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Andrej Dobnikar, Simon Vavpoti¢ and Andrej Likar*

Faculty of Computer and Information Science, University of Ljubljana, Slovenia
*Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

A new approach to dynamic systems modeling is given.
Stochastic Cellular Automata (SCA) are used as the
basic computational module. The dynamic systems
are considered as time and space dependent, where
time dependencies are supposed to be given with some
differential equations (DE), while space influences are
not known. The basic idea of our approach is to use
heuristics for the design of SCA and some stochastic
search algorithm to optimize free model parameters.
Two non-gradient optimization algorithms are used and
evaluated on the two case studies: diffusion and mi-
gration of Cs in soil and forest fire spread problem.
They are Evolutionary Algorithm (EA) and Stochastic
Correlation Algorithm (ALOPEX). We show that with
some modifications, both algorithms are capable to solve
the two case problems, though there are some important
differences between them.

Keywords: modeling, cellular automata, heuristics,

stochastic optimization.

1. Introduction

The modeling of unknown systems dynamics
is still one of the biggest challenges of modern
science. Finding the model, for example, of a
natural phenomenon enables one to gain deeper
insight into the observed appearance on the one
hand and to enable one to forecast its activity
on the other. Although well known phenomena
already have some reasonable physical inter-
pretations, this does not usually allow us to use
them for prediction purposes. The reason for
this is that such dynamical systems are time and
space dependent, where the time dependencies

are normally given with some differential equa-
tions, while the space influences are captured
within unknown space-dependent parameters.
We believe that the model should provide us
with a tool to acquire these values.

This paper describes dynamic systems model-
ing with evolving cellular automata. The basic
idea is to use stochastic cellular automata and
heuristics for their design and some stochastic
search algorithms to optimize free model pa-
rameters. We compare this approach with more
traditional mathematical modeling. Within this
paper we follow [2], where the contribution of a
heuristic method should either results in: high-
quality solutions, produce faster, higher-quality
solutions, easier implementation or a broader
range of applicability, in relation to other ap-
proaches. We believe that the heuristics we use
fulfill at least some of the above criteria and
we intend to prove it through our experimental
work. Two non-gradient optimization (search)
algorithms are used and evaluated on two real
world problems: diffusion and migration of Cs
in soil (1D problem) and forest fire spread (2D
problem). The first is based on Evolutionary
Algorithm (EA) and the second on Stochastic
Correlation Algorithm (ALOPEX).

The paper is organized as follows: stochastic
cellular automata are defined first, then we de-
scribe two versions of evolutionary algorithms
that are used in our experimental work. Sec-
tion 4 provides the basic concept of a stochastic
correlation algorithm. A heuristic approach of
modeling with SCA is outlined in Section 5,
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after a brief description of a more traditional
(mathematical) modeling, through a descrip-
tion of our experimental work. We conclude
with some comments and plans for our future
work.

2. Stochastic Cellular Automata (SCA)

"Cellular automata are discrete dynamical sys-
tems whose behavior is completely specified in
terms of a local relation, much as is the case for
the large class of continuous dynamical systems
defined by partial differential equations. In this
sense, cellular automata are the computer sci-
entist’s counterpart to the physicist’s concept of
“field”, [13].

We want to follow this basic idea. Therefore,
our goal is to implement a physical model of
a dynamical system with the help of SCA. We
chose to use an evolution-based procedure in or-
der to optimize the space-dependent parameters.
This approach differs from the one described in
[11] significantly. Instead of searching for the
most appropriate non-homogeneous and deter-
ministic structure of the Cellular Automata, we
look for a stochastic and homogeneous version
of CA, which we call SCA. Stochasticity is due
to the frequent feature of natural phenomenon
(like diffusion or fire spread) and homogeneous
structure of CA because of its usual location-
invariant dynamics.

SCA is n-D array (n = 1,2,...) of finite au-
tomata (cells). Each automaton (cell) is de-
scribed with:

SCA(r) = <S,p, L, ) (1)
where:

7 — n-D vector, indicating the cell

S — set of all possible states of the cell

p — probability vector, describing state
transitions for each neighboring
combination

L. — set of local parameters

f — fitting value of a cell

p and L are parameters of unknown values. In
the approach proposed in this paper a heuris-
tic method is used to design the state transi-
tion diagram of SCA and an evolution-based
search procedure to optimize the corresponding

free parameters, in order to achieve the greatest
possible fitting with the measured data of the
investigated phenomenon.

3. Evolutionary Algorithm (EA)

An evolutionary algorithm was developed by J.
Holland and his students in 1960, [4]. Origi-
nally, it was designed as a formal system for
adaptation rather than an optimization system.
Its basic features are the strong emphasis on
recombination (crossover), use of a probabilis-
tic selection operator (proportional selection)
and the interpretation of mutation as a back-
ground operator. Due to the nature of the oper-
ators, this algorithm is also called genetic algo-
rithm. Later, several methods of simulating evo-
lution were developed. Certain historical sub-
sets of evolutionary algorithms include evolu-
tion strategies, evolutionary programming and
genetic algorithms, [1]. We used only two meth-
ods within our experimental work. The firstis a
population-based procedure that relies on a ran-
dom variation (with crossover and mutation)
and selection and is indicated as genetic algo-
rithm (GA). The second relies on evolution of
individual, again with the help of genetic oper-
ators crossover and mutation. We mark it with
CPA (cellular programming algorithm), [11],
because it was developed for the purpose of the
cellular automata synthesis. The modifications
within CPA and GA, in relation to the original
algorithms, are due to the stochastic feature of
the SCA. Crossover calculates new probabilities
for the state transitions from the two individu-
als (parents) or from the two neighboring cells,
by considering probability rules. Mutation re-
places the chosen probability values with new
ones, again within the limits [0,1]. We apply a
variant of GA in the case of 1 D problem (mi-
gration of Cs in soil) and a modified version of
CPA in case of 2D problem (forest fire spread).

4. Stochastic-Correlation Optimization
Algorithm (ALOPEX)

Instead of an error gradient, ALOPEX [14] uses
correlations between changes in individual pa-
rameters and changes in global error measure-
ment. In the case of 2D SCA, k-th parameter of
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(i, /) cell Pg. is changed according to the expres-
sion:

Pi(n) = Pi(n — 1) + 8(n) (2)

—& , with pk(n)
kin) = ’ i
5;(n) { +8 , with 1— pk(n)

1
k =
Pim) = e
(Boltzman distribution)
Cj; = APi(n) - AE(n)
APZ(n) = Pg(n —1)— Pg(n -2)
AE(n)=E(n—1)—E(n-—2)

0 is a fixed step of parameter change and T is
a ‘temperature’ which is high at the beginning
and low at the end of the ’learning’ procedure
— it gives a stochastic feature to the algorithm.
If it is too high, the probability is close to 0.5
and if it is too low, the probability is close to 1:

n—1
RS 3 30 Db DI TN

j k n'=n—N
(3)

if n is a multiple of N, otherwise it remains un-
changed. N denotes the number of iterations
when T is updated. M is the total number of
parameters in the system that we want to opti-

mize. |<C{;(n)>| is equal to the average absolute
value of C{j(n) over the interval N. When corre-

lations are small (near minima of error surface),
T is reduced and vice versa. There are several
similarities with simulated annealing, but also
some important differences. In ALOPEX, cor-
relations are used instead of changes in error, all
parameters are changed at every iteration, and
all parameters are updated at the same time.

5. Modeling of Dynamic Systems

We are surrounded by a number of different
natural phenomena that can be classified as dy-
namic systems. It is of vital interest to know
their dynamics in order to be able to analyze
them from different points of view, in particu-
lar to predict their actions in future. There is

a traditional mathematical modeling, that uses
differential equations in order to describe the
time dependencies of such dynamic systems.
However, space influences and stochastic na-
ture of the phenomena make such modeling
very complicated so that the solution, if there
is any, is barely feasible. In such cases we need
an alternative and here we suggest a heuristic
modeling in combination with SCA, together
with two non-gradient optimization algorithms,
evolutionary-based (GA, CPA) and stochastic
correlation algorithm (ALOPEX), to search all
free model parameters. In the rest of the pa-
per we shall demonstrate this alternative mod-
eling approach on two case studies from the
real world, migration of Cs in soil and forest
fire spread.

5.1. 1D Case Study: Diffusion of Cs in Soll

Careful measurement of specific activity of Cs
in soil samples taken layer by layer in autumn
1999 in Slovenia (near the nuclear power plant
Krsko) is confronted with the results of two
types of modeling: traditional mathematical
modeling and heuristic modeling with evolving
SCA. The deposit that influences the content
of Cs in undisturbed soil is due to the nuclear
weapon tests (from 1952 to 1972) as well as
to the Chernobyl accident in 1986 (short term
deposit). The main purpose of modeling this
phenomenon is to predict the Cs migration in
future.

A.) Mathematical modeling

Several mathematical models of diffusion and
migration processes have been published so far
(5, 6, 12]. They all use the diffusion-convection
differential equation:

0%u ou ou
D— = V—,
0z

— 4
22 ot )
where D is the diffusion constant and v is the
migration speed.

Different forms of the Green function which
obey the diffusion-convection equation are used.
Recently, a solution was published, [7], which
also considers the boundary condition (no leak
current of the activity across the soil surface):

ou
(D= —vu)|z=0 =0

92 (5)
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This boundary condition alters the previously-
used Green function considerably. It leads to

the form:
B[ 2y
G(Z, t) _ e 2 i — Y n_teﬁ(z—jt)
v/ Dt 2V D

(o))

where ®@(x) is the error function defined as:

2 Y p
(I)()C) = E/O e dt

With the help of G(z, 1), the solution for the
depth profile was obtained from:

u(z, 1) = /000 Gla.t — (e dl - (7)

The fallout function f(¢') was taken [7] as:

f(t) = ad(t' —tc) + BF(') (8

where:

o, P - are scaling factors for nuclear test weapons
fallout deposit F(') (7, 7 kBq/m?) and the Cher-
nobyl accident deposit § (19, 1 kBq/m?).

Free parameters (¢, B, D, v) are optimized with

Marquardt method [8] by controlling u(z, ¢) with

experimental data (near NPP Krsko, 99). The
result is very good, except for the greater depths

(Fig. 1).

Cs depth profile [Bq/kg]
a\
300

200

100

Fig. 1. The measured profile of Cs (circles) and the
theoretical fit using the diffusion — convection model
(solid line).

The mathematical modeling is obviously very
demanding. An alternative approach is there-
fore beneficial. In the following, the SCA ap-
proach is described.

B.) SCA modeling

1D SCA is suggested, where each cell (automa-
ton) is responsible for the description of the
depth profile (value of Cs concentration) within
arange of lcm (Fig. 2).

DEPOSIT
1cm Cell 1
1cm Cell 2
SOIL
1cm Cell 14

Fig. 2. Cellular automata structure.

The following heuristics is used: concentration
of cell i (i = 1,2,...,N) is increased if the
neighboring concentrations are higher and is de-
creased otherwise. The changes also depend on
diffusion constant and migration speed. The
concentration is described with the digital value
of the corresponding cell’s state. The state of
cell 1 is changed according to the equation:

wi(t+1) = wi(t) +P;- AT —(1—-P;)-A™, (9)

where:

AT, A~ — are step factors proportional to p; and
qi, respectively, and:
Pi

P = =(1—-P) =
" opitai 0= 2

qi
pi+ qi

(10)

=0 (st 8] .

+ D* {(1+sgn(ui+1—ui)) 5
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qi = D" [(1+Sgn(ui—ui—1))(ul%l>] Vit
] (Ui —0j41)
+ D" | (Tsgn(ui—ui1))————
where D* and v* are again estimates of diffu-
sion constant and migration speed, P; and Q;
are probabilities of i’th cell concentration incre-
ment and decrement, respectively, and sgn(x) is
the sign function of x, being +1 if x > 0, 0 if
x = 0and —1if x < 0. Note the influence of
both D* and v* on p; and g; in the direction of
the migration, and the influence of only D* on p;
and g; in the opposite direction. The equations
above, therefore, clearly indicate nonlinear de-
pendence, which would not be the case with
the discrete version of the diffusion-convection
differential equation.

The deposit (fallout of Cs) at the surface is the
same as before. This is shown in Figure 3 with
the values, real up to the scaling factors o* and

B*.

[Arb. units]
1000

800
600
400

200
0 anmn nﬁﬂ!-
1952 1960

1970 1980 1986

Fig. 3. Nuclear experiment deposits of radioactive Cs
between 1952 and 1977 and the Chernobyl deposit of Cs
in 1986 in arbitrary units.

With this input data we made two simulation
runs, one with evolution-based algorithm (GA)
and another with stochastic correlation algo-
rithm (ALOPEX) in order to optimize the free
parameters of the SCA model (a*, p*, D*, v*),
so that it would fit best with the experimental
data. We first considered the above parameters
as global parameters. For each search method
(GA, ALOPEX) we tested several variants and
for each variant we made ten tests. For the eval-
uation we took the average tests of the best vari-
ants. Two variants of GA were tried, one with
discrete (GA_d) and another with real (GA_r)
parameter values. We also tested two versions

of ALOPEX, one with fixed amounts (AL_f) of
parameter changes and the other with change-
able steps (AL_c), following the general princi-
ple of Rechenberg’s 1/5 success rule, [1]. Table
1 gives the average number of simulation runs
needed to reach the error obtained by mathe-
matical modeling (50 Bq/kg, [7]), for the four
mentioned methods, where the error is calcu-
lated as the square root of the sum of squared
differences between the measured and calcu-
lated concentrations. Timing of the best result
(AL_f) is shown in Fig. 4.

Error[Ba/kg]

400 \

300 \

200 \

100 \xﬁ
%0 5 10 15 2

Number of simulations in 1000

Fig. 4. Timing of the fixed step Alopex method.

Method | Av. no. of steps (x 1000) |

GAd 35.9
GAx 27.5
AL_f 21.9
AL_c 32.7

Table 1. Average number of simulation runs

Depth profile [Ba/kg]

300 == SCA

— Math. model
200
100

0,
05 25 45 6.5 85 10.5 depth [cm]

Fig. 5. Prediction of Cs migration in soil
for the year 2003.
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An interesting result was obtained by combin-
ing GA_r and AL_f (GAAX), which means that
we used the evolution-based procedure together
with the learning algorithm (the approach that
gained the name Lamarckism, [1], opposite to
Darwinism). The average number of simula-
tion runs to reach an error of 50Bq/kg was
20.5, which indicates that the combining meth-
ods are compatible. We also tried to improve
the above results (decrease the error) by con-
sidering D* and v* as local parameters. In this
case, we reached an error of 2.7 Bq/kg in 11,000
generations (11 million simulation runs). This
exceptional result was obtained with the GA_r
method. Finally, it is interesting to look at the
forecasting of our results. The global parame-
ters, obtained with mathematical and SCA mod-
eling, were used and some further simulations
were performed in order to obtain predictions
of the Cs migration for the year 2003 with the
two methods (Fig. 5). Time-space diagram for
AL _c is further given in Fig. 6. It was not possi-
ble to get a similar diagram with mathematical
modeling, which is due to the numerical algo-
rithms that were used within the mathematical
modeling.

depth proﬁ|e [Bq'kgl

Fig. 6. Time-space diagram of Cs migration in soil
obtained by SCA (AL_c) modeling .

5.2. 2D case study: Forest Fire Spread

Forest fire spread is a well known and a very
serious problem in Mediterranean countries and
elsewhere. Modeling the dynamics of fire spread
would enable prevention of huge damage and
many human casualties.

A.) Mathematical modeling:

The traditional mathematical modeling for fire
spread is based on the fundamental equation of
energy law:

Oh »
— =-divj+o

9 (11)

h — specific enthalpy of medium

-

J — energy flux density
o — specific power of heat generation

where:
j= —a(Pgrad(T) + pe,Té.

o — conductivity field

7 — n-D vector, indicating the cell

T — temperature

p — air density

¢, — specific heat of air at const. pressure
® — wind velocity

The temperature spread is then:

or _ 1 on_
ot pcp, ot
1 - (of
= — div(a(r) grad(T)—div(oT)+—
o div(a(7) grad(T)~div(@T)+
= B div(a(7) grad(T)—div(&T)+Q (12)

where:

o, B, Q — are unknown local parameters that
depend on geographical and meteorological data.

The above equation represents the diffusion
model of the forest fire spread. We shall omit its
direct implementation, it is detailed elsewhere
[3, 9]. The model is used for reference (mea-
sured) sequence generation within our experi-
ments. The reason for this is the fact that we
had no real data at our disposal.

B.) SCA modeling

Each cell in the 2D array of SCA covers one
part of the area under investigation (Fig. 7).
It means that we describe each part of the area
through the states of relating stochastic automa-
ton (cell). The structure of its state diagram
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therefore follows the heuristics applied to this
problem.

TERRAIN
MAP

 SCA

Fig. 7. Stochastic cellular automaton model for fire
spread research.

SCA model of a forest fire spread can be in-
terpreted also with the array (’forest’) of cells
("trees’), where each cell has only three pos-
sible states (due to the fact that we are inter-
ested in the fire spread only): O: unaffected tree
(low temp., fuel available), 1: burning tree (ris-
ing temp., fuel being burned). 2: burned tree
(falling temp., no fuel left). The fire from one
cell within the diffusion model ignites a cell in
its vicinity with some probability v(7). In SCA
approach the other probability P(7) is in order,
describing the fire spread to cell 7 because of
its neighboring cells, considering also the wind
and the structure (fuel) of the cell itself. As
we have some knowledge about it (structure of
terrain, meteorological data, for example), we
distinguish between initial and unknown data.
We designate the former with py(7) and the lat-
ter with p(7).

Total ignition probability is now:
P(7) = po(F) + p(7)

p(7) is not known in advance. It depends on the
state of all relevant neighboring cells. We want
to optimize it for all cells in order to fit the SCA
dynamics to the measured data.

(13)

The state transition diagram for all the cells in
SCA is very simple due to the straightforward
heuristics (Fig. 8).

The two non-gradient procedures are again used
to optimize local parameters p(r) for all the

FIRE

FUEL ASHES

Fig. 8. State diagram of cellular automaton cell for fire
spread research.

cells in SCA. We applied Al_f (ALOPEX with
fixed steps) and modified CPA. In both cases we
evaluated the procedures by comparing the er-
rors at different evolution steps, where the error
(sum of state differences between the equivalent
cells from measured (reference) and the gener-
ated configurations within the two sequences)
is taken over the area of observation (cells in the
“fire” state) and during the teaching sequence.
Figure 9 shows the fitting increase of (1 — Error)
during the evolution of SCA with the modified

0.9

0.8 WM&W&WM
0.7 |

£ 05
o4 \
0.3
0.2 M",W
0.1 vua™WiY
O T T T T T T T

1 51 101 151 201 251 301 351
Iteration number

Fig. 9. Fitting (1 — Error) of SCA to the reference

sequence of the cells in “fire” state with modified CPA
algorithm.

0.9 WWW
0.8
0.7 -"/
006
/

E 05
L 04 /’
0.3
0.2 J,’I
0.1 A

0 : : ‘ ‘ ‘ ;

1 51 101 151 201 251 301
Iteration number

Fig. 10. Fitting (1 — Error) of SCA to the reference
sequence of the cells in “fire” state with modified Al_f
algorithm.
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Al_f and Figure 10 with the modified CPA. AL_f
is used here for each cell separately but with
a local exchange of the parameters when this
increases the fitting of a cell. Without this mod-
ification, Al_f procedure is too slow to be com-
parable with modified CPA algorithm. Though
they both show the effect of incremental fit-
ting, the modified Al_f outperforms CPA in both
speed and accuracy. It is difficult to say what
the reasons are, however we speculate that one
of them is the fact that we partition the problem
into subproblems with simpler dynamics within
ALf, which makes fitting easier.

6. Conclusion

SCA modeling was tested against more tradi-
tional mathematical modeling. For non-trivial
dynamical systems it is difficult to find the
proper analytical model. With the help of
modern heuristics and a simple model of pro-
cessing (array of stochastic automata), we are
able to build models for relatively complex dy-
namical systems. Non-gradient optimization
methods are essential for successful modeling
with SCA. Both of the methods used, evolu-
tionary algorithm EA (with two variants GA
and CPA) and stochastic correlation algorithm
(ALOPEX), proved to be successful. Each
method has positive and negative features. Our
general experience is that ALOPEX is easier
to implement then EA, but it is also very sen-
sitive to the values of the parameters, such as
step size, N (number of steps for updating T),
etc. On the other hand, EA is more robust, but
usually slow, particularly if the search space is
large. Asthey are, due to their features, compat-
ible, we found combining them to be attractive.
If, after each generation, the individuals are up-
dated for a certain number of steps according to
ALOPEX, then the convergence speed is con-
siderably increased.

In our future work we want to extend the ap-
proach to other models like cellular neural net-
works and to prepare transformations of heuris-
tics for different dynamics to cellular structures.
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