between representa-
tions, etc., not to mention coordination of anal-
ysis and simulation activities. The table row
here is the one I understand least well, but I am
inclined to think that the Synthesizer Genera-
tor, PowerPoint and Access are the least likely
to become scalable on their own. COM is an
in-memory representation and certainly is not
intended for massive amounts of data either.

In fact, DSLs change more frequently than
general-purpose languages, exacerbating ver-
sioning problems. But there is good reason
to believe that language development facilities
of the future will be able to cope with such
rapid change, for example, based on LISA.
Its tool support allows incremental develop-
ment with multiple attribute grammar inheri-
tance �Mernik00b�.

14 For example, the list monad gives all executions over all elements of a list.

284 Supporting the DSL Spectrum

Some recent efforts have at least examined the
efficiency penalty incurred by using DSL ap-
proaches. Unlike extension approaches, lan-
guage-based paradigms may actually be more
efficient than the obvious program written in a
general-purpose language, because knowledge
of the domain can be taken into account in the
design of the compiler optimizations Time will
tell how important these pragmatic concerns be-
come.

5.12. Hybrid Approaches

When one really must design a domain-specific
language, LEX�YACC-based approaches seem
to represent the low buy-in cost alternative. One
forfeits any easy accessibility to editors or any
other support facilities, but the existence of
other support code written in C or C�� could
easily make this an attractive choice for pro-
viding an interface to that functionality. LEX
and YACC do not even require that an inter-
mediate syntactic representation be used — an
abstract syntax. However, its disciplined use to
parse into, for example, an XML representation
- playing the role of abstract syntax — could
link the DSL specifications into more generally
available tool support. This alternative defi-
nitely requires specialized expertise for DSL
development. This approach I would charac-
terize as a hybrid approach, because tools from
two or more columns of Table 1 are used in
constructing a DSL support environment.

Our research is best classified in this area. The
PowerPoint Design Editor is presently the fo-
cal point of our support environment. How-
ever, notice the many areas in the table where
it is deficient. In an application done for the
Census Bureau �Wile00� we used PowerPoint
to express questionnaire flow designs together
withAccess to express the database structure for
question answers and together with a form com-
position program �Tarantula� to describe how to
ask the questions in the different nodes of the
flow design. Moreover, a syntax-based mecha-
nism was used to parse an SQL extension to de-
scribe constraints on answers to questions pre-
sented in the forms. Idiosyncratic analyzers for
Topology, Coherence, Branch Coverage, Pro-
ducer�Consumer relationships, and other ab-
straction tasks were all written in Visual Basic,

producing feedback on the original flow dia-
grams. We had planned to have a Haskell eval-
uation engine used to allow the designer to sim-
ulate taking surveys, but the funding was can-
celled before it could be completed. Except for
the XML-based Tarantula to PowerPoint link,
these all communicated through COM repre-
sentations.

The idea for our hybrid approach is basically
to take whatever expressive power is needed
to describe a task and find an appropriate mix
of COTS components, specification templates
and idioms in those components, and domain-
specific language subdialects and then write as
little code as possible to glue them together and
provide appropriate analyzers and simulators.

It is easy to imagine UML as the center of an-
other hybrid approach; we have one: a state
chart simulation language usingMatLab as eval-
uation mechanism linked to Rational Rose as
specification language �Agyed01�.

This approach has several benefits. First, ap-
plication engineers may not have to learn new
languages and tool interfaces to write DSL pro-
grams. For example, PowerPoint users have no
trouble using our Design Editor immediately af-
ter understanding what the pallet of icons means
in the problem domain. Even if an engineer
does not know how to use the tool, learning
it can be a useful skill for furthering one’s ca-
reer. Not only is less investment in infrastruc-
ture needed, but also the functionality provided
by the COTS tool is almost always better than
one could imagine providing oneself. After all,
the tool provider is an expert at the domain sup-
ported by the tool: graphics, databases, forms
design, spreadsheet specification, etc. Incorpo-
rating such tools leverages all of that expertise.

On the other hand there are drawbacks and
things to watch out for with hybrid techniques.
The most obvious is the problem of what to do
when the tools change that you have relied on
to build your approach. There have been sug-
gestions �Copenhafer99� on how to deal with
this, but we ourselves have not found it to be
a problem so far, going from PowerPoint, to
PowerPoint 97, to PowerPoint 2000, to Power-
Point XP. The greater risk is that a less-than-
coherent interface to the functionality is pre-
sented to users not able to cope with such tech-
nological solutions; a stovepipe, monolithic set

Supporting the DSL Spectrum 285

of support functionality tuned to the user’s do-
main is ideal at first. So the hybrid approach
can appear rather intimidating and is somewhat
difficult to motivate until the users become fa-
miliar with it and see how increased flexibility
really can be an advantage for evolving DSL
support.

6. Conclusions and Future Directions

I hope that the table in Section 5 can be used
as a guide to how to approach a DSL support
problem. Only part of this support will involve
a “language;” the four aspects of language sup-
port - structure, relationships, constraints, and
behavior — may require quite uneven treatment
in any specific situation. The nature of the an-
alyzers to be provided will almost certainly be
important. For example, if graphical support is a
major concern, and expressing constraints is not
too important, one might choose to use Power-
Point with a COM linkage to Haskell, where an-
alyzers can check preprogrammed constraints.
The table should be taken with a �large� grain
of salt! This is my broad view based on very
shallow knowledge of several of these tools.

One should probably start with pragmatic con-
cerns to see if different approaches are already
tied down — must you link with a database any-
way, suggesting Access or a particular database
package already in use — or is multiple plat-
form evaluation necessary, suggesting Java or
Haskell for at least part of the task. Then eval-
uate the potential tools, looking for holes in the
coverage of the rows of the table. Determine
if these rows may be of any importance. If so,
find interchange mechanisms to access compat-
ible tools that do a good job in that row. I
am not well-versed in all the varieties of in-
terchange mechanisms, XML-processing tools,
syntax-based tools, generic programming ap-
proaches, GUI generators, etc., to provide a
thorough analysis here, and even if I were, it
would be obsolete next year. So this should
simply be a suggestive starting point for your
particular DSL needs.

I hope to have convinced the reader of three
things:

� That domain-specific languages do not nec-
essarily have anything to do with program-
ming languages at all.

� That designing domain-specific support does
not necessarily entail language design in the
conventional sense.

� And, that a variety of approaches can be used
to tailor domain-specific support to an orga-
nization’s pragmatic constraints.

Acknowledgements

I would like to thank Jan Heering, Ralf Lämmel,
Marjan Mernik, and another very helpful, but
anonymous referee for carefully reading the
drafts of this paper. I would also like to thank
the many members of our research group led
by Bob Balzer for over 25 years, formerly at
USC � Information Sciences Institute and now
at Teknowledge Corp., for the foundations for
these observations. And I would like to thank
my colleagues Neil Goldman, implementer of
the Design Editor, and Martin Feather for myr-
iad fruitful discussions of DSL approaches and
support issues.

References

�1� A. AHO, R. SETHI, AND J. ULLMAN, Compilers:
Principles, Techniques, and Tools, Addison Wesley:
Reading, MA, 1986.

�2� AGYED AND D. WILE, Statechart Simulator for Mod-
eling Architectural Dynamics, in Proceedings of the
Working IEEE/IFIP Conference on Software Archi-
tecture, Amsterdam, Aug 2001, 87–96.

�3� I. ATTALLI, C. COURBIS, P. DEGENNE, A. FAU, D.
PARIGOT, C. PASQUIER, SmartTools: A Generator of
Interactive Environment Tools, 10th International
Conference on Compiler Construction, CC’2001,
Lecture Notes in Computer Science, vol. 2027, pp.
355–360, 2001.

�4� R. BALZER, M. FEATHER, N. GOLDMAN, AND D.
WILE, Domain-specific Notations for Command
and Control Message Passing, Internal report:
USC�Information Sciences Institute, Marina del
Rey, CA 1994.

�5� G. BOOCH, J. RUMBAUGH, AND I. JACOBSON, The
Unified Modeling Language User Guide, Addison
Wesley, 1999.

�6� J. BOWEN, Formal Methods,
http���www�afm�sbu�ac�uk�

286 Supporting the DSL Spectrum

�7� M. VAN DEN BRAND, A. VAN DEURSEN, P. KLINT, A.
S. KLUSENER AND E. VAN DER MEULEN, Industrial
applications of ASF+SDF, CWI Computer Sci-
ence�Department of Software Technology Report
CS-R9622, 1996.

�8� M. VAN DEN BRAND, A. VAN DEURSEN, J. HEER-
ING, H. A. DE JONG, M. DE JONG, T. KUIPERS, P.
KLINT, L. MOONEN, P. A. OLIVIER, J. SCHEERDER,
J. J. VINJU, E. VISSER, J. VISSER, The ASF�SDF
Meta-environment: A Component-Based Language
DevelopmentEnvironment,10th InternationalCon-
ference on Compiler Construction, CC’2001, Lec-
ture Notes in Computer Science, vol. 2027, pp.
365–370, 2001.

�9� L. CARDELLI AND R. DAVIES, Sevice combinators
for web computing, in IEEE TSE Special Issue on
Domain-Specific Languages,, C. Ramming and D.
Wile, eds. May�June 1999, pp. 309–316.

�10� W. CARLSON, P. HUDAK, AND M. JONES, An ex-
periment using Haskell to prototype “Geometric
Region Servers” for Navy Command and Control,
Intermetrics Research Report, Nov 1993.

�11� S. CHANDRA, B. RICHARDS, AND J. LARUS, Teapot:
a domain-specific language for writing cache co-
herence protocols, in IEEE TSE Special Issue on
Domain-Specific Languages, C. Ramming and D.
Wile, eds. May�June 1999, pp. 317–333.

�12� M. COPENHAFER AND K. SULLIVAN, Exploration
Harnesses: Tool-Supported InteractiveDiscovery of
Commercial Component Properties, in Proceedings
of the Automated Software Engineering Conference,
Cocoa Beach, FL, Oct 1999.

�13� E. DASHOFY, A. VAN DER HOEK, AND R. TAYLOR, A
Highly-Extensible, XML-Based Architecture De-
scription Language, in Proceedings of The Working
IEEE/IFIP Conference on Software Architecture,
Amsterdam, The Netherlands, August 2001.

�14� ELLIOT, An embedded modeling language approach
to interactive 3D andmultimedia animation, in IEEE
TSE Special Issue on Domain-Specific Languages,
C. Ramming and D. Wile, eds. May�June 1999, p.
291–308.

�15� FEATHER, M.S., A survey and classification of
some program transformation approaches and tech-
niques, Meertens, L.G.L.T. ed., Proceedings of the
IFIP TC2/WG 2.1 Working Conference on Pro-
gram Specification and Transformation, Bad Toelz,
North-Holland, 1986, 165–195.

�16� D. GARLAN, R. MONROE, AND D. WILE, Architec-
tural descriptions of component-based systems, in
Foundations of Component-Based Systems, Gary
Leavens and Murali Sitaraman, eds., Kluwer, 2000.
�See also: http��www�cs�cmu�edu��acme��

�17� N. GOLDMAN AND R. BALZER, The ISI Visual De-
sign Editor Generator, IEEE Symposium on Visual
Languages, Tokyo, Sep 1999, 20–27.

�18� J. GOSLING, B. JOY, AND G. STEELE, The Java Lan-
guage Specification, Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1996.

�19� J. HEERING, P. HENDRIKS, P. KLINT AND J. REK-
ERS, The Syntax Definition Formalism SDF, ACM
SIGPLAN Notices 24�11� 43–75, 1989.

�20� J. HEERING AND P. KLINT, Semantics of program-
ming languages: A tool-oriented approach, ACM
SIGPLAN Notices 35�3� March 2000, 39–48;
http���www�cwi�nl��jan�semantics�
semantics�html�

�21� P. HUDAK, SIMON PEYTON JONES, AND PHILLIP
WADLER, Report on the programming lan-
guage Haskell, Yale Computer Science report
YALEU�DCS�RR–777, 1992.

�22� P. HUDAK, The Haskell School of Expression –
Learning Functional Programming through Mul-
timedia, Cambridge University Press, New York,
2000.

�23� P. HUDAK AND J. BERGER, A Model of Performance,
Interaction, and Improvisation, In Proceedings of
International Computer Music Conference, Interna-
tional Computer Music Association, 1995.

�24� J. JEURING AND D. SWIERSTRA, Constructing func-
tional programs for grammar analysis problems, in
Proceedings of a Conference on Functional Pro-
gramming Languages and Computer Architecture,
La Jolla, CA, 1995, 259–269.

�25� R. KIEBURTZ, F. BELLEGARDE, J. BELL, J. HOOK,
J. LEWIS, D. OLIVA, T. SHEARD, T. WALTON, AND
T. ZHOU, Calculating Software Generators from
Solution Specifications, Technical Report # CS�E-
94-032B of the Oregon Graduate Center 1994.

�26� N. KLARLUND AND M. SCHWARTZBACH, A domain-
specific language for regular sets of strings and trees,
in IEEE TSE Special Issue on Domain-Specific Lan-
guages, C. Ramming and D. Wile, eds. May�June
1999, p. 378–386.

�27� P. KLINT, A meta-environment for generating pro-
gramming environments, ACM Transactions on
Software Engineering and Methodology, 2�2�:176–
201, 1993.

�28� R. LÄMMEL AND G. RIEDEWALD, Prological Lan-
guage Processing, eds. M. van den Brand and
D. Parigot, in Proceedings of the First Workshop
on Language Descriptions, Tools and Applications
(LDTA’01),Genova, Italy, Elsevier Science, ENTCS
series, 44�2�, Apr 2001.

�29� P. E. M. LOPEZ, Generic parser combinators, in
the 2nd Latin-American Conference on Functional
Programming (CLaPF), La Plata, Argentina, Oct
1997.

�30� Microsoft Access,
http���www�microsoft�com�office�access

�31� Microsoft PowerPoint,
http���www�microsoft�com�office�
powerpoint�default�htm�

�32� M. MERNIK, M. LENIC, E. AVDICAUSEVIC, V.
ZUMER, Compiler�Interpreter Generator System
LISA, CD ROM, Proceedings of the 33rd Hawaii
International Conference on System Sciences, 2000.

Supporting the DSL Spectrum 287

�33� M. MERNIK, M. LENIČ, E. AVDIČAUŠEVIĆ, V.
ŽUMER, Multiple attribute grammar inheritance,
Informatica, vol. 24, no. 3, pp. 319–328, 2000.

�34� C. Ramming and D. Wile, eds., IEEE TSE Special
Issue on Domain-Specific Languages, May�June
1999

�35� T. REPS AND T. TEITELBAUM, The Synthesizer Gen-
erator, Springer-Verlag, New York 1988.

�36� D. SHARNOFF, Free Compilers:
http���www�idiom�com�free�compilers�,
2001.

�37� I. BEN-SHAUL AND G. KAISER, A Paradigm for De-
centralized Process Modeling, Kluwer Academic
Publishers, Boston, 1995.

�38� Sun Microsystems Forte,
http���www�sun�com�forte�ffj�

�39� M. TALLIS, N. GOLDMAN, AND R. BALZER, The
Briefing Associate: a role for COTS applications
in the Semantic Web, International Semantic Web
Working Symposium (SWWS), Stanford, California,
U.S.A. Jul, 2001.

�40� S. THIBAULT, R. MARLET AND C. CONSEL, Domain-
specific languages: from design to implementation
application to video device drivers generation, in
IEEE TSE Special Issue on Domain-Specific Lan-
guages, C. Ramming and D. Wile, eds. May�June
1999. p. 363–377.

�41� D. WILE, Popart: Producers of Parsers and Re-
lated Tools, Reference Manual, USC�Information
Sciences Institute, Marina del Rey, CA 1993.

�42� D. WILE, Local Formalisms: Widening the Spec-
trum of Wide-Spectrum Languages. Meertens,
L.G.L.T. ed., Proceedings of the IFIP TC2/WG
2.1 Working Conference on Program Specification
and Transformation, Bad Toelz, North-Holland,
1986, 459-481.

�43� D. WILE AND R. BALZER, Survey Instrument Cre-
ator (SIC) Training Manual, Teknowledge Corp.
2000.

�44� XMLSoftware.
http���www�xmlsoftware�com�, 2001.

Received: September, 2001
Revised: November, 2001

Accepted: November, 2001

Contact address:

David Wile
Teknowledge Corp., Suite 231

4640 Admiralty Way
Marina del Rey, CA 90292, USA

Phone: �1-310-578-5350
Fax: �1-310-578-5710

e-mail: dwile�teknowledge�com

DAVID WILE received his Sc.B. degree in Applied Mathematics from
Brown University in 1967 and his Ph.D. in Computer Science from
Carnegie-Mellon University in 1974. In 1973 he joined the University
of Southern California’s Information Sciences Institute, where he be-
came a project leader. His early interests were the formal specification
of functional and non-functional requirements and user-guided trans-
formation of specifications into implementations. Dr. Wile is interested
in many aspects of the programming process, from language designs
for problem specification and programming, through the specification
and optimization design processes, to meta-programming environments
used to realize these designs. His recent research interests include:
adaptation of COTS tools for the specification and implementation of
domain-specific languages, developing formal specification languages
for software architectures, and the use of architectural specifications in
requirements engineering.

Dr. Wile is a Senior Research Scientist in Teknowledge Corporation.
He was previously a Research Professor at the Computer Science De-
partment of the University of Southern California. He was Program
Chair of the Foundations of Software Engineering Conference, is an
ex-editor for IEEE Transactions on Software Engineering, and will be
Program Co-chair for the Automated Software Engineering Conference
in 2002. He is a member of the IEEE, the ACM, SIGPLAN, SIGSOFT,
Sigma Xi, and IFIP’s Working Group 2.1 on “Algorithmic Languages
and Calculi.”

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

