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Evolutionary algorithms for optimization of dynamic
problems have recently received increasing attention.
Online control is a particularly interesting class of dy-
namic problems, because of the interactions between the
controller and the controlled system. In this paper, we
report experimental results on two aspects of the direct
control strategy in relation to a crop-producing green-
house. In the first set of experiments, we investigated
how to balance the available computation time between
population size and generations. The second experi-
ments were on different control horizons, and showed
the importance of this aspect for direct control. Finally,
we discuss the results in the wider context of dynamic
optimization.
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1. Introduction

Optimization problems from the real world are
often characterized by constraints, multiple ob-
jectives, and dynamic properties. In particular,
control problems are typically dynamic because
of the interaction between the controller and the
controlled system. Furthermore, such problems
usually contain time-varying components; for
instance, materials with temperature dependent
properties. This dynamic behavior poses an
extra challenge to the optimization algorithm,
because it must be able to cope with the chang-
ing problem. Evolutionary computation is a
promising approach to dynamic optimization
problems, since multiple solutions are kept in
the population. Hence, the population is likely
to contain a good solution to the problem after

a change. Evolutionary algorithms �EAs� for
optimization of dynamic problems have been
studied over the past 15 years. Several algo-
rithms have been suggested and tested, though
mainly on artificial benchmark problems �for
a survey see �1��. A well-investigated type of
artificial dynamic problem is the so-called nu-
merical problems, where the objective is to op-
timize a vector of real-valued numbers under
the changing fitness landscape. A typical artifi-
cial problem consists of a few peaks that change
position, height, and width at certain intervals.
These artificial problems were recently scruti-
nized and found to have little in common with
realistic dynamic problems, in particular with
control problems �10�.

Real control problems are usually handled by
either an offline design process or an online
control strategy. Tuning a PID controller is a
typical example of an offline problem. Here,
the EA uses a simulator to determine the best
parameters for the controller, which is later in-
stalled in the real system. EAshave successfully
been applied to PID controller tuning on several
occasions, e.g., �5, 3�. In online control, the sim-
ulator is repeatedly used to determine the best
control signals during the control period. Nat-
urally, this approach is heavily dependent on
the computation time of the simulator, and the
rate at which control signals must be provided.
Hence, the approach is only feasible for rather
slowly changing problems where the signal cal-
culation is allowed to take several seconds or
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even minutes. An example is greenhouse con-
trol, where the settings for heating, ventilation,
CO2, and water injection are updated every 15
minutes.

In this paper we focus on two aspects of on-
line greenhouse control with EAs. This study
is a follow-up investigation of the work pre-
sented in �6�. In the previous study we explored
trade-offs between population size and number
of generations between problem updates. Fur-
thermore, we investigated two fitness functions
and compared two setups for total number of
evaluations. These investigations were carried
out using a rather simple greenhouse simulator
that did not model important aspects such as
wind cooling, energy loss through the ground,
and steam density. In this study, we have vastly
improved the greenhouse simulator to include
these aspects and several others �9�. To exam-
ine the new simulator, we extended our inves-
tigations regarding trade-offs between popula-
tion size and number of generations between
problem changes. The new setup includes a
more extreme setting and a near-optimal solu-
tion. Additionally, we investigated the role of
the control horizon length, which is the number
of simulated time-steps used in the determina-
tion of the control signals. Naturally, the con-
trol horizon influences the computation time of
the simulator. However, it may also influence
the control performance, because the prediction
precision decreases with longer look-ahead.

The paper is organized as follows: Section 2 ex-
plains the fundamental concepts of direct con-
trol with EAs. In Section 3, we describe the
greenhouse simulator. The experimental setup
and results are covered in Section 4. Finally,
Section 5 contains a discussion of the results
and general conclusions from this study.

2. Direct control with EAs

A control problem is often modeled by the in-
teractions between the controller, the system,
and the surrounding environment �see Fig. 1�.
Here, vector x�t� represents the internal state
of the system at time t, v�t� is the environment

state, u�t� denotes the control signal, and y�t� is
the output from the system.

Fig. 1. Model for controller, system, and environment.

The change in system state is usually modeled
by a number of difference equations of the form:

xi�t � h� � xi�t� � ∆xi�u� x� v� t� h� �1�

where xi is the i-th system variable in x, ∆xi��� is
the update function, t is the time, h is the length
of a time-step, and u, x, and v are the control
signals, the system state, and the environment
state of previous time-steps �sometimes several
steps in the past�. Real systems are often de-
scribed by a set of non-linear differential equa-
tions. In these cases, an approximation method,
such as Runge-Kutta, is used as the update func-
tion ∆xi���.

The online control strategy used here is called
“direct control” �4�, in which the population en-
codes the real-valued control signals�. As men-
tioned in the introduction, the control signals
must be updated at certain intervals. Hence,
only a limited number of evaluations is possible
between updates of the control signals. How-
ever, the number of evaluations �#ev� can be bal-
anced between population size �ps� and number
of generations �gen�, i.e., #ev � ps � gen. For
instance, 200 evaluations can be assigned as ei-
ther ps � 200, gen � 1 or ps � 25, gen � 8.
Another important aspect of direct control is the
control horizon �CH�, which is used in the eval-
uation of candidate solutions. The fitness of
a solution is determined by its control perfor-
mance for CH time-steps into the future. The
best control setting is then used to control the
real system for one time-step. In pseudocode,
the direct control algorithm is as follows:

� In �4�, the technique is called “direct optimal control”; however, “optimal” is a bit misleading.
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Direct control
Initialize population of size ps
while �control period not over� f
Reset best control setting

for �i � 0; i � gen; i ��� f
Crossover and mutation
Evaluate each solution for CH steps
Selection
Store best control setting

g
Let best setting control one step

g

Direct control shares many properties with the
control engineering approach known as gene-
ralized predictive control �GPC� �2�. However,
GPC is not easily applied to non-linear prob-
lems, because the determination of the con-
trol signals, in this case, relies on minimization
of a multimodal function, which is generally
not possible with traditional engineering tech-
niques.

3. The greenhouse control problem

The crop-producing greenhouse is modeled as
illustrated in Fig. 1. The control, system, and
environment variables are listed in Table 1.

Table 1. Control, system, and environment variables in
the greenhouse.

The greenhouse is controlled by four variables
for heating �uheat�, ventilation �uvent�, injection
of artificial CO2 �uCO2�, and injection of water
�uwater�. The range of these control variables
are as follows: uheat � �0� 150�, uvent � �0� 100�,
uCO2 � �0� 10�, and uwater � �0� 100�. The
change in greenhouse state is modeled by six
non-linear differential equations. The simulator
is based on a German description �7�. Unfortu-
nately, the greenhouse simulator is too complex
to describe in this paper, but a complete speci-
fication in English is available in �9�.

The fitness of a solution s at time t is calculated
as the profit achieved, minus a penalty p:

Fit�s� t� �
t�CHX
j�t

∆xprof it�j�� p�j� �2�

where

p�j� �

��
�

10 � �16� xatemp�j�� xatemp�j� � 16
10 � �xatemp�j�� 35� xatemp�j� � 35
0 otherwise

�3�

The profit is equal to the income from the pro-
duced crops minus the expenses for heating and
CO2 �Eq. 29 in �9��. The penalty is enforced
to avoid damage to the crops and to ensure that
the indoor air temperature is kept in the optimal
range for growth.

Real weather data from the Aarslev measuring
station on the island Fyn, Denmark, was used
for the environment variables sunlight intensity
�vsun�, outdoor air temperature �vatemp�, outdoor
ground temperature �vgtemp�, relative humidity
�vRH�, and wind speed �vwind�. The remain-
ing environemnt variables were kept constant to
vCO2 � 340, vPheat � 0�0002, vPCO2 � 4�0,
and vPtom � 12�0. The weather data can be
obtained for a small fee from the Danish Me-
teorologic Institute; see �9� for further informa-
tion. In this study, we simulated the first week
of May. The weather data is illustrated in Fig.
2. As stated earlier, direct control determines a
solution’s performance by simulating a number
of steps into the future. In practice, this includes
simulating the weather, or rather, predicting the
weather in the control horizon. Weather pre-
diction is generally difficult; however, a simple
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scheme is to assume the weather to be fixed
during the control horizon �few hours�.

Fig. 2. Weather data for the first week of May.

4. Experiments and results

The simple EA encoded the four control signals
as a real-valued vector. New solutionswere cre-
ated using Gaussian mutation and a variant of
arithmetic crossover with one weight per vari-
able. All weights except one were randomly
assigned 0 or 1, and the remaining weight was
set to a random value between 0 and 1. Binary
tournament selection was applied. The algo-
rithm used the following parameters: probabil-
ity of crossover pc � 0�9, probability of muta-
tion pm � 0�5, and variance σ � 0�01, which
was scaled by the length of each control vari-
able’s interval. Each solution was evaluated by
simulating CH time-steps using the control set-
ting encoded in the genome. The profit achieved
in each step was recorded and used to calculate
the fitness �Eq. 2�.

Two sets of experiments were conducted. First,
we investigated five trade-offs between popula-
tion size and number of generations. The trade-
offs �ps� gen� were �200, 1�, �100, 2�, �50, 4�,
�25, 8�, and �10, 20�. Second, we tested six
control horizons �CH� of 1, 2, 3, 4, 8, and 20
time-steps. Each experiment was repeated 30
times.

Fig. 3. Population size vs. generations. Control horizon
of 4 steps. Average of 30 runs.

Fig. 4. Example of heating and CO2 injection for best
control �upper graph� and worst control �lower graph�

with a control horizon of 4 steps.
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Fig. 3 illustrates the profit per m2 in DKK for
the five trade-offs using CH � 4. The graphs
clearly show that the trade-off �10, 20� is the
best. Furthermore, the order of the trade-offs
shows an evident relationship between perfor-
mance and number of generations – few gen-
erations lead to low performance. Hence, the
available evaluations are best utilized with a low
population size and many generations between
problem updates. In addition to the mentioned
trade-offs, we obtained a near-optimal solution
solution using 10000 evaluations with ps � 50
and gen � 200. The �10,20�-trade-off was, in
fact, very close to the near-optimal solution.

The control signals uheat and uCO2 for the best
setting �10, 20� and the worst �200, 1� are dis-
played in Fig. 4. The difference in performance
is closely related to these variables, because
profit is easily lost on sub-optimal control of
heating and CO2 injection. At night the tem-
peratures drop, which requires heating to avoid
damage to the crops. At daytime the sunlight
permits growth, which can be augmented by
injection of additional CO2. The best control
strategy �Fig. 4, upper graph� properly adjusted
the control to follow the day and night phases.
The worst strategy failed to turn off heat at day-
time, and valuable CO2 was wasted during the
night where no growth was possible because of
the absent sunlight.

In the second set of experiments, we investi-
gated the effect of varying the control horizon.
We tested six horizons having 1, 2, 3, 4, 8, and
20 time-steps. Fig. 5 shows the results from the
1, 2, 4, and 20 horizons using the �10, 20�-trade-
off �to keep the graph readable, 3 and 8 are not
shown�. A control horizon of 20 time-steps is

Fig. 5. Profit per m2 for different control horizons with
10 individuals and 20 generations. Average of 30 runs.

Fig. 6. Example of ventilation and CO2 injection for
different control horizons �10 individuals, 20

generations�.

the best, though only marginally better than a
horizon of 8 steps. The profit achieved in the
remaining four horizon decreases according to
the look-ahead. Hence, a control horizon of at
least 8 steps yields high profit, a horizon of 4
steps leads to a reasonably good profit, and only
a few steps give rather low profit. The expla-
nation for the significant difference between the
worst performing setting �CH � 1� and the best
setting �CH � 20� is found by examining the
control signals.

Fig. 6 displays ventilation �uvent� and CO2 in-
jection �uCO2� for CH � 1 and CH � 20. The
graph on ventilation shows that two general con-
trol strategies exist. The first strategy is used
when CH � 1. Here, the EA sets ventilation
high at daytime. This will require large invest-
ment in heating during night, but will utilize
the free CO2 in the environment better. The
second strategy appears when CH � 20. In
this strategy, ventilation is low, which saves
some heating, but makes CO2 injection neces-
sary. The additional profit achieved by the 20-
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step controller is mainly related to the achieved
temperature and indoor CO2 level �Eq. 25 in
�9��, which can be seen by thoroughly exam-
ining the control signals and greenhouse states
of both settings. Naturally, the two different
control strategies emerge as a result of the con-
trol horizon, but here the CO2 level plays an
important role too. The second strategy ap-
pears because the long look-ahead allows the
controller to discover the long-term effect of
growth, i.e., that the photosynthesis can trans-
form more CO2 than achievable by ventilation
alone. Hence, additional growth is possible by
injecting artificial CO2. The short look-ahead
of the first strategy does not allow the controller
to discover the long-term effects. Thus, venti-
lation is used because it will provide free CO2
from the environment.

5. Discussion and conclusions

In this paper, we investigated two important as-
pects of direct control with evolutionary algo-
rithms. Our experiments show that the available
number of evaluations is best invested using a
low population size and many generations be-
tween updates of the problem. Applying this re-
sult essentially turns the dynamic problem into
a series of related static problems. For instance,
the combination of 10 individuals and 20 gener-
ations performs significantly better than a popu-
lation of 25 individuals and 8 generations. This
is surprising because a population of 10 individ-
uals is generally considered to be insufficient
for most static problems. Interestingly, a long
static period �20-50 generations� between prob-
lem updates has been the preferred setting in
most investigations on artificial dynamic prob-
lems. Furthermore, this observation confirms
the preliminary results obtained from an ear-
lier investigation conducted by the first author
of this paper �8�. Regarding future work, the
general trend in the trade-off experiments sug-
gests to test even more extreme settings. In this
context, a comparison with other optimization
techniques, such as particle swarm optimization
and simulated annealing, may be in place.

Our second series of experiments underlined the
importance of choosing an appropriate control
horizon. Interestingly, two very different con-
trol strategies emerged. The first strategy settled

on high ventilation, much heating, low CO2 in-
jection, and low water injection. This strategy
occurred when the control horizon was short
�one time-step�. The second strategywas nearly
the opposite, i.e., low ventilation, medium heat-
ing, high CO2 injection, and high water injec-
tion. This rather surprising difference is re-
lated to the long-term effects of growth, such
as the CO2-consumption by the plants. A
control horizon of only one step does not re-
veal this, because the indoor CO2 level does
not drop drastically from one step to the next.
Hence, high ventilation gives free CO2 from
the environment, which is cheaper than aug-
menting it artificially. An interesting question
to ask in this context is would it be possible
to switch to the better second strategy during
the day? A possible answer is that the control
setting corresponding to strategy two is more
or less the opposite of strategy one. Hence, a
switch would require a “jump” from one end
of the search space to the other. Furthermore,
following strategy one for a number of steps
may actually render strategy two less profitable,
because the search itself changes the problem;
hence, the greenhouse state could be different.
In a theoretical EA-context, this suggests mul-
tiple optima in time rather than in space. Fur-
ther analysis of the greenhouse state and control
traces may shed some light on these matters.
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