Journal of Computing and Information Technology - CIT 10, 2002, 1, 1-17 1

Domain-Specific Language Design
Requires Feature Descriptions’

Arie van Deursen and Paul Klint

Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

A domain-specific language (DSL) provides a notation
tailored towards an application domain and is based on
the relevant concepts and features of that domain. As
such, a DSL is a means to describe and generate members
of a family of programs in the domain.

A prerequisite for the design of a DSL is a detailed anal-
ysis and structuring of the application domain. Graphical
feature diagrams have been proposed to organize the de-
pendencies between such features, and to indicate which
ones are common to all family members and which ones
vary.

In this paper, we study feature diagrams in more details,
as well as their relationship to domain-specific lan-
guages. We propose the Feature Description Language
(FDL), a textual language to describe features. We
explore automated manipulation of feature descriptions
such as normalization, expansion to disjunctive normal
form, variability computation and constraint satisfaction.
Feature descriptions can be directly mapped to UML
diagrams which in their turn can be used for Java code
generation. The value of FDL is assessed via a case study
in the use and expressiveness of feature descriptions for
the area of documentation generators.

Keywords: domain engineering, tool support, software
product lines, UML, constraints

1. Introduction

A domain-specific language (DSL) is a pro-
gramming language or executable specification
language that offers, through appropriate no-
tations and abstractions, expressive power fo-
cused on, and usually restricted to, a particular
problem domain [DKVO00]. As such, a DSL
can be used to generate members of a family
of systems in an application domain. The well-
designed DSL is based on a thorough under-
standing of the underlying application domain,

giving exactly the expressive power to gener-
ate required family members easily. Potential
advantages of DSLs include reduced time to
market, reduced maintenance costs, and higher
portability, reliability, optimizability, and testa-
bility [DKV00, DK98].

A prerequisite for the design of a DSL is a de-
tailed analysis and structuring of the application
domain. Guidelines for acquiring such an un-
derstanding are provided by the research area
of domain analysis which investigates ways of
modeling domains. Following [Nei84]|, a do-
main analyst is a person who examines the
needs and requirements of a collection of sys-
tems which seem “similar”. Neighbors empha-
sizes that this is work that can be done only by
a person who has built many systems for differ-
ent customers in the same problem area. The
domain analyst is like a systems analyst, except
that the goal is to support the development of
families of related systems, not just one-of-a-
kind productions [TTC95].

Domain analysis originates from software reuse
research, and can be used when constructing
domain-specific reusable libraries, frameworks,
languages, or product lines. Several domain
analysis methodologies exists, of which ODM
(Organization Domain Modeling [SCK196]),
FODA (Feature-Oriented Domain Analysis
[KCH'90]), and DSSA (Domain-Specific Soft-
ware Architectures [TTC95]) are best known.

* Work carried out under CWI project SEN 1.2, Domain-Specific Languages, sponsored by the Telematica Instituut.

2 Domain-Specific Language Design Requires Feature Descriptions

The most important result of a domain analysis!
is a feature model [CE00, Chapter 4]. A feature
model covers the commonalities and variabil-
ities of software family members, as well as
the dependencies between the variable features.
The feature model documents feature rationales,
stakeholders, constraints (for example features
may exclude each other), binding sites, and pri-
orities.

A key element of the feature model is the feature
diagram, which is a graphical notation for de-
scribing dependencies between (variable) fea-
tures (see Figure 1 for an example). These
feature diagrams are the topic of our paper. Fea-
ture diagrams originate from the FODA method
[KCH"90]. They concisely describe all possi-
ble configurations (called instances) of a soft-
ware system, focusing on the features that may
differ in each of the configurations. Czarnecki
and Eisenacker’s book on generative program-
ming includes a recent account of feature dia-
grams; Van Gurp et al discuss the role of feature
diagrams in software product lines [GBSO1].

The purpose of this paper is to get a better under-
standing of feature diagrams and their potential
for supporting DSL design. In particular, we ad-
dress the following concerns (see also Section 6
on related work):

e The notation of feature diagram is only su-
perficially described, and is mostly explained
by way of examples. We formalize the no-
tion of feature diagram by providing a DSL
for feature definitions called FDL, together
with a suite of formally defined operations
for manipulating FDL expressions;

e Tool support for feature diagrams is still in
its infancy. We construct prototype FDL
tools, and discuss various ideas for further
advancing them.

e Feature diagrams are hardly used in practice,
and it is difficult to find actual examples of
feature diagrams used in concrete projects.
We attempt to address this by providing an
additional case study in the use of FDL.

e It is unclear how to proceed once a feature
diagram exists. To address this, we discuss
what can be done with an FDL description,
and how it can be mapped to a UML class

diagram to get a first version of the configu-
ration interface.

The plan of the paper is as follows. In Section 2
we introduce the graphical notation for feature
diagrams and also present our textual Feature
Description Language (FDL) that is able to
express everything that can be expressed in a
graphical feature diagram (and more). Next,
in Section 3 we introduce a feature diagram
algebra allowing the normalization of feature
diagrams. In addition, we introduce a notion of
satisfaction that enables us to answer the fol-
lowing question: given a feature diagram and
a list of user requirements, does this feature
diagram contain software configurations that
satisfy the user requirements? In this way, a
feature diagram can be actively queried and the
initial investments in its construction start to
pay off. Implementation issues are addressed
in Section 4. We show how feature diagrams
can be mapped to UML and Java classes. In
Section 5 we perform a case study and describe
how the variability of an existing commercial
product for documentation generation can be
modeled using FDL. The paper is completed by
conclusions in Section 6.

2. Feature Diagrams

2.1. Graphical Notation for Feature
Diagrams

Figure 1 shows a feature diagram for a sim-
ple car inspired by [KCH"90, CE00]. The di-
agram states that a car consists of a carBody,
Transmission, Engine and HorsePower. These
four features are mandatory, as indicated by the
closed dot on top of each feature. The last
feature of the car is pullsTrailer. It is op-
tional, as indicated by the open dot. carBody
and pullsTrailer are atomic features which
cannot be further subdivided in other features.
In the sequel, we will call features that are de-
fined in terms of other features composite fea-
tures. We will use the convention that names
of atomic features start with a lower case letter
and names of composite features start with an
upper case letter. Note that atomic and com-

! Issues related to domain engineering and analysis are also discussed on the Program Transformation Wiki at

www.program-transformation.org/.

Domain-Specific Language Design Requires Feature Descriptions 3

carBody

Transmission

« e

Engine HorsePower

pullsTrailer

automatic manual electric

gasoline

lowPower mediumPower highPower

Fig. 1. Feature diagram for a simple car.

posite features are called features, respectively,
subconcepts in [CE00].

The Transmission may be either automatic or
manual. The open triangle joining the lines from
Transmission to its sub-features indicates an
exclusive (“one-of”) choice: either automatic
or manual may be selected, but not both.

The Engine may either be electric or run on
gasoline or both. The closed triangle join-
ing the lines from Engine to electric and
gasoline indicates non-exclusive “more-of”)
choice: either electric or gasoline or both
may be selected.

The HorsePower may either be lowPower, medi-
umPower or highPower. The open triangle join-
ing the lines to the sub-features of HorsePower
indicates an exclusive, one-of, choice.

An instance of a feature diagram consists of an
actual choice of atomic features matching the
requirements imposed by the diagram. An in-
stance corresponds to a product configuration of
a system family. A simple case analysis learns
that the number of possible car instances is 36:
1 (carBody) X 2 (Transmission) X 3 (Engine)
X 3 (HorsePower) X 2 (pullsTrailer) = 36.

2.2. Textual Notation for Feature Diagrams

Feature Diagrams yield nice pictures that de-
scribe a system’s features. To enable email

communication and discussion as well as cre-
ation of automatic tools for processing Feature
Diagrams, a textual representation is, however,
preferable. This textual representation should
not only contain all information contained in the
graphical diagram but it should also be suited
for automatic processing.

One proposal, primarily intended for email com-
munication of Feature Diagrams, is given
in [BooOl1]. In Figure 2 we show how we will
represent the graphical notation from Figure 1
in a textual form. They may also contain con-
straints (not shown in this example), but we
postpone their description until Section 3.4.

An FDL definition consists of a number of fea-
ture definitions: a feature name followed by *“:”
and a feature expression. A feature expression

can consist of
e an atomic feature,

e acomposite feature: a named feature whose
definition appears elsewhere,

e anoptional feature: a feature expression fol-
lowed by “?”,

e mandatory features: a list of feature expres-
sions enclosed in al1(),

e alternative features: a list of feature expres-
sions enclosed in one-of (),

4 Domain-Specific Language Design Requires Feature Descriptions

Car:
Transmission: one-of(automatic, manual)

Engine: more-of (electric, gasoline)

all (carBody, Transmission, Engine, HorsePower, pullsTrailer?)

HorsePower: one-of (lowPower, mediumPower, highPower)

Fig. 2. Feature diagram for simple car in FDL.

¢ non-exclusive selection of features:> a list of
feature expressions enclosed in more-of (),

e adefault feature value: default = followed
by an atomic feature,

e and remaining features of the form ..., in-
dicating that a given set is not completely
specified.

This structure is formally described in a com-
plete grammar of FDL given in Figure 3. It is
written in SDF [HHKR89, Vis97]. The layout

module Fdl
imports Layout

exports

conventions (white space, comments) of FDL
are defined in module Layout that is not shown
here.

3. Feature Diagram Algebra

Given the textual representation of feature di-
agrams, we can now start developing rules to
operate on feature diagrams. The result is a
feature diagram algebra.

sorts FeatureName AtomicFeature FeatureDefinition
FeatureDiagram FeatureExpression FeatureList
Constraint DiagramConstraint UserConstraint

lexical syntax
[A-Z] [a-zA-Z0-9]*
[a-z] [a-zA-Z0D-9]*

context-free syntax

FeatureDefinition* Constraintx*
FeatureName ":" FeatureExpression

{ FeatureExpression "," }+
all (FeatureList)

one-of (FeaturelList)
more-of (FeatureList)

Feature Name

AtomicFeature
FeatureExpression "7"
"deafult" "=" AtomicFeature
Il‘.‘ll

DiagramConstraint
UserConstraint

-> Feature Name
-> AtomicFeature

-> FeatureDiagram
-> FeatureDefinition

-> FeatureList

-> FeatureExpression
-> FeatureExpression
-> FeatureExpression

-> FeatureExpression
-> FeatureExpression
-> FeatureExpression
-> FeatureExpression

->AtomicFeature

-> Constraint
-> Constraint

AtomicFeature "requires" AtomicFeature -> DiagramConstraint

AtomicFeature "excludes"

"include" AtomicFeature
"exclude" AtomicFeature

AtomicFeature -> DiagramConstraint

-> UserConstraint
-> UserConstraint

Fig. 3. Grammar for the Feature Description Language.

2 Called “or-features” in [CE00)].

Domain-Specific Language Design Requires Feature Descriptions 5

Overview of feature algebra rules

The feature diagram algebra consists of four sets
of rules:

e Normalization rules (Section 3.1): the pur-
pose is to slightly simplify the feature ex-
pression by eliminating duplicate features
and degenerate cases of the various construc-
tors.

e Variability rules (Section 3.2): serve to count
the number of possibilities for a given fea-
ture diagram.

e Expansion rules (Section 3.3): expand a nor-
malized feature expression into a disjunctive
normal form.

e Satisfaction rules (Section 3.4): given a fea-
ture expression in disjunctive normal form
and given constraints, we determine which
of the disjuncts satisfy the constraints. These
satisfaction rules are the rules we are re-
ally interested in: they allow the formula-
tion of constraints that are inherent in a fea-
ture diagram (system constraints) as well as
constraints imposed by the user (user con-
straints). The satisfaction rules enable us to
query a feature diagram for solutions that
satisfy both system and user constraints.

Relation between the FDL definition and
feature expressions

Recall from Figure 3 that an FDL definition con-
sists of a number of feature definitions that de-
fine a composite feature by associating a feature
expression with a feature name. In that feature
expression names of other composite features
may occur.

From the perspective of the feature diagram al-
gebra, it is more convenient to manipulate a
single feature expression. We assume there-
fore that one composite feature (by default the
first one defined in the FDL description) is the
feature of interest and all rules operate on the
feature expression corresponding to this feature
of interest. To further simplify the presentation
we also assume that all names of composite fea-
tures in the feature of interest have been replaced
(recursively) by their definition, as given in the
FDL definition. This is a simple variable sub-
stitution process that we do not further explain.

Variable conventions

In the presentation of the rules, we will use
the conventions for variables shown in Fig-
ure 4 (each may be followed by digits or apos-
trophes). Observe that Fs represents comma-
separated lists of zero or more feature expres-
sions and that Ft represents comma-separated
lists of one or more feature expressions.

| Variable | Type |

F FeatureExpression

Fs { FeatureExpression "," }*
Ft { FeatureExpression "," }+
A AtomicFeature

C Constraint

Cs Constraint*

Fig. 4. Variables used in FDL rules.

The rules presented here have been prototyped
using the ASF+SDF Meta-Environment
[BDH'01, DHK96, Kl1i93]. Detailed knowl-
edge of the ASF+SDF specification formalism
is, however, not necessary for good understand-
ing of the following sections.

3.1. Normalization Rules

The normalization rules N1-N12 are shown in
Figure 5. Aninformal explanation of these rules
1s as follows:

N1 combines mandatory and optional features
in a list.

N2 removes duplicates in a list.
N3 joins duplicate optionals.

N4-N5 normalize special cases of al1l. Nested
alls are flattened.

N6-N7 normalize special cases of one-of. Ne-
sted one-ofs are flattened.

N8 transforms a one-of containing one op-
tional feature into an optional one-of.

N9-N10 normalize special cases of more-of.
Nested more-ofs are flattened.

Domain-Specific Language Design Requires Feature Descriptions

Fs, F, Fs’, Fs"

Fs, F, Fs’, Fs"

F?

F

all(Fs, Ft, Fs’)

F

one-of (Fs, Ft, Fs’)

one-of (Fs, F, Fs’)?

F

more-of (Fs, Ft, Fs’)
more-of (Fs, F, Fs’)?
A

Fig. 5. Normalization rules.

equations
[N1] Fs, F, Fs’, F?, Fs" =
[N2] Fs, F, Fs’, F, Fs" =
[N3] F?? =
[N4] all(F) =
[N5] all(Fs, all(Ft), Fs’) =
[N6] one-of(F) =
[N7] one-of (Fs, one-of (Ft), Fs’) =
[N8] one-of(Fs, F?, Fs’) =
[N9] more-of(F) =
[N10] more-of(Fs, more-of (Ft), Fs’) =
[N11] more-of(Fs, F?, Fs?) =
[N12] default = A =
all(carBody,

one-of (automatic, manual),
more-of (electric, gasoline),

one-of (lowPower, mediumPower, highPower),

pullsTrailer?)
Fig. 6. Normalized feature expression for Car.

equations
[Vi] var(A) =1
[V2] var(F?) = var(F) + 1
[V3] var(all(F, Ft)) = var(F) * var(all(Ft))
[V4] var(all(F)) = var(F)
[V56] var(one-of(F, Ft)) = var(F) + var(one-of (Ft))
[V6] var(one-of(F)) = var(F)
[V7] var(more-of (F, Ft)) = var(F) + (var(F)+1)* var(more-of (Ft))
[V8] var(more-of(F)) = var(F)

Fig. 7. Rules for computing variability.

N11 transforms a more-of containing one op-
tional feature into an optional more-of.

N12 eliminates the default = annotation.

The normalized feature expression for Car is
shown in Figure 6.

3.2. Variability Rules

An important purpose of feature diagrams is
to describe the variability of a software system
and it is therefore interesting to count the pos-
sibilities. Given a normalized feature diagram,
the variability rules V1-V8 shown in Figure 7
define the variability for each construct.

The variability of an atomic feature is one [V1]
and the variability of an option adds one to

the variability of its argument [V2]. The vari-
ability of all is the product of the variabili-
ties of its arguments [V3,V4]. The variability
of one-of is the sum of the variabilities of its
arguments [V5,V6]|. The variability of more-
of(Fy, ..., Fy) is slightly more complex and
amounts to computing 2" — 1 for the case that
var(F;) = 1 fori =1, ..., n, corresponding to
switching each feature on or off, but disallowing
the empty configuration.

Assuming that Ny = var(F)and N, = var (more
-of (Ft)), the variability of more-of (F, Ft)
equals N1 + Ny x Ny + N;, representing the cases
that only F is used, that the combination of F and
Ft is used, or that only Ft is used. In [V7] this
written in the format Ny + (Nj + 1) x N, (which
avoids recalculation of N, when executing these
laws as rewrite rules).

Domain-Specific Language Design Requires Feature Descriptions 7

In [ESBCO1] the variability for the more-of case
is formulated in the following (equivalent) man-
ner:

var(more-of (F1, ..., Fy))

Z(Var(Fl) 1)+ (var(F3) + 1)
x (var(F,)+ 1) — 1

The variability for the feature expression for Car
(Figure 6) is 36. The variability clearly grows
exponentially as can be appreciated by calculat-
ing the variability of the feature expression for
the documentation generator that we will dis-
cuss later on (Figure 14, Section 5). In that
case, the variability is 3771425280!

3.3. Expansion Rules

The next step is to expand a normalized fea-
ture expression into a disjunctive normal form
defined as follows:

one-of (all(Ayy,...

.., all(Apyy, - - -

,Alnl)7
s Amny))

The outermost operator of a disjunctive normal
form is thus one-of. and its arguments are all
alls with only atomic features as arguments.
The resulting representation is essentially a list
of all possible configurations.

The expansion rules E1-E4 are shown in Fig-
ure 8 and amount to eliminating optionals, one-
ofs, and more-ofs that occur nested within an
all:

equations

[Vi] var(A) 1

EL,E2 translates an all containing an optional
feature expression in two cases: one
with and one without the feature.

E3 translates an all containing a one-of in two
cases: one with the first alternative and one
with the one-of with the first alternative
removed.

E4 translates an all containing a more-of into
three cases: one with the first alternative,
one with the first alternative and the re-
maining more-of, and one with only the
remaining more-of.

The expansion of the feature expression for Car
(Figure 6) is shown in Figure 9. As expected
from the variability computed in the previous
section, it contains 36 alternatives.

3.4. Satisfaction Rules

Now we are in a good position to explain con-
straints in feature diagrams. As defined in Fig-
ure 3, a constraint can have one of the following
forms:

e Al requires A2: if feature A1 is present,
then feature A2 should be present as well.

e Al excludes A2: if feature A1 is present,
then feature A2 should not be present.

e include A: feature A should be present.

e exclude A: feature A should not be present.

[V2] var(F?) var(F) + 1
[V3] var(all(F, Ft)) var (F) * var(all(Ft))
[V4] var(all(F)) var (F)

[V5] var(one-of(F, Ft))
[Ve]l var(one-of(F))

[V7] var(more-of (F, Ft))
[V8] var(more-of(F))

var (F)

var (F)

all(carBody,
one-of (automatic, manual),
more-of (electric, gasoline),

var (F) + var(one-of (Ft))

var (F) + (var(F)+1)* var(more-of (Ft))

one-of (lowPower, mediumPower, highPower),

pullsTrailer?)

Fig. 8. Expansion rules.

Domain-Specific Language Design Requires Feature Descriptions

electric,
electric,

one-of (all(carBody, automatic,
all(carBody, automatic,
pullsTrailer),
all(carBody, automatic,
all(carBody, automatic,
pullsTrailer),
all(carBody, automatic,
pullsTrailer),
all(carBody, automatic,
all(carBody, automatic,
all(carBody, automatic,
pullsTrailer),
all(carBody, automatic, gasoline,
all(carBody, manual, electric,
all(carBody, manual, electric,
pullsTrailer),
all(carBody, manual,
all(carBody, manual,
all(carBody, manual,
pullsTrailer),
all(carBody, manual,
all(carBody, manual,
all(carBody, manual,
pullsTrailer),
all(carBody, manual, gasoline,
all(carBody, automatic, electric,
all(carBody, automatic, electric,
all(carBody, automatic, gasoline,
all(carBody, automatic, electric,
all(carBody, automatic, electric,
all(carBody, automatic, gasoline,
all(carBody, automatic, electric,
all(carBody, automatic, electric,
all(carBody, automatic, gasoline,
all(carBody, manual, electric,
all(carBody, manual, electric,
all(carBody, manual, gasoline,
all(carBody, manual, electric,
all(carBody, manual, electric,
all(carBody, manual, gasoline,
all(carBody, manual, electric,
all(carBody, manual, electric,
all(carBody, manual, gasoline,

gasoline,
electric,

electric,

gasoline,
electric,
electric,

gasoline,
electric,
electric,

gasoline,
electric,
electric,

lowPower, pullsTrailer),
gasoline, lowPower,

lowPower, pullsTrailer),
mediumPower,

gasoline,mediumPower,
mediumPower, pullsTrailer),
highPower, pullsTrailer),

gasoline,highPower,

highPower, pullsTrailer),

lowPower, pullsTrailer),
gasoline,lowPower,

lowPower, pullsTrailer),
mediumPower, pullsTrailer),
gasoline,mediumPower,

mediumPower, pullsTrailer),
highPower, pullsTrailer),
gasoline,highPower,

highPower, pullsTrailer),

lowPower),
gasoline,lowPower),
lowPower),
mediumPower) ,
gasoline,mediumPower) ,
mediumPower) ,
highPower) ,
gasoline,highPower),
highPower) ,

lowPower) ,
gasoline,lowPower),
lowPower),
mediumPower) ,
gasoline,mediumPower) ,
mediumPower) ,
highPower) ,
gasoline,highPower),
highPower))

Fig. 9. Disjunctive normal form for Car (36 disjuncts).

The first two kinds of constraints are called di-
agram constraints since they express fixed, in-
herent dependencies between features in a dia-
gram.

The last two kinds of constraints are called user
constraints since they express user requirements
regarding presence or absence of a feature. The
user constraints may vary between subsequent
uses of the feature diagram.

The purpose of constraints is to further limit the
variability of a feature diagram. This can be
achieved by introducing a notion of satisfaction
that determines, for each disjunct of a feature
expression in disjunctive normal form, whether
it satisfies given constraints.

The satisfaction rules S1-S8 are shown in Fig-
ure 10. Typically, they check for a given dis-
junct whether there is an applicable constraint

and, if so, whether that constraint is satisfied
or not. The binary constraints excludes and
requires are handled in [S1,S2], respectively,
[S3,S4]. Typically, if the disjunctive normal
form all(Fs, A1, Fs’) and one of the con-
straints have an A1 in common, the appropriate
check is performed whether a corresponding A2
in the constraint is absent or present. In as simi-
lar fashion, [S5,S6] and [S7,S8] handle the unary
constraints includes, respectively, excludes.

If we introduce the following two constraints in
the Car example:

e pullsTrailer requires highPower (not
unreasonable if you don’t want to ruin your

engine), and

include pullsTrailer (auserrequirement)

Domain-Specific Language Design Requires Feature Descriptions 9

equations

[S1] is-element(A2, Fs)

| is-element (A2, Fs’) = true

sat(all(Fs, A1, Fs’), Cs Al excludes A2 Cs’) = false

[S2] is-element(A2, Fs) | is-element(A2, Fs’) = false
sat(all(Fs, Al, Fs’), Cs Al excludes A2 Cs’) =
sat(all(Fs, A1, Fs’), Cs Cs’)

[S3] is-element(A2, Fs) | is-element(A2, Fs’) = false
sat(all(Fs, Al, Fs’), Cs Al requires A2 Cs’) = false

[S4] is-element(A2, Fs) | is-element(A2, Fs’) = true
sat(all(Fs, A1, Fs’), Cs Al requires A2 Cs’) =
sat(all(Fs, A1, Fs’), Cs Cs’)

[S5] is-element(A,Ft) = true
sat(all(Ft), Cs include A Cs’) = sat(all(Ft), Cs Cs’)

[S6] is-element(A,Ft) = false
sat(all(Ft), Cs include A Cs’) = false

[S7] is-element(A,Ft) = true
sat(all(Ft), Cs exclude A Cs’) = false

[S8] is-element(A,Ft) = false

sat(all(Ft), Cs exclude A Cs’)

[default-S9]
sat(all(Ft), Cs) = true

sat(all(Ft), Cs Cs’)

Fig. 10. Satisfaction rules.

one-of (

all(carBody, automatic, electric, highPower, pullsTrailer),
all(carBody, automatic, electric, gasoline,highPower, pullsTrailer),
all(carBody, automatic, gasoline, highPower, pullsTrailer),
all(carBody, manual, electric, highPower, pullsTrailer),
all(carBody, manual, electric, gasoline,highPower, pullsTrailer),
all(carBody, manual, gasoline, highPower, pullsTrailer)

Fig. 11. Reduced feature expression for Car.

and reduce the disjunctive normal form for Car
we get the result shown in Figure 11. Observe
that the original 36 possibilities have been re-
duced to just 6.

4. Implementing Feature Diagrams

A feature diagram describes possible system
configurations. To actually arrive at a work-
ing system, these configurations must be im-

plemented. In this section we analyze how fea-
ture diagrams can be implemented using object-
oriented models. We focus on the use of UML
and Java as implementation targets. Observe
that the resulting UML only describes the con-
figuration interface of a family of systems such
as a product line. The actual implementation
of the underlying framework will involve many
more classes, mostly dealing with the features
common to all software products, as opposed to
those that are variable between them.

10 Domain-Specific Language Design Requires Feature Descriptions

The first question is how to represent actual con-
figurations, that is, feature diagram instances.
Recall that a configuration is just a set of fea-
tures selected from the diagram. This suggests
that a simple property list, as for example avail-
able through Java property files, suffices to in-
dicate which features are switched on or off. As
an example, an instance of a car having auto-
matic transmission, no trailer, and both electric
and gasoline engines is given as a Java property
file in Figure 12.

car.transmission=automatic
car.pullsTrailer=false
car.engine=electric,gasoline

Fig. 12. Car instance specified as Java property file.

Names of the properties are derived from the di-
agram, and constitute a path from the root to the
selected feature. In practice, many of the pub-
lished feature diagrams are in fact very flat, so
these property names will be sufficiently simple.
For example, the feature diagram for describ-
ing ways in which different window managers
move windows covered by [KCH'90, p.64] is
essentially a flat list of elementary features such
as overlappedLayout, movelcon, etc. Like-
wise, none of the feature diagrams presented
in [CE0O] have a depth larger than 3. Even if

the depth would be larger, we can always nor-
malize feature diagrams, as we have seen in the
previous section, to a disjunctive normal form
in which the depth is 2 at the most.

Methods implementing the features need to be
aware of the configuration chosen. In the sim-
plest approach, such methods perform an ex-
plicit check on the property values, and adapt
their behavior accordingly. The disadvantage
of this is that it amounts to including if-then-
else or case statements at various places, which
is generally considered bad object-oriented pro-
gramming style [Fow99, Mey97].

A more involved approach is to turn features
into classes, and if possible to use inheritance
in order to specialize methods to particular fea-
ture instances. This amounts to derivinga UML
class diagram from a feature diagram. In Fig-
ure 13 we have done this in a systematic way for
the Car example of Figure 2. From this diagram,
we can make the following observations:

e Every feature corresponds to a class.

e Associations between classes are tagged with
a ({stereotype)) indicating the sort of fea-
ture dependency they originate from.

e The mandatory dependency between Car and
CarBody is mapped to an aggregation be-
tween these classes.

pullsTrailer

carBody

0.1 <<optional>> 0.1

<<mandatory>>

pulledBy pulls

<<more- >

<<one-of>>

<<ohe-of>>

Engine

HorsePower

T T

Transmission

171

gasolineEngine electricEngine

lowPower highPower

automatic

mediumPower
manual

Fig. 13. UML Class Diagram for Car Features.

Domain-Specific Language Design Requires Feature Descriptions 11

e The optional dependency between Car and
PullsTrailer corresponds to an association
with a cardinality of O or 1.

e The one-of and more-of lists for Engine,
Transmission, and Horsepower results in ab-
stract classes Engine and Transmission, with
specific subclasses for each of the alterna-
tives.

e The one-of dependency for Transmission
and HorsePower results in a one-to-one asso-
ciation with Car; The more-of dependency
between Engine and Car results in a one-to-
many association, with multiplicity equal to
the cardinality of the number of or-features
(in this case “1..3”).

Since this example includes all FDL features,
this approach corresponds to a systematic trans-
lation of FDL to UML class diagrams. The
mapping is based on the discussion Czarnecki
and Eisenacker provide in [CEQO, Section 4.5].
They discuss several C4+ implementations, in-
volving static and dynamic parameterizations,
mixins, parameterized inheritance, and multi-
ple inheritance. They do not, however, provide
the intuitive diagram of Figure 13. Compared to
the options they discuss, our approach is simple,
systematic, and independent of the availability
of a parameterization mechanism.

The result of translating FDL to UML can be
represented using XMI, the XML Meta data In-
formation exchange format.> XMI documents
can be imported into UML modeling tools such
as Rational, Together]J, and Argo/UML, which
in turn can use the diagrams to generate, for
example, Java classes.

In addition to that, an FDL specification can
be used to generate a “configuration editor”.
Such an editor is a user interface panel in which
a product builder can select which features to
include. The result of an editing session is
the input to the generated configuration classes.
It consists of a concrete property file, or exe-
cutable code for creating the appropriate con-
figuration objects.

A logical next step is to create a domain-specific
language based on the FDL definition. This is
particularly useful if a natural language for ex-
pressing feature instantiations exist, or if prod-
uct instances should be read, manipulated, and

3 http://xml.coverpages.org/xmi.html.

put under revision control. Observe that the
operators in an FDL definition are very close
to the operators in, for example, BNF or (as we
have used) SDF: one-of corresponds to alterna-
tive productions, ? to optional productions, and
more-of to a list construct. Thus, an FDL def-
inition can easily become the basis for a gram-
mar of a language for building systems for the
underlying application domain.

5. DocGen Case Study

5.1. Background

In this section, we explore the use of feature dia-
grams for the purpose of designing a configura-
tion DSL for DocGen, a commercial documen-
tation generator for software systems [DK99a,
DocO01]. It has been instantiated for various lan-
guages, including Cobol, SQL, JCL, as well as
various proprietary languages.

DocGen operates by populating a repository
with a series of facts derived from legacy sour-
ces. These facts are used to derive web-based
documentation for the systems analyzed. This
documentation includes textual summaries,
overviews, various forms of control flow graphs,
architectural information, and so on. Informa-
tion is available at different levels of abstraction,
which are connected through hyper links.

DocGen customers have different wishes re-
garding the languages to be analyzed, the spe-
cific set of analyses to be performed, and the
way in which the collected information should
be retrieved. Thus, DocGen is a software prod-
uct line, providing a set of reusable assets well-
suited to express and efficiently implement dif-
ferent customized documentation generation sy-
stems.

The construction of DocGen is characterized by
evolutionary design (DocGen is being devel-
oped following the principles of extreme pro-
gramming [Bec99]). DocGen started as a re-
search prototype described by [DK99a]. This
prototype was not implemented as a reusable
framework; instead it just produced documen-
tation as desired by one particular customer. As
the commercial interest in applications of Doc-
Gen grew, more and more variation points were

12 Domain-Specific Language Design Requires Feature Descriptions

introduced, evolving DocGen into a system suit-
able for deriving many different documentation
generation systems.

At present, DocGen is an object-oriented ap-
plication framework written in Java and using
a relational database as its repository. It pro-
vides a range of core classes for analysis and
presentation purposes. In order to instantiate
family members, a package specific to a given
customer is created, containing specializations
of core classes where needed, including meth-
ods called by the DocGen factory for producing
the actual DocGen instantiation.

With the number of customer configurations
growing, it is time to rethink the way in which
DocGen product instantiations are created, and
what sort of variability the DocGen product line

DocGen:
all(Analysis, Presentation)

Analysis:

should offer. In this section, we explore how
FDL can help to organize the variable features
of DocGen.

5.2. DocGen Features

A selection of the variable features of DocGen
and their constraints are shown in Figures 14
and 15. The features listed describe the vari-
ation points in the current version of DocGen.
One of the goals of constructing the FDL spec-
ification of these features is to search for alter-
native ways in which to organize the variable
features, in order to optimize the configuration
of DocGen family members.

all(RelationSet, AnalysisSpecializations?)

RelationSet:

more-of (annotationRelation, callRelation, entitiesRelation,

entityOperationRelation, ...)

AnalysisSpecializations:
more-of (callHandlers,
columnPositions,
codingConventions,
fileNameConventions, ...)

Presentation:
all(Localization,
Interaction,
MainBlocks,
SourceSections,
PresentationSpecializations?)

Localization:
one-of (default = english, dutch)

Interaction:
one-of (crawled, default = dynamic)

MainBlocks:
all(UsersGuide,

more-of (programBlock, copybookBlock, statisticsBlock, ...))

SourceSections:

more-of (annotationSection, activationSection, entitiesSection,

parametersSection,

UsersGuide:

more-of (indexpage, programHelp, copybookHelp, statisticsHelp, ...,
annotationHelp, activationHelp, entitiesHelp,

parametersHelp, ...)

PresentationSpecializations:
more-of (frameSize, ...)

Fig. 14. Configurable Features of DocGen.

Domain-Specific Language Design Requires Feature Descriptions 13

The features listed focus on just the Analysis
and Presentation configuration of DocGen, as
specified by the first dependency of Figure 14.

The Analysis features show how the DocGen
analysis can be influenced. First, the data-
model used can be specified through the Re-
lationSet, which indicates which relations of
the DocGen data model are to be populated.
The Java implementation follows the UML di-
agram suggested in Section 4, where a more-of
results in a one-to-many association between a
series of classes all inheriting from the abstract
Relation class.

Second, an optional list of AnalysisSpecial-
izations can be provided. Such specializations
can be implemented in several ways. Some
are just simple parameter settings, such as the
columnPositions, which are encoded in Java
property files. Others correspond to special-
ized methods for performing certain analyses —
such features indicate which customer-specific
classes need to be included.

The Presentation features affect the way in
which the facts contained in the repository are
presented to DocGen end users. One of the
more obvious features is the need for Localiza-
tion, which in this case amounts to choosing be-
tween English and Dutch. This is implemented
through the web-browsers localization scheme,

hh

thus making it a feature that the end-user can
determine at any point during a session.

The Interaction feature determines the mo-
ment the HTML pages are generated. In dy-
namic interaction, a page is created whenever
the end-user requests a page. This has the ad-
vantage that the pages always use the most up-
to-date information from the repository, and that
interactive browsing is possible. In crawled
mode, all pages are generated and stored on, for
example, a CD-ROM. This has the advantage
that no web-server is needed to inspect the data,
and that they can be easily viewed on a discon-
nected laptop. As we will see, the Interaction
feature puts constraints on other presentation
features.

The MainBlocks feature indicates the contents
of the root page of the derived documentation.
It is a list of standard blocks that can be reused,
implemented again as a many-to-one associa-
tion to subclasses of the abstract Block class. If
necessary for a particular customer, a specific
subclass of one of the blocks can be created, and
specified as one of the PresentationSpecial-
izations. The SourceSections is a similar
configuration of the contents of the main page
used for documenting individual source files.

A mandatory block in the MainBlocks is the
UsersGuide. The contents of the user’s guide
can vary, and depends on the features included.

%% Some of the dependencies between the tables in the repository

h

entityOperationRelation requires entitiesRelation

hh

%#% Some of the constraints between presentation blocks and sections,

%% and the RelationSet used for analysis.
W
annotationSection requires

activationSection requires callRelation

annotationRelation

entitiesSection requires entitiesRelation
entitiesSection requires entityOperationRelation
i

4% Some of the constraints between presentation blocks and sections,

%% and the contents of the User’s Guide.

hih

programBlock requires programHelp
statisticsBlock requires statisticsHelp
annotationSection requires annotationHelp
i

%% Mutually exclusive features

hih

crawled excludes annotationRelation
crawled excludes annotationSection

Fig. 15. Constraints on variable DocGen features.

14 Domain-Specific Language Design Requires Feature Descriptions

The feature description given indicates that it
consists of a series of Help sections, which
together constitute the user’s guide (which is
available as an integrated pdf file, as well as per
section from relevant pages).

5.3. DocGen Feature Constraints

Figure 15 lists several constraints restricting the
number of valid DocGen configurations of the
features listed in Figure 14.

First, there are dependencies between the tables
of the data-model. In other words, not every
selection from RelationSet is valid. For ex-
ample, if a table uses a foreign key, the table
providing that key as primary key should be
available as well. The figure shows this depen-
dency for the entitiesRelation and the enti-
tyOperationRelation.

Second, the pages that can be presented depend
on the analyses conducted. For example, in or-
der to show the activation of modules, the call
relation between modules must be extracted.
Likewise, the contents of the user’s guide de-
pends on the pages that are presented to the user.
Thus, if the documentation presented should in-
clude statistics on the McCabe index, fan-in and
fan-out, the user’s guide should include a sec-
tion explaining what the meaning of these met-
rics is.

Last but not least, certain features are in conflict
with each other. In particular, the annotation-
Section can be used to let the end-user interac-
tively add annotations to pages, which are then
stored in the repository. This is only possible in
the dynamic version, and cannot be done if the
Interaction is set to crawled.

6. Concluding Remarks

6.1. Related Work

In this paper, we have tried to get better un-
derstanding of the nature of feature diagrams
as originating from the FODA domain analysis
methodology.

We do this based on a textual representation
of feature diagrams. A similar representation
is provided by [BooO1], primarily inspired by

the need to exchange feature diagrams over the
Internet.

The notion of normalized feature diagrams is
also discussed by Czarnecki and Eisenacker
[CE00, Section 4.4.1.5]. They provide two
rewrite rules in a visual representation and focus
on the elimination of optional features occurring
within a one-of or more-of context, which cor-
responds to our rules N8 and N11 (Figure 3.1).
Mapping feature diagrams to UML is also dis-
cussed by Czarnecki and Eisenacker in [CE0O,
Section 4.5] where they present a number of ad-
vanced alternatives. Our focus is in turn more
on a simple, but systematic approach to map-
ping feature diagrams to class diagrams.

Not many feature diagram case studies have
been published, making it difficult to assess
the true benefits of feature diagrams. We have
collected every feature diagram we could find
in the published literature (mostly from [CEQO,
KCH"90]) and translated them into FDL. Our
DocGen case study aims at helping to fill this
gap. Moreover, the textual format of FDL
makes it easier to exchange feature diagrams
via, e.g., web sites.

The specifications we provide are directly exe-
cutable in ASF+SDF, and thus can be the ba-
sis for tool support for feature diagrams. The
original FODA method already contains some
Prolog-based tools for checking feature dia-
grams [KCH"90]. We were, however, unable
to discover their precise functionality.

Most work on Domain Analysis & Engineer-
ing focuses on the development and refinement
of a process that will lead to a set of reusable
assets (components and other work products)
that can be used to construct a family of re-
lated applications. This process has to solve a
knowledge acquisition and management prob-
lem: given knowledge sources (domain experts,
documentation, source code, market surveys,
pricing strategies, and the like) create a struc-
tured view of the domain. The main goals
are to build up a domain vocabulary, iden-
tify features, identify variation points and ul-
timately construct feature diagrams that capture
all this information. Tool support mostly pro-
vides a blackboard-like architecture to accom-
plish these tasks. Examples of systems are Sher-
lock Holmes [SEY ™99, SYL00], DARE-COTS
[FPDF97], and Feature RSEB [GFA98]. A sur-
vey of this kind of systems is given in [SYLO0O].

Domain-Specific Language Design Requires Feature Descriptions 15

The emphasis of these tools is on the domain
engineering process, and in this sense our work
can be seen as complementary to the systems
mentioned above.

6.2. Results

We have presented results in three areas. First,
we have formalized the notion of feature dia-
gram. The Feature Diagram Algebra presented
in this paper has two benefits:

e It can be used as the basis for tool devel-
opment. The rules presented here can be
directly executed by the ASF4-SDF Meta-
Environment [BDH'01] yielding prototype
tools we have experimented with.

e It can be used to mediate between the op-
tions provided by software applications as
expressed in their feature diagram and the
requirements of a user. Typically, a user
indicates on a check list which features he
wants and which he certainly does not want.
Given the disjunctive normal form of the fea-
ture diagram, we can apply the satisfaction
rules and obtain a reduced feature expres-
sion that contains zero or more satisfactory
disjuncts. These disjuncts form the alterna-
tives in an offering that can be made to the
user. Each disjunct may be enriched with
additional information such as total costs or
planning constraints.

Second, we have shown how feature diagrams
can be directly mapped to UML diagrams which,
in their turn, can be used for Java code genera-
tion. Although we did not completely formalize
this two-stage process, we strongly believe that
a large degree of automation can be achieved.

Third, we have presented a case study of the use
of FDL by analyzing the variation points of the
documentation generator DocGen.

The design of domain-specific languages re-
quires detailed analysis of the domain of in-
terest. The operational view on feature descrip-
tions as presented in this paper is a powerful
tool to support such a domain analysis.

6.3. Future Work

This paper is only the first step in the direction
of using feature diagrams for designing domain-

specific languages and for describing product
families.

A major obstacle for using feature diagrams is
the question how to create them in the first place.
Usually, a flat list of atomic features is known
about a software family or application area and
it is not so easy to find concepts that can be
used to introduce hierarchical structure in this
list. One possible approach is to use cluster
analysis or concept analysis to find these con-
cepts, as for example is also used to find objects
in legacy procedural code [DK99b].

In the current paper, we have used only very
simple constraints. Experience shows that these
are sufficient to describe realistic systems, but it
is conceivable that more expressive constraints
may lead to more concise feature diagrams. Ex-
amples of extensions are:

e AddBooleans expressions, e.g., include Al
or include A2.

e Associate numeric values with atomic fea-
tures, e.g., HorsePower = 75.

e Add relational operator, e.g., HorsePower >
100.

Another limitation of feature diagrams is that
they do not contain information relevant for the
binding time of features. For instance, cross-
cutting features like error reporting and trans-
action logging have major impact on the actual
classes implementing a given feature diagram.
It is of practical importance to explore how fea-
ture diagrams can be extended with all the in-
formation that is needed to fully automatically
generate an implementation. Such information
will also have to contain mapping between fea-
ture names and an existing code that implements
the feature. In our DocGen case study it is im-
portant not to include class files for packages
of which it can be statically concluded that they
are not needed. We are currently investigating
whether usage of software packages and pack-
age bundles [Jon01] can be used to influence
code packaging for features with static binding
time.

In this paper we have presented a very naive
approach to computing the satisfaction of the
constraints in a feature diagram. Since the
size of a disjunctive normal form grows ex-
ponentially, very soon it becomes infeasible to

16 Domain-Specific Language Design Requires Feature Descriptions

compute it, let alone to check the constraints.
We envisage that using well-known techniques
from model checking such as ordered binary-
decision diagrams [Bry92] will make it possible
to avoid computing the disjunctive normal form
and check the constraints directly. Note that
one has to strike a balance between efficient
satisfaction techniques and further extension of
the expressive power of constraints, as outlined
above.

To summarize, a lot of work is still needed to
turn feature diagrams into a widely applicable
technique. The longer term perspective is to
have a “Feature Analysis and Manipulation En-
vironment” to develop a product family and its
feature diagram simultaneously. The feature di-
agram then really gets a dual purpose: it helps
to structure the code base into independent fea-
tures implemented by independent components
or packages and it can be used by a customer to
explore the possibilities of the product family
and to make a selection that suits its needs at
acceptable costs.

Acknowledgements

We gratefully acknowledge the comments on
the drafts of this paper made by Krzysztof Czar-
necki, Leon Moonen, Joost Visser, the edi-
tors Marjan Mernik and Ralf Lammel, and the
anonymous referees.

References

[BDH'01] M.G.J. VAN DEN BRAND, A. VAN DEURSEN,
J. HEERING, H.A. DE JONG, M. DE
JONGE, T. KUIPERS, P. KLINT, L. MOONEN,
P.A. OLIVIER, J. SCHEERDER, J.J. VINJU,
E. VISSER, AND J. VISSER, The ASF+SDF
Meta-Environment: a Component-Based
Language Development Environment. In
R. Wilhelm, editor, Compiler Construction
(CC ’01), volume 2027 of Lecture Notes in
Computer Science, pages 365-370. Springer-
Verlag, 2001.

[Bec99] K. BECK, Extreme Programming Explained.
Embrace Change. Addison Wesley, 1999.
[BooOl] Feature Model Diagrams in text and HTML,

2001. http://www.boost.org/more/
feature model_diagrams.htm.

[Bry92]

[CE00]

[DHKY96)

[DK98]

[DK99a]

[DK99b]

[DKVO0]

[Doc01]

[ESBCO1]

[Fow99]

[FPDF97]

[GBSO1]

[GFA98]

R.E. BRYANT, Symbolic Boolean manipula-
tion with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293-318,
September 1992.

K. CZARNECKI AND U. EISENECKER, Gener-
ative Programming. Addison-Wesley, 2000.

A. VAN DEURSEN, J. HEERING, AND P. KLINT,
editors, Language Prototyping: An Alge-
braic Specification Approach, volume 5 of
AMAST Series in Computing. World Scien-
tific Publishing Co., 1996.

A. VAN DEURSEN AND P. KLINT, Little lan-
guages: Little maintenance? Journal of
Software Maintenance, 10:75-92, 1998.

A. VAN DEURSEN AND T. KUIPERS, Building
documentation generators. In Proceedings
of the International Conference on Software
Maintenance, pages 40-49. IEEE Computer
Society, 1999.

A. VAN DEURSEN AND T. KUIPERS, Iden-
tifying objects using cluster and concept
analysis. In 21st International Conference
on Software Engineering, ICSE-99, pages
246-255. ACM, 1999.

A. VAN DEURSEN, P. KLINT, AND J. VISSER,
Domain-specific languages: An anno-
tated bibliography. ACM SIGPLAN No-
tices, 35(6):26-36, June 2000. On line at

www . program-transformation.org/.

Automatic documentation generation;
white paper. Software Improvement
Group, 2001. http://www.software-

improvers.com/PDF/DocGenWhitePaper
.pdf.

U. EISENECKER, M. SELBIG, F. BLINN, AND
K. CZARNECKI, Feature modeling of soft-
ware system families (in German). OBJECT-
spektrum, pages 23-30, September/Octobre
2001. www.objectspektrum.de.

M. FOWLER, Refactoring: Improving the
Design of Existing Code. Addison-Wesley,
1999.

W. FRAKES, R. PRIETO-DIAZ, AND C. FOX,
DARE-COTS: A domain analysis support
tool. In Proceedings of the 17th Interna-
tional Conference of the Chilean Computer
Science Society. IEEE Computer Society,
1997.

J. VAN GURP, J. BOSCH, AND M. SVAHNBERG,
On the notion of variability in software prod-
uct lines. In Proceedings of the 2nd Work-
ing IEEE / IFIP Conference on Software
Architecture (WICSA), pages 45-54. IEEE
Computer Society, 2001.

M. GRiss, J. FAVARO, AND M. D’ ALESSAN-
DRO, Integrating feature modeling with the
RSEB. In Proceedings of the Fifth Interna-
tional Conference on Software Reuse, pages
76-85. IEEE Computer Society, 1998.

Domain-Specific Language Design Requires Feature Descriptions 17

[HHKR89] J. HEERING, P.R.H. HENDRIKS, P. KLINT, AND
J. REKERS, The syntax definition formalism
SDF - reference manual. SIGPLAN Notices,
24(11):43-75, 1989.

[Jon01] M. DE JONGE, Source tree composition.

Technical report, CWI, 2001.

[KCH*"90] K. C. KANG, S. G. COHEN, J. A. HESS, W. E.
NOVAK, AND A. S. PETERSON, Feature-
oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-
21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[K1i93] P.KLINT, A meta-environment for generating

programming environments. ACM Transac-

tions on Software Engineering and Method-

ology, 2(2):176-201, April 1993.

[Mey97] B. MEYER, Object-Oriented Software Con-

struction. Prentice Hall, second edition,

1997.

[Nei84] J. M. NEIGHBORS, The Draco approach to

constructing software from reusable com-

ponents. IEEE Transactions on Software

Engineering, SE-10(5):564-74, September

1984.

[SCK*96] M. SIMOS, D. CREPS, C. KLINGER, L. LEVINE,
AND D. ALLEMANG, Organization do-
main modelling (ODM) guidebook ver-
sion 2.0. Technical Report STARS-VC-
A025/001/00, Synquiry Technologies, Inc,
1996.

[SEYT99] G. Succl, A. EBERLEN, J. Yip, K. Luc,
M. NGuUy, AND Y. TAN, The design of
Holmes: a tool for domain analysis and
engineering. In IEEE Pacific Rim Confer-
ence on Communications, Computers, and
Signal Processing (PACRIM’99), 1999.
[SYLOO] G. Succt, J. Yip, AND E. Liu, Analysis of
the essential requirements for a domain anal-
ysis tool. In ICSE Workshop on Software
Product Lines Economics, Architectures, and
Implications, 2000.
[TTC95] R. N. TAYLOR, W. TRACZ, AND L.
COGLIANESE, Software development us-
ing domain-specific software architectures.
ACM SIGSOFT Software Engineering Notes,
20(5):27-37, 1995.
[Vis97] E. VISSER, Syntax Definition for Language
Prototyping. PhD thesis, University of Ams-
terdam, 1997.

Received: July, 2001
Revised: November, 2001
Accepted: November, 2001

Contact address:

Arie van Deursen

Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

e-mail: Arie.van.Deursen@cwi.nl

Paul Klint

Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

e-mail: Paul.Klint@cwi.nl

P.O. Box 94079

1090 GB Amsterdam

The Netherlands
http://www.cwi.nl/~{arie,paulk}/

ARIE VAN DEURSEN works for CWI, the Dutch National Research In-
stitute in Computer Science and Mathematics. He holds a MSc from
the Vrije Universiteit (1990) and a PhD from the University of Amster-
dam (1994). His research interests include reverse engineering, archi-
tecture recovery, domain-specific languages, object-oriented program-
ming, and software process, areas in which he has published widely,
including a book and numerous conference and journal papers. Arie
van Deursen is co-founder of the Sof tware Improvement Group, an
Amsterdam-based CWI spinoff offering products and services in the
field of software renovation.

PAUL KLINT is head of the software engineering department at Cen-
trum voor Wiskunde en Informatica (CWI, the Dutch national research
center for computer science and mathematics) and professor in com-
puter science at the University of Amsterdam. He is also president of
the European Association for Programming Languages and Systems
(EAPLS) and co-founder of the Software Improvement Group (SIG),
a CWI spinoff company. He holds a MSc in Mathematics from the
University of Amsterdam and a PhD in Computer Science fr om the
Technical University Eindhoven. He (co)authored three books and has
published over hundred scientific articles. He has consulted for compa-
nies and governments worldwide. His research interests include generic
language technology, domain-specific languages, software renovation,
and technology transfer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

