Journal of Computing and Information Technology - CIT 10, 2002, 3, 203—-209

203

Task Scheduling in Distributed Systems
by Work Stealing and Mugging
— A Simulation Study

Nenad Jovanovié

Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, USA

We model and simulate the execution of parallel jobs
represented by directed acyclic graphs on a system of
networked distributed heterogeneous computers. We
tested two online schedulers, the Enhanced Cilk Sched-
uler (ECS) and the Central Manager (CM). ECS is a
decentralized scheduler, which implements work stealing
and processor mugging techniques. CM is a centralized
greedy scheduler. Our simulation results show that
ECS is a well behaved scheduler particularly suited
for scheduling task execution in dynamically changing
systems because it is robust, requires little communica-
tion, and almost matches the performance of the CM
scheduler.

Keywords: distributed systems,
scheduling, simulation.

parallel computing,

1. Introduction

One of the basic problems in parallel comput-
ing is how to execute a parallel program on a
collection of heterogeneous processors, that is,
processors of different and possibly changing
speeds. In this paper we simulate scheduling
algorithms that are designed to run efficiently
in heterogeneous parallel computing environ-
ments.

We model and simulate the execution of paral-
lel jobs represented by directed acyclic graphs
(DAG). Each job is a multi-threaded parallel
program. A thread is a chain of tasks ordered
by their execution dependencies. Dependencies
of the tasks/threads in a job are represented by a
DAG. The nodes in a DAG correspond to tasks
and directed edges represent precedence rela-
tionship among tasks.

We study two online schedulers — the En-
hanced Cilk Scheduler (ECS) and the Central
Manager (CM). Work stealing [6, 7] and pro-
cessor mugging techniques are central to ECS
making a low-overhead, non-centralized, and
fault-tolerant scheduler with provable [5] per-
formance guarantees. A centralized omnipotent
greedy scheduler, we call Central Manager, is
the benchmark we use to assess the ECS perfor-
mance.

Applications of decentralized adaptive online
scheduling algorithms include web-based com-
puting, utilizing idle processors within organi-
zations, scientific computing, military applica-
tions, etc. Related work is found in the area of
asynchronous parallel computing [1, 3, 4, 2, 9]
as well as in scheduling theory [8].

In our simulation, ECS runs efficiently even
when processors have different and dynamically
changing speeds. ECS is robust, it is scalable
because it is distributed, and it is a fault tolerant
scheduler. The quality of schedules exhibited
by ECS is almost as good as that of centrally
managed ones.

2. Experimental Study

We study a scheduling problem in a networked
system of heterogeneous processors. Each pro-
cessor is described by its set of attributes: maxi-
mum speed, current speed, and steal-mug inter-
val (the time between attempts by the processor
to steal /mug work from other processors). Our
model also allows for changes in the speeds of
processors.



204

Task Scheduling in Distributed Systems by Work Stealing and Mugging — A Simulation Study

Our study compares two types of schedulers
on a network of heterogeneous processors, that
is, processors of different (fixed or changing)
speeds. The Enhanced Cilk Scheduler (ECS)
(see Fig. 1), is based on a non-centrally man-
aged randomized model that employs steals and
muggings. The centrally managed scheduler, or
Central Manager (CM) uses a simple greedy
heuristic to assign subtasks to processors, but
relies on tightly coupled centralized control.

ENHANCED CILK SCHEDULER

1. Processor i chooses a victim processor j uniformly at
random.

2. If the victim j’s double ended queue (deque) is not
empty, it steals the thread T from the fop of the deque.

3. If the victim j’s deque is empty, but the victim is
working on a thread T and it is slower than processor i,
then i mugs j, that is, i interrupts j and takes the thread
T.

4. If processor i has located a thread 7', i works on T until
one of four situations:

a) Thread T spawns k new threads. In this case,
the processor puts 7 and, one by one, k — 1 new
threads in order of appearance, on the bottom of the
ready deque and starts work on the last spawned
new thread.

b) The thread T returns or terminates. If the deque
is not empty, the processor begins working on the
bottom thread. If the deque is empty, the processor
attempts to work steal.

¢) The thread reaches a synchronization point. In this
case, the processor attempts to work steal. (Note
that the deque is empty.)

d) Processor i is mugged and the thread T is migrated
to another processor. In this case, processor i
attempts to work steal.

5. Otherwise, there is a failed steal attempt; processor i
tries to steal again.

Fig. 1. The Enhanced Cilk Scheduler.

The ECS attempts to complete tasks in the net-
work as quickly as possible by using work steal-
ing or processor mugging. Work stealing hap-
pens when an idle processor takes a ready task
from a busy processor’s queue and begins exe-
cuting it. An idle processor Py performs pro-
cessor mugging when it encounters a slower
processor P executing a task 7" and the queue
of Py is empty. In that case, Py takes over the ex-
ecution of task 7 and processor Py becomes idle
and starts looking for work. In ECS, the “vic-
tim” processor is chosen at random, uniformly
among all other processors in the system. At-
tempts to steal/mug occur at regular intervals

(specified by the steal/mug interval), whose
lengths are inversely proportional to the speed of
the processor exercising the stealing/mugging.

The CM scheduler applies a greedy strategy.
It keeps a FIFO queue of the ready-to-process
threads and assigns a thread to the currently
fastest idle processor. When some processor P;
becomes idle and the queue is empty, the CM
scheduler possibly assigns a task to it: if the
slowest active processor P; is slower than P;,
then the CM reassigns the work on the active
processor to P;, effectively “mugging” P by
central authority.

Both the ECS and CM use preemption: each
task can be preempted, or interrupted and con-
tinued on some faster processor. (This means
that we are assuming checkpointing or other
support in order to enable essentially continu-
ous preemption and restart.)

In both models, the experimental results re-
ported here have the migration cost set to zero
(i.e., there is no calculated delay in migrating
a task, whether by stealing, mugging, or as-
signment by the central manager). Instead, we
calculate these communication costs separately
because different platforms have different com-
munication costs.

Our simulation program is written in Simscript
II.5. Processor features, system utilization,
network topology, and characteristics of jobs
(DAGs) are part of the input. Experiments were
conducted on a Sun Ultra 30 with 512 MB mem-
ory, running Solaris 2.6. Comparison of CM
vs. ECS in several contexts is performed with
promising results.

2.1. Experiment 1

In this experiment, the input DAG consists of
a “fan out” (from a single node to 50 nodes)
followed by a “fan in” (back to a single node).
All tasks are uniform in this case: each of the
nodes in the middle of the DAG correspond to
tasks requiring 50000 work units. This exper-
iment is meant to model the case in which the
job is readily parallelized into equal-sized sub-
tasks, which are readily combined into the final
output. (Note that in the traditional Cilk imple-
mentation [7], each thread can fork into only two
threads at the time.) The system is comprised of



Task Scheduling in Distributed Systems by Work Stealing and Mugging — A Simulation Study

205

8 networked processors. The processors have
various speeds: one works at 100 work units
per unit time (ms), one at 200, one at 300, two
at 400, two at 800, and one at 1600 work units
per unit time. Communication cost is zero along
edges of the network, since we count migrations
separately.

Time interval Iy denotes initial steal/mug in-
terval, that is approximately proportional to the
reciprocal of the processor speed. Specifically,
the interval is 1 ms for the processor of speed
100, 0.7 for the processor of speed 200, 0.5 for
the processor of speed 300, 0.3 for the pro-
cessors of speed 400, 0.1 for the processors
of speed 800, and 0.05 for the processor of
speed 1600. In (Tables 1-2), we show the data
for values of steal/mug interval ranging from
Iy/64 up to 5121y. This broad range allows us
to see how the speed approaches an asymptote
as the steal/mug interval approaches zero and
how the performance deteriorates as this inter-
val increases. For each steal/mug interval, we
ran the simulation 500 times, for every run the
processor initiating DAG execution is selected
uniformly at random. We tabulated minimum,
average, maximum, standard deviation for the
completion time and average numbers of suc-
cessful steals and muggings over the 500 runs.

Two main lower bounds on the time required to
complete a DAG in this setting are total work of

[Steal/Mug| Min | Avg | Max [ o [ Ns [Ny |
I/64 | 6134 ] 6214 6274 3.05 [33.9]48.6
I/32 | 6122 ] 6215] 628.1 | 2.90 |33.8[484
I/16 | 6127 | 621.8 | 6283 | 2.95 [33.9] 485
Io/8 | 6139 ] 621.8 | 6283 | 3.07 |33.8[482
Io/4 | 6150 ] 6226 | 6293 | 3.01 |33.8/48.38
Ih/2 | 615262426305 3.06 |33.7]482

I 617.0 | 626.7 | 634.6 | 320 [33.6]47.9
2y | 6183 | 631.8 | 6424 | 381 [332[459
4, | 629.1 | 642.8 | 656.8 | 532 [32.9]43.9
8lp | 64156637 | 699.8 | 9.07 |322]403
16ly | 663.1 | 701.0 | 746.9 | 15.12 [ 31.0] 34.0
320, | 6922 | 766.1 | 868.2 | 25.19 | 29.0] 26.9
64ly | 7389 | 871.7 [1031.0] 4421 [26.2[ 19.8
128, | 870.2 [1043.1]1392.7| 94.15 [ 23.1] 13.9
2561 | 1019.2|1314.5|2156.7] 203.05] 20.2] 9.8
5121y | 1150.6 | 1707.1|3302.1] 445.30] 16.5 6.2

Table 1. Simulation data for Experiment 1, using
Enhanced Cilk Scheduler (ECS).

DAG divided by sum of processor speeds, and
critical path divided by the speed of the fastest
processor. However for this special case there is
a better lower bound, obtained as follows. First,
the sum of the speeds of the 8 processors is 4600
work units per unit time. The best we can hope
to do is to process the first task (node) with
the fastest processor in time 50 000/1600, then
the 50 middle tasks in time 50 - 50 000/4600,
then the final task (after fan-in) with the fastest
processor in time 50000/1600. This gives a
lower bound of 605.98 time units to complete
the DAG. In comparing with this lower bound,
we see that the ECS method, using the most
frequent steal /mug attempts (Iy/64), performs
within 2.5% of lower bound, on average, with
the maximum completion time among the 500
runs only 3.5% worse than lower bound for this
experiment.

|Steal/Mug| Min | Avg | Max| o | Ns |NM|
| N/A |623.1]623.1]623.1].00]41.1] 6.6]

Table 2. Simulation data for Experiment 1, using the
central manager scheduler (CM).

The average performance of ECS degrades as
the steal /mug intervals increase asymptotically
reaching times when there are no steals and
muggings. Still, for steal/mug intervals of 161,
on average ECS is lagging 15% behind the lower
bound for the configuration, executing 31 steals
and 34 muggings on average, compared to aver-
age of 34 steals and 49 muggings when attempts
are most frequent (Iy/64).

The average number of steals decreases with the
steal /mug interval. Muggings decrease more
steeply. This behavior is expected, since once
the first task is over, 50 tasks are released and put
in the queue of the processor that just completed
the first task. A smaller number of attempts re-
sults in a smaller number of successful steals or
muggings.

The completion times and their volatility for the
given configuration are increasing with the de-
creasing rate of steal/mug attempts. Because
of infrequent steal/mug attempts and random
choice of the “victim”, faster processors can
stay idle longer while slower processors are
busy, thus increasing completion time.



206

Task Scheduling in Distributed Systems by Work Stealing and Mugging — A Simulation Study

2.2. Experiment 2

In this experiment, the input task DAG (Fig. 2)
consists of a task of size 16 000, which fans out
to 50 parallel tasks, each of size 50000, then
fans in to a task of size 16 000, then fans out to
6 parallel tasks of size 500 000 each, then finally
fans in to a task of size 16 000. This experiment
is meant to model the case in which the job
is initially parallelized into many equal-sized
subtasks, which are then combined and a small
number of follow-up tasks are run in parallel.
This DAG models some practical image-object
recognition applications, as the large fan-out is
done in the raw image processing, while the
longer, narrower part of the DAG models the
more time-consuming, less number-crunching
tasks of feature matching and object recogni-
tion. This experiment uses a network of 12 pro-
cessors. The processors have various speeds:
one works at 100 work units per unit time (ms),
one at 200, one at 300, three at 400, three at
800, and three at 1600 work units per unit time.
For each processor, the product of speed and
time interval Iy is 80 work units. Each batch
of 500 runs increases steal-mug interval 20% in
respect to the previous batch. Each run starts on
arandomly selected processor. Task migrations
are counted separately.

50000

500000

16000 16000

16000

Fig. 2. The DAG for Experiment 2.

We can compute readily a lower bound on the
processing time of the DAG, by keeping the
maximum possible number of fastest proces-
sors busy all the time in each phase (e.g., in
the second parallel phase of the DAG we have
6 tasks so only 6 fastest processors can be em-
ployed simultaneously). The resulting bound is
724.44 time units.

|Steal/Mug| Min | Avg | Max | c | Ns |NM |

Iy 788.701796.38 | 804.01| 2.75| 46.9| 74.2
(L.2)Iy |789.36|797.50 | 805.29| 2.86| 46.9| 73.8
790.54|798.64 | 808.10| 3.04| 46.8| 72.9
31y 1792.20(800.17|808.72| 2.92| 46.7| 72.3
410 792.331801.72 | 809.13| 3.10| 46.5| 71.1
510 792.341803.61 | 820.46| 3.48| 46.4| 70.0
796.39 | 806.52 | 820.25| 3.67| 46.3| 69.7
"Iy 1798.90(809.75|821.28| 4.26| 46.1| 68.0
810 800.96 | 812.75| 825.12| 4.39| 46.1| 66.7
910 804.80 | 817.58| 840.77| 5.21| 46.0| 65.4

Table 3. Simulation data for Experiment 2, using the
enhanced Cilk scheduler (ECS).

|Steal/Mug| Min | Avg | Max |0'| Ns |NM|
| N/A  [795.62]795.62]795.62] 0.] 59.3] 10.6]

Table 4. Simulation data for Experiment 2, using the
central manager scheduler (CM).

Refer to (Tables 3—4). On average, ECS run
with the most frequent steal/mug attempts is
10% above the lower bound. This lag is mostly
due to “persistence” of fast processors; i.e., once
they grab a task, it will be processed completely.
For experiment, 2 processors, with the first be-
ing twice as fast as the second one, work on 2
equally long tasks. It would be efficient to swap
tasks at halftime of the optimal run. That way,
both would be active from the beginning to the
end. Instead, the faster processor finishes his
task first and then takes over the other, leaving
the slower processor idle.

2.3. Experiment 3

This experiment runs simulations of the ECS
system with changing speeds of processors. In
the following set of simulations, we tested ECS
method robustness to processors’ speed change,
as may be expected to occur in real systems.
Processors change speed in a stepwise manner
(an alternating renewal process); i.e. they start
working full speed and, after some randomly
generated time with exponential distribution,



Task Scheduling in Distributed Systems by Work Stealing and Mugging — A Simulation Study

207

speed drops down to a level randomly chosen
from a uniform distribution between two input
parameters: minimum and maximum percent-
age of full speed. After the exponential random
time of a processor working at full speed, the
speed changing pattern is repeated. We exe-
cuted five simulations and compared average
completion times with the system in which pro-
cessors work full speed all the time. Each sim-
ulation is executed for 100 DAGs of “graphic”
and “fan-out-fan-in” type. This experiment em-
ploys a network of 12 processors. The proces-
sors have various speeds: one works at 100
work units per unit time (ms), one at 200, one at
300, two at 400, four at 800, and three at 1600
work units per unit time. For each processor,
the product of speed and steal /mug interval is
80 work units. Communication cost for task
migration is zero along the edges of the net-
work. For each simulation run, the duration of
both full speed periods and reduced speed pe-
riods are randomly chosen from an exponential
distribution with the mean of 50 time units.

| DAG |100]80-100]60-80] 50-70] 40-60] 10-50]
Graphic 785 825 [ 917 [ 939 [ 1018 ] 1097
Fan-out. |346] 361 | 397 | 407 [ 441 | 493

Table 5. Average execution times when processors
exhibit speed change.

Refer to Table 5. The top row denotes speed
range during the slowdown phase as the per-
centage of full speed. The first data column is
the benchmark — when speeds do not change. In
the first run, speeds are only reduced to between
80 and 100%. Consecutive simulations are re-
ducing processor speeds to 60-80%, 50-70%,
40-60%, and finally to 10-50%. As the overall
system computing power decreases, the com-
pletion times are decreasing linearly. Thus, ECS
performance degrades gracefully with changes
of processor speeds.

2.4. Experiment 4

In this experiment, we simulate a networked
system of 100 processors. Their speeds range

from 1600 down to 100 (17 processors of speed
1600, 29 of speed 800, 25 of speed 400, 12 of
speed 300, 8 of speed 200 and 9 of speed 100).
Two types of DAGs, “graphic” and “fan-out-
fan-in” with uniformly-sized tasks (as described
in Experiments 1 and 2), arrive into a system ac-
cording to a Poisson process with some mean
DAG inter-arrival time. At the arrival time, the
type of DAG is randomly determined, according
to a discrete uniform distribution. The simula-
tion is continuous, and statistics are collected
after each consecutive 1000 DAG completions.
Both systems are simulated on an identical DAG
arrival timeline; thus, we can directly compare
the quality of scheduling schemes. Again, we
simulate ECS and CM systems behavior. In the
ECS system, processors attempt to steal /mug at
the Iy level as described in Experiment 2.

The ECS scheme is implemented here by two
queues on each processor. A ready queue is
maintaining tasks of a DAG in process and a
waiting queue 1s keeping newly arriving DAGs
in FIFO order. When a DAG appears on a pro-
cessor, it is processed immediately if the pro-
cessor is idle. If the processor is busy, the initial
task of the DAG is placed in the waiting queue.
When a processor is finished with a task, succes-
sor tasks from the DAG are released and placed
in the ready queue and the processor contin-
ues with the tasks from the bottom of the ready
queue. If the ready queue is empty, the proces-
sor takes on the task from the top of the waiting
queue. If both queues are empty, the processor
attempts to steal/mug. The steal/mug proce-
dure is as follows: the victim’s ready queue is
checked first and if not empty the task from the
top is stolen. If the ready queue is empty, the
waiting queue is checked and the task from the
top, if any, is stolen. If both queues are empty,
we have a mug attempt.

The mean DAG inter-arrival time is 300 time
units. The system utilization! is low, slightly
above 0.2 (0.2047); thus, completion times dis-
tribution is positively skewed, i.e. more than
50% of DAGs are completed in time less than
average. Longer completion times are due to
peaks in DAG arrivals. Again, CM model per-
forms slightly better on average but it is not
penalized for polling the status of each proces-
sor in the system that usually requires enormous

' The system utilization is defined to be the ratio of the time integral of the active processing power to the time integral of the

available processing power in the system.



208

Task Scheduling in Distributed Systems by Work Stealing and Mugging — A Simulation Study

amount of network traffic. ECS steal/mug at-
tempts are one-on-one, requiring far less polling
network traffic. On the other hand, task migra-
tions from processor to processor are almost
50% more frequent in ECS than they are in CM
system. This will lead to network traffic de-
lays of DAG completion times (we don’t incur
migration costs in this experiment.) The lower
bound on processing time of graphic DAG is
390.58 and our statistical analysis shows that
95% of the time that kind of DAG will be pro-
cessed in time less than 534.03 time units; a
result is only 37% worse than the lower bound.
Half of the times that type of DAG will be pro-
cessed in time less than 421.85 time units, only
8% slower than lower bound.

Refer to Fig. 3. CM performs slightly better
than ECS on the “fan-out-fan-in” DAG, as ex-
pected, but the lag is small. The system is

—MIN ECS
—»—AVG ECS
—4—MAX ECS

Fig. 3. The minimum, average, and maximum
completion times of 10 batches of 1000 “fan-out-fan-in”
DAG completions in ECS and CM scheme with system

utilization of 0.2.

2100
A
1900 B
1700 *
1500 —MIN ECS
1300 ——AVG ECS
—a—MAX ECS
e e L W R MIN CM
- X *AVG CM
900 - &4 "MAXCM
700
500
300

Fig. 4. The minimum, average, and maximum
completion times of 10 batches of 1000 “graphic” DAG
completions in ECS and CM scheme with system
utilization of 0.6.

lightly loaded and DAGs are with high prob-
ability completed at most 50% beyond lower
bound. The vertical axis measures time units;
the horizontal axis refers to the actual runs (with
marks per 1000 runs).

InFig. 4, completion times with “graphic” DAGs
batches of size 1000 are given. DAGs enter the
system according to a Poisson process, with ex-
ponential inter-arrival time distribution having
a mean of 100 time units. System utilization
is thus increased to about 0.6 and completion
times are more volatile. CM scheduler is still
better than ECS on average, but it exhibits larger
spreads between minimum and maximum times
and maximum completion times are larger in
CM than in ECS.

3. Conclusions

Based on our simulation results it can be stated
that ECS is a viable well behaved scheduler in
distributed heterogeneous environment. Even
though CM was equipped with much higher de-
gree of knowledge of overall system state, the
results show that on average ECS is not that
much slower and measured by QoS measure it
performs even better. Another huge benefit of
the ECS is its decentralized nature and adapt-
ability versus CM’s centralized control. Once
control unit fails or becomes unusable the whole
system is rendered unusable as well (unless
there is some mechanism of control component
back up). On the other hand, ECS system par-
ticipants behave according to simple local pro-
tocol and thus the system is highly scalable and
resilient to failures of its elements.

Future work may include: (1) Further under-
standing of parallel program types; (2) Inclu-
sion of migration costs, query costs for CM
system, faults (within the system or coming
from outside), multi-layered systems inhomo-
geneous processors; (3) Perform the simula-
tion experiments with real-world parameters
and compare ECS with Depth First (DF) and
Depth First Deques (DFD); and (4) Implement
the work stealing paradigm in solving graph-
partitioning problems.



Task Scheduling in Distributed Systems by Work Stealing and Mugging — A Simulation Study

209

4. Acknowledgments

I thank E. Arkin, R. Estkowski, and J. Mitchell
for useful discussions on the work reported here.
I especially thank Michael A. Bender, my coau-
thor on the earlier version of this paper. This
work was funded by a grant from ISX Corpora-
tion (as a DARPA subcontract).

References

[1] T. E. ANDERSON, D. E. CULLER AND D. A. PATTER-
SON. A Case for NOW (Networks of Workstations).
IEEE Micro, 15(1):54-64, February 1995.

[2] N. ARORA, R. BLUMOFE AND G. PLAXTON. Thread
scheduling for multiprogrammed multiprocessors. In
Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pp. 119-129,
1998.

[3] Y. AUMANN, M. A. BENDER AND L. ZHANG. Efficient
execution of nondeterministic parallel programs on
asynchronous systems. Information and Computa-
tion, 139(1):1-16, 1997.

[4] Y. AUMANN, K. PALEM, Z. KEDEM AND M. O. RaA-
BIN. Highly efficient asynchronous execution of large
grained parallel programs. In Proceedings of the 34th
Annual Symposium on Foundations of Computer
Science (FOCS), pp. 271-280, 1993.

[5] M. A. BENDER AND M. O. RABIN. Scheduling Cilk
multithreaded parallel programs on processors of
different speeds. In Proceedings of the 12th ACM
Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 13-21, 2000.

[6] R. BLUMOFE AND C. LEISERSON. Scheduling multi-
threaded computations by work stealing. In Proceed-
ings of the 35th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 356-368, 1994.

[7] R. D. BLUMOEE, C. F. JOERG, B. C. KUSZMAUL, C. E.
LEISERSON, K. H. RANDALL AND Y. ZHOU. Cilk: An
efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55-69,
1996.

[8] C. CHEKURI AND M. A. BENDER. An efficient ap-
proximation algorithm for minimizing makespan on

uniformly related machines. Journal of Algorithms,
41:212-224,2001.

[9] P. DASGUPTA, Z. M. KEDEM AND M. O. RABIN. Par-
allel processing on networks of workstations: A
fault-tolerant, high performance approach. In Proc.
15th IEEE International Conference on Distributed
Computing System, pp. 467—474, 1995.

Received: June, 2002
Accepted: September, 2002

Contact address:

Nenad Jovanovic

Department of Applied Mathematics and Statistics
State University of New York

Stony Brook, NY 11794-4400, USA

e-mail: nenad@ams . sunysb.edu

NENAD JOVANOVIC was born and raised in Pula, Croatia. He earned his
B.S. in applied mathematics and statistics from the University of Zagreb.
Recently, he obtained his Ph.D. from the Department of Applied Math-
ematics and Statistics, SUNY Stony Brook. Nenad Jovanovt is inter-
ested in IT systems management, e-commerce, optimization, linear and
nonlinear programming, multi-agent systems, scheduling, distributed
systems, and financial modeling.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
    /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
    /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
    /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
    /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
    /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
    /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [595.276 841.890]
>> setpagedevice


