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Reasoning with Non-Numeric
Linguistic Variables

Jon Williams, Nigel Steele and Helen Robinson
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Where decisions are based on imprecise numeric data
and linguistic variables, the development of automated
decision aids presents particular difficulties. In such
applications, linguistic variables often take their values
from a pre-ordered set of vaguely defined linguistic
terms. The mathematical structures that arise from the
assumption that sets of linguistic terms are pair-wise
tolerant are considered. A homomorphism between tol-
erance spaces, filter bases and fuzzy numbers is shown.
A proposal for modeling linguistic terms with an ordered
set of fuzzy numbers is introduced. A procedure for
structured knowledge acquisition based on the topology
of the term sets and the cognitive theory of prototypes
is shown to give rise to sparse rule bases. Similarity
as a function of “distance” between fuzzy numbers
treated as tolerance mappings is used as an inference
mechanism in sparse rule bases to give linguistically
valued outputs. Measuring the “distance” between fuzzy
sets to correspond to intuitive notions of nearness is not
straightforward, since the usual metric axioms are not
adequate. An alternative way of measuring “distance”
between fuzzy numbers is introduced, which reduces to
the usual one when applied to crisp numbers.

Keywords: linguistic variables, tolerance spaces, fuzzy
numbers, similarity based reasoning.

1. Introduction

There is a particular class of problems which
have a small set of mutually exclusive decision
outcomes where the development of automated
decision aids presents particular difficulties. In
these domains decisions are based on both im-
precise numeric data and linguistic variables
which have no underlying numeric scale. �A
very simple example is deciding whether a stu-
dent should pass or fail a course based on their
mark and performance in seminars. The mark is
imprecise because of marker variation and per-
formance in a seminar takes a linguistic value

such as competent�. These decisions tend not
to havewell defined rule sets, making traditional
expert systems difficult to develop.

There is a substantial body of work dealing
with linguistic variables and theirmodelingwith
fuzzy sets. It is Zadeh’s contention that Fuzzy
logic � Computing with words �Zadeh 1996�.
However, in applications, fuzzy sets and fuzzy
logic are most often applied to variables which
have an underlying numeric scale. Modeling
non numeric linguistic variables is acknow-
ledged to be less well developed. �For example
by Cox on who wrote in the comp�ai�fuz�zy

newsgroup on 28 March 1999 “The application
of fuzzy logic and fuzzy metrics to non-numeric
objects (and events) has long been a difficult
task”.�

Most work relating fuzzy logic and fuzzy set
theory to linguistic variables starts from the
premise that Zadeh’s contention is correct. We
intend to take a different approach by mak-
ing assumptions about the mathematical struc-
ture of sets of pre-ordered linguistic terms from
which a linguistic variable takes values. It is
also usual to define linguistic variables and lin-
guistic terms using Zadeh’s definition �Zadeh
1973�. Here we will start with modified defini-
tion�s� and show that a fuzzy interpretation is
one way of making these initial definitions ope-
rational. Fuzzy Numbers are a device which
has been used to model non-numeric linguistic
variables �Bojadziev 1995, Zimmermann 1990�,
however Mareš �Mares 1999� draws attention to
the fact that operations on fuzzy numbers us-
ing the extension principle or interval arithmetic
�Klir 1995, Moore 1996, Zimmerman 1987� ap-
pear not to give results which mirror the intu-
itive way humans handle vague quantities. In
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this paper, we show how alternative, but es-
sentially equivalent mathematical structures of
filter bases and tolerance spaces, provide a pos-
sible solution to this problem. The approach
taken here is designed to deal with problems
where the only variables are non-numeric and
also to combine non-numeric variables with nu-
meric variables. In both cases it is possible to
give imprecise linguistic outputs which convey
the uncertainty of outcomes to a user in an in-
tuitive way.

Definition 1. (Non-NumericLinguisticVari-
able) A non-numeric linguistic variable is cha-
racterised by a quintuple hv� L� X� g� mi; in
which v is the name of the variable; L is a
finite set of linguistic terms fl0� � � � � lng which
describe v whose states range over a universal
set X of states of v; g is a grammar for gene-
rating linguistic terms, and m is a semantic rule
which assigns to each term l � L its meaning
m�l� on X; that is m : L � A � X.

Example 1. Consider the performance of a
student in a seminar. Then v � seminar. The
set Xseminar of possible states of a student’s
performance ranges from no contribution to
superb. These states are described by a pre-
ordered set Lseminar with a grammar �g� of at
least three terms, for examplefpoor� competent�
goodg. The grammar �g� might also specify
how many additional terms may be added. So
for example the terms very poor and very good
might be added. �The number of terms used
in applications is discussed in section 6.2.�.
Then m�poor� maps to the lower portion of the
seminar performance range so that m�poor� �
m�competent�.

Definition 2. (Numeric Linguistic Variable)
A numeric linguistic variable is characterised
by a quintuple hv� L� X� g� mi; inwhich v names
the variable; L is a finite set of linguistic terms
fl0� � � � � lng of the base variable v whose val-
ues range over a universal set X of values of
v; g is a grammar for generating linguistic
terms; and m is a semantic rule which assigns
to each term l � L its meaning m�l� on X, (i.e.
m�l� : L � A � X).

Example 2. Consider the marks gained by a
student on a course. Then v � mark. The
set Xmark of possible values of a student’s mark

range from 0 to 100. These states are described
by a pre-ordered set Lmark with a grammar �g�
of at least two terms, for example ffail, passg.
Again the grammar might also specify how ad-
ditional terms were to be added. �So, for exam-
ple, the term marginal pass may be added�.
Then we could have m�fail� � �0� 40� and
m�pass� � �40� 100�. We might also have
m�marginal pass� � �35� 45� if it is possible
to pass with a mark less than 40, but not with a
mark less than 35.

2. Sets of Linguistic Terms
— Mathematical Structure

In this section assumptions will be made about
the mathematical structure of sets of linguistic
terms. The following definitions are required.

2.1. Orderings

Definition 3. (Preorders) Let A be a set, then
whenever there is a defined concept of less
than or equal to then this establishes a pre-
order on A [Nachbin 1965]. More formally,
a preordered set is a set A equipped with a
reflexive transitive operation � such that if
a� b� c � A then a � a (reflexivity) and in addi-
tion a � b and b � c implies a � c (transitiv-
ity).

Definition 4. (Partial Orders and Chains)
A partial order is a preorder where in addi-
tion � satisfies a� b � A then a � b and b �
a implies a � b. A partial order relation is
linearly ordered or a chain if

�a� b � A either a � b or b � a�

Definition 5. (Up sets) Let P be a partially
ordered set with Q � P. Then Q is an up set
whenever x � Q, y � P and y � x then y � Q.
If x is the least element in Q then the set is often
referred to as the up set of x. Down sets are
defined by duality. The up set of x is denoted �x
and the down set of x by �x.

Example 3. The set of integers less than or
equal to 10, with the usual order, is a chain.
The down set of 3, �3 � f3� 2� 1g; for the same
set, �8 � f8� 9� 10g.
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Example 4. The set of pairsf�m� n� : �m� n� �
N 	 Ng with �m1� n1� � �m2� n2� 
 m1 �
m2 & n1 � n2 is a partial order, but not a chain,
since �4� 3� is not comparable with �3� 4�.

2.2. Vague Linguistic Terms

The remainder of this paper is based on the
following assumptions about the sets of vague
linguistic terms which are used to valuate vari-
ables in decision making environments. Let a
finite set of mutually exclusive decisions D :�
d1� � � � � dn have a finite set p � N of attributes
described by a finite set of linguistic variables
V :� v1� � � � � vp.

Preorder

Each vk takes a value or range of values from a
finite pre-ordered set of linguistic terms value:
V � L to give value�vk� � li, �0 � i �
card�L�� and the pair hli� vki which we will
denote li�vk.

Example 5. For the variable mark we have
the linguistic variables passmark and failmark.

Kernels

Assume for each li�vk there is at least one state
of vk to which only that term applies, the kernel
ker�li�vk� of the term, so that

m�ker�li��
�

m�ker�li�1�� � �

for each li � L.

Example 6. For the term set

fpoor� competent� goodgseminar

there exist states which are only mapped to one
term so that the strict precursor relation

ker�poor� � ker�competent� � ker�good�

holds and the meanings m �see definition 1� are
disjoint

m�ker�competent�� 
 m�ker�good�� � ��

Pairwise tolerance

We assume that vague linguistic terms are pair-
wise tolerant so that

li�vk 
 li�1�vk � τR�li�vk� � τL�li�1�vk� �� �

the meaning m : Lvk � X gives m�τR�li�� �
m�τL�li�1��. Here τR is the right tolerance and
τL the left tolerance. The least element of Lvk
is assumed to have no left tolerance and the
greatest element no right tolerance. Note that
τL�li� � ker�li� � τR�li�.

Example 7. The termpoor � competent ��
m�poor� 
 m�competent� �� �.

Support

Taking the previous two assumptions together,
assume that each linguistic term has as a support
set the points supp �li� � fτL�li�� ker�li�� τR�li�g
so that m�supp�li�� � m�li�.

Pairwise concatenation

The operation of concatenation � of the lin-
guistic terms li� lm � Lvk is defined pairwise.
So that

li�m � li � � � �� lm �
m�
i

lj �i � j � m�

which is the same as

li�m � f� li 
 � lm : li � lmg�

This is equivalent to the logical OR ‘
W

’ opera-
tion. Note that

ker�li�m��fker�li�� τR�li�� � � � � τL�lm�� ker�lm�g�

Example 8. For a variable v0 described by the
term set

fvery bad� bad�medium
� good� verygoodgv0

then

very badv0 �mediumv0 �

fvery bad, bad, mediumgv0

which may be read

fvery badv0 � badv0 �mediumv0g�
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Products

The product
Q

of two sets of linguistic terms is
defined on the product space of their respective
variables vk	vj to give the pair li�vk� li�vj and nat-
urally extended to

Qp
1 vk to give �li�v1� � � � � li�vp�.

Example 9. For two variables v1 � mark and
v2 � seminar we have the product space mark
	 seminar. A range of numerical values �35,
45� of mark may be described by the term
marginal pass, and range of states of semi-
nar by the term competent. Then the pair of
terms �marginal passmark, competentseminar�,
can be read

fmarginal passmark and competentseminarg

3. Mathematical Structures and Linguistic
Variables

Albrecht �Albrecht 1998� draws attention to the
fact that many elements of knowledge-based
systems and uncertain reasoning can be cap-
tured by traditional mathematics and, in par-
ticular, by topology. Hovesepian �Hovesepian
1992� shows that a tolerance space is sufficient
to model the sorites paradox using a three val-
ued logic and Stout �Stout 1992� considers the
relationship between tolerance spaces and fuzzy
sets in a category theoretic setting.

Definition 6. (Topological Space –OpenSets)
A topology on set X is a collection T of subsets
of X with the following properties:

O1 X � T and � � T .

O2 The union of any number of sets in T be-
longs to T .

O3 The intersection of any two sets in T be-
longs to T .

The pair �X� T � is called a topological space.

Definition 7. (Open sets) Members of T are
called open sets. The complement of an open
set is closed. An alternative, equivalent, defini-
tion of a topology may be phrased in terms of
closed sets [Kelley 1955].

Definition 8. (Bases) Let �X� T � be a topolog-
ical space. A base for T is a collection B � T
such that every set in T is a union of sets from
B.

Definition 9. (Sub-bases) A sub-base for a
topology T is a collection S � T such that any
set in T is a union of finite intersections of sets
from S.

It will be shown later that if the supports of
linguistic terms �i.e. fτL�li�� ker�li�� τR�li�g are
taken as a sub-base for a topology, then the ker-
nels ker�li� are closed.

Different topologies have different separation
properties �Kelley 1955� described by the Ti ax-
ioms two of which we will require.

Definition 10. A topology on �X� T � is:

T2 or Hausdorff If and only if, given a pair of
distinct points x� y of X there exist open sets
O andO� with x � O and y � O�, such that
O 
O� � �.

T0 If for each distinct x and y in X, there exists
an open O � T such that either x � O and
y �� O, or there exists O� � T , such that
y � O� and x �� O�.

Equivalently a topology is T0 if and only if,
given a pair of distinct points x� y of X there
exists an open set O, such that O 
 fx� yg is a
singleton.

Definition 11. (Tolerance Relation) A toler-
ance relation is a symmetric reflexive relation
ξ � X 	 X, such that xξx for every x � X and
xξy �� yξx for all x� y � X.

Definition 12. (Tolerance Space – [Zeeman
1962]) A tolerance space, hX� ξi is a space X
with a tolerance relation ξ � X 	 X, the tole-
rance on X. If hx� yi � ξ denoted xξy, then x
is said to be within ξ tolerance of y. A space
may be equipped with more than one tolerance.
A bi-tolerant space is a space hX� hξ� ζii with
ξ � ζ � δ , where δ is the discrete tolerance
and xδy 
 x � y. In a tolerance space hX� ξi
the set N�x�fy:yξxg, is called a t-neighborhood
of x � X. The t-neighborhood of a subset A of
X is the union of the t-neighborhoods of all its
points, that is

N�A� �
�
a�A

N�a��
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Example 10. Take r1� r2 � R and let r1ξ r2
�� jr1�r2j � 1; thenN�r1� � �r1�1� r1�1�.
Now take �1� 2� � R ; then N��1� 2�� � �0� 3��

A topological space �X� T � is tolerable �Ho-
vesepian 1992� if there exists a ξ on X, such
that the set fN�x� : x � Xg of t-neighborhoods
serves as a sub-basis for a topology T on X.

Example 11. Consider the relation described
in example 10; the set fN�r� : r � Rg is a
sub-basis for the usual topology.

Example 12. Consider the set of neighbor-
hoods fN�1�� N�2�g with the tolerance relation
defined in example 10. Then they generate a
topology on N��1� 2�� given by

f�0� 3�� �0� 2�� �1� 3�� �1� 2�� �g�

Definition 13. (Tolerance Mapping) Let f :
hX� ξi� hY� ζi be a map between two tole-
rance spaces then f is a tolerance map, if

xξy � hX� ξi �� f �x�ζ f �y� � hY� ζi�

If the converse holds, then f is a tolerance em-
bedding.

3.1. Topologies of Linguistic Terms

Different approaches can be taken to topologies
of the term set of a linguistic variable. The sup-
ports of the linguistic terms can be taken as a
sub-base for a topology. On the other hand, the
kernels and tolerances may be taken as a base
for a topology which gives a different topology
with different, but related separation properties.
It is also possible to define a topology by tak-
ing the �concatenated� kernels alone as a ba-
sis for the closed sets. The difference in the
nature of these spaces is important; since em-
pirical evidence �Zwick 1988, Yoshikawa 1996�
suggests that people judge the similarity of lin-
guistic terms on the basis of the separation of
the kernels of the terms.

Theorem 1. Let S �
S

i�I supp �li� be the set
of tolerances and kernels for the kth linguistic
variable. Then the topology Ls on S obtained
by taking fsupp �li�gi�I as a sub-base is T0 but
not T2.

Proof. Sets of the form fτL�li�� � � � � τR�li�g are
open in �S� Ls�.

Every open set which contains ker�li� also con-
tains τL�li� � τR�li�1� � li�1 hence �S� Ls� is
not T2.

Take ker�li�� ker�lj� or τ�li�� τ�lj� as distinct
points, then there are open sets li and τ�li� such
that li
fker�li�� ker�lj�g and τ�li�
fτ�li�� τ�lj�g
are singletons. Taking ker�li�� τ�lk� then τ�lk�

fker�lj�� τ�lk�g � τ�lk� is a singleton and �S� Ls�
is T0. �

Theorem 2. Let S �
S

i�I supp �li�. Then the
topology �S� Lk� obtained by taking the concate-
nated kernels K � fker�li�j� : i � Ig as a base
is T0 but not T2.

Proof. ker�li�� τR�li� are distinct points not
in disjoint sets since τR�li� � ker�li�i�1� and
ker�li� 
 ker�li�i�1� �� � hence �S� Lk� is not
T2. Every member of Lk which contains ker�li�
also contains τL�li� or τR�li�1� hence �S� Lk� is
T0. �

Theorem 3. Take S as in theorems 1 andLp �
ffτL�li�g� fker�li�g� fτR�li�g : i � Ig as a basis
for a topology on S then �S� Lp� is Hausdorff.

Proof. The τ�li� are open and disjoint, both
from each other and the ker�li�. Similarly the
ker�li� are closed and disjoint, both from each
other and the τ�li�. �

The topology �S� Lp� is also T0 since all T2
spaces are T0 �Kelley 1995�, however the con-
verse does not hold.

It follows that the topology on the product space
�S� Ls� obtained by taking the partially ordered
set

Ls �
nY

k�1

Lvk �
nY

k�1

fli�vkg

as a sub-base is not Hausdorff. However the
topology given by �S� Lp� obtained by taking
as a basis the partially ordered set

Lp �
nY

k�1

Pvk �
nY

k�1

fpi�vkg
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where pi is the ith element in the chain

ker�l0� � τR�l0� � � � � � τR�ln�1� � ker�ln�

is Hausdorff. Since all metric spaces are Haus-
dorff these results suggest that a metric space
may be an inappropriate model for the term sets
of linguistic variables. There is, however, a
continuous mapping φ : �S� Lp� � �S� Ls�
between the two spaces such that

φ�ker�li�j�v1�	 � � � 	 ker�li�j�vk�� ��

�li�j�v1 	 � � � 	 li�j�vk�� �0 � i� j � jLj � 1�

which means that it is possible to work in the
Hausdorff space �S� Lp� and map into the T0
space �S� Ls� or to work with the bi-topological
space �S� hLs� Lpi� and so move between the
strictly T0 spaces of the linguistic terms and the
T2 space of the disjoint kernels and tolerances.

3.2. Filters and Filter Bases

It is convenient to introduce here the concepts
of Filters and Filter Bases.

Definition 14. (Filter Base) A non empty sys-
tem B of subsets of the set X is called a filter
basis on X if the following conditions are satis-
fied.

FB1 the intersection of any two sets from B
contains a set from B.

FB2 the empty set does not belong to B.

Example 13. For any a � 0� x � R ; B �
ffxg� �x � a� x � a�g is a filter base.

Given this definition, we prove the following
theorem

Theorem 4. Let l � fli� ker�li�g with li �
fτL�li�� ker�li�� τL�li�1�g then l is a filter-base.

Proof. Both FB1 and FB2 are satisfied since:
li 
 ker�li� � ker�li� � l and � �� l. �

If we add to every set of a filter basis all of its
supersets, then FB1 is sharpened and we get a
filter.

Definition 15. (Filter) A non empty systemF
of subsets of the set is X is called a filter (on X)
if the following conditions are satisfied.

F1 Every superset of a set from F belongs to
F .

F2 The intersection of any two sets from F be-
longs to F .

F3 The empty set does not belong to F .

Note that while every filter is a filter base the
converse is not true.

Example 14. For any ai� bi� x � R� i � N and
ai � bi with a1 � a2 � � � � � an and b1 �
b2 � � � � � bn then B � ffxg� �x � ai� x � bi�g
is a filter.

Any unconcatenated linguistic term li can be
transformed into a filter by introducing the nes-
ted sets τL�li� � τLj�li� � � � � � τLj�

�li� with
τLj�

�li� � ker�li� and similarly for fτRjg �

ker�li� j � J, an indexing set. Then we can
prove

Theorem 5. If l� � fli� ker�li�g with li �
ffτLj�li�g� ker�li�� fτRj�li�g : i � �0� jLj � 1�j �
J(an indexing set)g then l� is a filter.

Proof. F1, F2 and F3 are satisfied since:

fτLj�li�� ker�li�� τRj�li�g

� fτLj�
�li�� ker�li�� τRj�

�li�g

� ker�li�

also

fτLj�li�� ker�li�� τRj�li�g


 fτLj�
�li�� ker�li�� τRj�

�li�g

� fτLj�
�li�� ker�li�� τRj�

�li�g � l�

and

ker�li� 
 fτLj�li�� ker�li�� τRj�li�g � ker�li� � l�

and finally � �� l�. �
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Theorem 6. Let S �
S

i�I supp �li� then the
topology �S� L f � obtained by taking

F � ffτLj�li�� ker�li�� τRj�li� : j � Jg : i � Ig

as a sub-base is T0 but not T2.

Proof. Take p � τRj�li� then there is no j � J
such that p and ker �li� are in disjoint open sets;
hence �S� Lf � is not T2.
Consider W1 � fp1� p2 : p1 �� p2g such that
p1� p2 � τL�li� then W1 
 τLj�li� is a single-
ton for some j � J, a similar argument ap-
plies to p1� p2 � τR�li�. Next consider W2 �
fp1� ker�li� : p1 �� ker�li�g such that p1 � τL�li�
or p1 � τR�li�, then W2 
 τL�li� or W2 
 τR�li�
are a singletons. Now take W3 � fp1� p2 :
p1 �� p2g such that p1 � τL�li� and p2 � τR�li�
then W3 
 τL�li� is a singleton. Finally take
W4 � fker�li�� ker�li��g then W4 
 supp �li� is
a singleton. Hence given any pair of distinct
points p1� p2 of S there exists an open set O,
such thatO
fp1� p2g is a singleton and �S� L f �
is T0. �

4. Filter Bases and Fuzzy Sets

In this section we show how filter bases are
related to fuzzy sets. Before doing so, two pre-
liminary definitions are needed.

Definition 16. (Proper Filter Base) A filter
base is proper if

T
B �� �.

Definition 17. Let f : X � Y then f is a �-
homomorphism if� a� b � X a � b implies f �a�
� f �b�. If f preserves meets and joins so
that f �a � b� � f �a� � f �b� and f �a � b� �
f �a� � f �b� then f is a lattice homomorphism
[Davey and Priestley 1990].

Albrecht �Albrecht 1998� shows that given a
proper filter base such that B � fBj : j � Jg
on hP�B���� �� 
i a non-empty lattice hC��
� u� ti and a �-homomorphism φ : P�B�� C
with cj � φ�Bj� then fcjg � φ�B� is a filter
base onC if all cj �� � and φ�limB� � lim φ�B�.
Where limB �

T
j�J Bj and lim φ�B� �T

j�J φ�Bj��

Now consider φ�1 : C � P�B� defined for all
c � C by φ�1�c� :�

S
φ�U��c U. Then φ�1 is

a lattice homomorphism �Bourbaki 1967�. �Re-
quiring B to be a proper filter base ensures φ�1

is well defined since φ�1�c� �� �� � c � C.�

If C � fcl : l � Lg is a filter base on C and
for all c � C� φ�1�c� �� � then φ�1�C� is a
filter base on P�B�. In the function �Bj� cj�j�J
the elements Bj of a filter base B with support
B �

S
B are valuated by cj with cj � φ�Bj�.

Definition 18. (Fuzzy Set) Zadeh defines
[Zadeh 1965] a fuzzy subset A of a set X as
a nonempty subset

A � f�x� µA�x�� : x � Xg of X 	 �0� 1�
for some function µA : X � �0� 1��

The common practice of referring to fuzzy sub-
sets as fuzzy sets will be adopted from now on.
The alpha-level set of a fuzzy set Aα on X is
defined as

Aα � fx � X : µA�x� � α for each α � �0� 1�g

The support of a fuzzy set is given by

A0� � fx � X : µA�x� � 0g

and the kernel of a fuzzy set by

A1 � fx � X : µA�x� � 1g

Fuzzy subsets of R are often referred to as fuzzy
numbers or fuzzy intervals and are defined as
follows:

Definition 19. [Goetschel 1983]A fuzzy num-
ber or fuzzy interval is a fuzzy set with member-
ship function
µ : R � I � �0� 1� with the properties:

1. µ is upper semi-continuous.

2. µ�x� � 0 outside some interval �a� d� � R .

3. there are b and c � R with a � b � c � d,
such that µ is increasing on �a� b�; decreas-
ing on �c� d� and µ�x� � 1 �x � �b� c�.

Two representationswhich are particularly com-
putationally efficient are triangular fuzzy num-
bers and trapezoidal fuzzy intervals defined as
follows:
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Fig. 1. Fuzzy Numbers.

Definition 20. A Triangular Fuzzy Number
(Figure 1(a)) en is characterised by an ordered
triple � a1� a2� a3 � with a1 � a2 � a3 such
that en0� � �a1� a3� and en1 � fa2g or for sym-
metrical triangular fuzzy numbers as the toler-
ance space ha2� h�

�a3�a1�
2 ii.

Definition 21. A Trapezoidal Fuzzy Interval eI
is characterised by an ordered quadruple
� a1� a2� a3� a4 � with a1 � a2 � a3 � a4

such that eI0� � �a1� a4� and eI1 � �a2� a3�. For
symmetrical trapezoidal fuzzy intervals they can
also be represented as the bi-tolerance space
h�a2�a1�

2 � h � �a4�a1�
2 �� �a3�a2�

2 ii. The mem-
bership function describes a trapezoid (Figure
1(b)) since the boundaries of the α -level sets

eIα��a2��1�α��a2�a1�� a3��1�α��a4�a3��

are the straight lines joining successive mem-
bers of the quadruple. A triangular fuzzy num-
ber is a special case of a trapezoidal fuzzy inter-
val when a2 � a3. Note that allowing the mem-
bership function to be semi-continuous permits
a1 � a2 � a3 for Triangular Fuzzy Numbers
and a1 � a2 � a3 � a4 for Trapezoidal Fuzzy
Intervals.

Having introduced the concept of fuzzy sets,
we can now show how they are related to filter
bases.

Theorem 7. ([Albrecht 1998]) A fuzzy set,
fuzzy interval or fuzzy number is a valuated fil-
ter base.

Proof. Take B � �a� b� � R , with a � b, and
C � �0� 1� � R and a function µ : B � C with

the requirement that �x � B : µ�x� � 1. Then
define a filter base C � f�α� 1� : α � �0� 1�g and
Bα :� µ�1��α� 1�� as an alpha-cut. Then the
filter base B � fBα : α � �0� 1�g describes a
fuzzy set, B with membership function µ . Since
fuzzy intervals and fuzzy numbers are fuzzy sets
this result applies to them equally. �

The support �A0�� and kernel �A1� of a trape-
zoidal fuzzy interval are a trivial filter base since
A1
A0� � A1 and neither A1 nor A0� is empty.

Theorem 8. A fuzzy set is a sequence of valu-
ated neighborhoods in a sequence of tolerance
spaces.

Proof. Let hX� ξi be a tolerance space, then a
tolerance ζ is said to be finer than ξ if ξ � ζ ,
the finest tolerance is the discrete tolerance δ
and the space hX� δi is the discrete tolerance
space where every point is only in tolerance of
itself. A neighborhood of a � X, N�a� � N��a�
if N�a� � hX� ξi and N��a� � hX� ξ �i with
ξ � ξ �. So fNi�a�g :� fNi�a� � hX� ξii : ξi �
� � � � ξn � δg is a filter base and the result
follows from theorem 7. �

Taking these two results together with theorem
5 gives the following theorem.

Theorem 9. If l � flj� ker�lj�g with lj �
ffτLi�lj�g� ker�lj�� fτRi�lj�gg then l can be rep-
resented by a fuzzy set with µl�ker�lj�� � 1 and
0 � µl�fτLi�lj�g�� µl�fτRi�lj�g� � 1.
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Proof. Apply theorems 7 and 8. �

In section 5 a way of representing a non numeric
linguistic term with a fuzzy number or fuzzy in-
terval is discussed in detail. The following tra-
ditional definition of linguistic variable �Zadeh
1973� is now justified.

Definition 22. (FuzzyLinguisticVariable) A
fuzzy linguistic variable is characterised by a
quintuple hv� L� X� g� mi; in which v is the name
of the variable, L is a finite set of linguistic terms
fl0� � � � � lngwhich describe v whose states range
over a universal set X of states of v; g is a gram-
mar for generating linguistic terms, and m is a
semantic rule which assigns to each term l � L
its meaning m�l� which is a fuzzy set on X; (i.e.
m�l� : L � FX).

An example of student marks shows how a tol-
erance mapping may be a better model than
a fuzzy one based on the extension princi-
ple �Zimmerman 1987� or interval arithmetic
�Moore 1966�.

Example 15. Let q be a mark in �0� 100� � Q
and let there be a variation of �5 in the marks
awarded because of marker variation. Then a
mark q can be described as a tolerancemapping
to the space h�0� 100���5i or as a triangular
fuzzy number eq � hq� 5� q� q � 5i.
If we wanted to see the effect of adding an ad-
ditional marks 10 to a student’s score of 30
then adding the marks 30 � 10 gives 40 �
5. This is a mapping from h�0� 100���5i 	
h�0� 100���5i� h�0� 100���5i and is equiva-
lent to a fuzzy number h35� 40� 45i.
However e30 � e10 � h40� 10� 40� 40 � 10i�
h30� 40� 50i mapping to the triangular fuzzy
numbers using the extension principle.

Since the tolerance is known for any mark there
is no reason to suppose that it will double if ad-
ditional marks are added. This example shows
how the tolerance model may capture the intu-
itive notions better than the fuzzy one based on
the extension principle.

5. Numeric Representations of
Non-Numeric Linguistic Variables

In applicationsweneed to represent non-numeric
linguistic terms for which there is no underlying

numeric scale other than an ordinal one. This
section looks at a principled way of arriving at
that representation.

Shepard �Shepard 1987� and Nofosky �Nofosky
1984� suggest that the similarity η of two non-
identical point stimuli x and y is given by a
Universal Law of Generalization.

η�x� y� � e�αd�x�y� �1�

where d�x� y� is a the Hamming or Euclidean
metric and α is a constant.

Now fix a finite set P � fp � Ng of points in
the state space of a non-numeric linguistic vari-
able. The probability that a state y � �0� jPj�,
will be generalised to a � P can be found as
follows.

The similarity η of any point y to a fixed point
a � P is given by η�a� y� � e�αd�a�y�. The
probability that a point y � �0� p� is generalised
to a � p is given by

P�ajy� �
η�a� y�Pp
n�1 η�n� y�

�2�

If η�k� x� � 0 for k � P� a � 1 � k � a � 1
with b � a� 1 and c � a � 1, then the proba-
bility that a point x � �b� c� will generalise to a
is given by

P�ajx� �
η�a� x�

η�b� x� � η�a� x� � η�c� x�
for x � �b� c� �3�

For example if d�x� y� � 1 and α � 7 then
η�x� y� � e�αd�x�y� � 0 as can be seen in Fig-
ure 2.

Fig. 2. e�α for α � �0� 17�.
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Define

η��x� y� �
�

e�7d�x�y� d�x� y� � 1
0 d�x� y� � 1�

�4�

Then by �3� the probability P that a point y � R
generalises to the ordinal 1 is approximated by:

P�1jy� �
η��1� y�

η��0� y� � η��1� y� � η��2� y�
for y � �0� 2��

Theorem7 can be applied by defining tolerances
ξ and ζ such that 1ξa if P�1ja� � 0�95 and 1ζb
if P�1jb� � 0�05 then 1ξa if ja � 1j� 0�25
and 1ζb if jb � 1j� 0�75. Hence the set of
neighborhoods fN�1�� N��1�g with N�1� � ξ
and N��1� � ζ is a filter base and the distribu-
tion can be approximated by a fuzzy set with
µ1�a� � 1 for a � 1 � 0�25 and µ1�a� � 0
for a �� 1 � 0�75 to give the trapezoidal fuzzy
interval h0�25� 0�75� 1�25� 1�75ias illustrated in
Figure 3. This process can be generalised to any
i � N � 0 � i � jLj so that li is represented by
the fuzzy intervalhi�0�75� i�0�25� i�0�25� i�
0�75i

Linguistic terms modeled this way fulfill the as-
sumptions in section 2.2. In the present section
a fuzzy integer is denotedei.
Preorder

The set of fuzzy integers is pre-ordered withe0 � � � � � en mirroring the natural order on the
integers which is a chain.

Kernels

For eachei there is a value i � N to which only
that term applies. Similarly for each gi� j there
is an interval �i� j� to which only that term ap-
plies.

Pairwise tolerance

Adjacent fuzzy integersei� gi � 1 are pairwise tol-
erant sinceei 
 gi � 1 �� �.

Pairwise concatenation

The operation of join � on adjacent fuzzy inte-
gers is defined pairwise to give fuzzy intervals.
So that ea � ga � i is represented by the fuzzy
interval

ha�0�75� a�0�25� �a�i��0�25� �a�i��0�75i�

Support

The support of a fuzzy integer ea is given by
supp �ea� � �a� 0�75� a� 0�75� and for a fuzzy
interval ea� ga � i by �a� 0�75� a � i � 0�75�.

Products

The product 	 of two sets of fuzzy integers
terms is defined on their product space to give
the pair �ei1� ei2� and naturally extended to

Qp
1 to

give �ei1� � � � � eip�. The product space is partially
ordered.

Fig. 3. Modeling Non Numeric Linguistic Varables.



Reasoning with Non-Numeric Linguistic Variables 271

It has been shown that, given a reasonable set of
assumptions about the structure of vague non-
numeric linguistic variables, they can be mod-
eled with fuzzy sets, filter bases or tolerance
spaces. We have also shown an equivalence
between these representations.

5.1. Modeling Numeric Linguistic Variables

The modeling of numeric linguistic variables
is well established and they can be acquired
using parametric method outlined by Kuz’min
�Kuz’min 1981� or outlined in any of the stan-
dard texts �Klir 1995, Zimmermann 1990�. The
techniques outlined above can also be adapted
and applied in a numeric context.

5.2. Weighted Linguistic Variables

In applications numeric representations of lin-
guistic variables are usually normalised since
there is no commonmeasurement scale between
variables �Koczy 1993�; there is also often a
measure of relative importance attached to dif-
ferent linguistic variables. Relative importance
can be handled �Esbogue 1980, Esbogue 1983,
Zimmermann 1990, Yager 1978� by applying
a weighting to each variable, using extended
scalar multiplication. The relative weight of
variables can be obtained by techniques such as
Saaty’s �Saaty 1980� Analytic Hierarchy Pro-
cess. It is possible to use this process to pro-
duce fuzzy weights �Laarhoven 1983�, however,
in this paper only crisp weights will be used.

The tolerance spaces used in this work are all
bounded and normalised, in addition all weight-
ings found by the AHP are in the inteval �0� 1�
hence applying a weighting is equivalent to
applying a scaling factor to the whole space.
Hence, w � �0� 1� can be applied to a tolerance
space using a scaling ��� function

� : �0� 1�	 h�0� 1�� ξi� h�0� w�� w � ξi
by � : �w� x� �� wx

this is equivalent to extended scalar multipli-
cation �Klir 1995� of a fuzzy number or fuzzy
interval where eR� denotes the set of trapezoidal
fuzzy intervals.

� : R 	 eR� � eR�
� : �w� ex� � hw � x1� w � x2� w � x3� w � x4i

where ex is represented by the trapezoidal fuzzy
set hx1� x2� x3� x4i.

6. Sparse Rule Bases

In decision support the aim is to associate an
input case cm taking a set of values �fli�vkg� cm�
which is an �intent, extent� pair �see section
6.1.� with a particulardj with values �fli�vkg� dj�.
If intent�fli�vkg� cm� 
 intent�fli�vkg� dj� �
intent�fli�vkg� cm� then cm � dj. If all possi-
ble values taken by a variable can be assigned
to a decision type so that:

n�
j�1

�fli�vkg� dj� � �LV� D� �5�

and the same values are not taken by different
decision types that is:

n�
j�1

intent�fli�vkg� dj� � � �6�

the set valued function Dec : �LV� D� � D,
Dec�fintent�li�vk� dj�g� �� dj is a bijection and
the “rule base” is complete. If

n�
j�1

�fli�vkg� dj� �� �LV� D�

and still 6 holds then Dec is not a bijection and
the rule base is incomplete. The smaller the
number of values for which exact partitions ex-
ists the more sparse the rule base.

In the absence of a complete rule base Albrecht
�Albrecht 1998� suggests that uniform topolo-
gies may be used to find partial or incomplete
mappings between inputs and outputs of a rule
base. Uniform topologies are a generalisation
ofmetric spaces and generalise the notion of dis-
tance between objects. A pre-ordered set has a
uniform topology �Page 1978� and it is possible
therefore to use generalised notions of distance
within such sets.

Before considering the nature of distance mea-
sures in more detail, an approach to structured
knowledge acquisition for sparse rule bases will
be introduced, based on the cognitive theory of
prototypes �Rosch 1988� and the topology of the
support sets of linguistic terms �S� L� introduced
in section 3.1.
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6.1. Prototype Theory

Prototype theory �Rosch 1988� seeks to model
aspects of human cognition, according toHamp-
ton �Hampton 1993� the standard prototype mo-
del

� � � assumes that concepts are defined
by a set of intensional [sic] proper-
ties which determine the reference of
the concept term to sets of objects in
the world as extensions.

To make this clear, the extent consists of all
objects belonging to a concept and the intent
is the collection of attributes shared by the ob-
jects. A prototype of one class is highly dis-
similar to prototypes of another class �Rosch
1988� and does not generally consist of a sin-
gle exemplar. This aspect of prototype the-
ory is particularly useful in structuring know-
ledge acquisition where non numeric linguis-
tic variables are used since it is reasonable to
assume that if P1 and P2 are prototypes then
intent�P1� 
 intent�P2� � � since then P1�P2.
It also suggests that in acquiring prototypes
from experts a range of exemplars is required.

6.2. Structured Knowledge Acquisition in
Vague Environments

In this section we introduce an algorithm for
structured knowledge acquisition, the following
are definitions required both here and in section
9.

Definition 23. (Maximum(Minimum)Term)
A maximum (minimum) term is the greatest
(least) point of a concatenated linguistic term.
A maximum (minimum) term represented by a
trapezoidal fuzzy interval is a maximum �mini-
mum� point.

Definition 24. (Anchor Term) An anchor
term is the most representative point of a con-
catenated linguistic term, in general it is the
minimum (maximum) member of a concate-
nated term which includes the least (greatest)
member of the whole term set. Otherwise it
is the central term(s). An anchor term rep-
resented by a trapezoidal fuzzy interval is an
anchor point. The anchor point is analogous to
Zeleny’s [Zeleny 1991] notion of an ideal point
in multi criteria decision making.

The algorithm is as follows:

1. Acquire a set of decision typesD �see section
2.2.� from user

2. Acquire a set of linguistic variables V which
are used to distinguish decision types from
user.

3. Associate each vk with one or more dj to give
the pairs �vk� dj�.

4. Acquire prototypical minimum and maxi-
mum values for �li�vk� dj� from l0�vk� � � � � ln�vk
and form the meet as the concatenated term
�lmin�max�vk� dj� select an anchor term which
must be present �usually the max or min of the
term set�.

The following example based on one that ap-
pears in �Wolkenhauer 1999� illustrates this pro-
cess.

Example 16. (Applying theAlgorithm) Sup-
pose we have a decision about whether to pass
or fail a student following an assessment. Then
D � fpass, failg. For the purposes of illustra-
tion, suppose there are two linguistic variables
V � fmark, seminargbecausewhere a student
is borderline the exam board considers evidence
about their seminar performance �seminar� in
reaching a decision. Each variable is associ-
ated with a decision to give the pairs (mark,
pass), (seminar, pass), (mark, fail) and (sem-
inar, fail). The union of pairs with the same
extent that is �j�vk� ej� gives �variable decision�
pairs, for example �fmark, seminarg� fail�.

The pass mark is 40 but it is known that this may
reflect a mark in the range �35� 45� because of
marker variability, representing marks as trian-
gular fuzzy sets using the theory linking toler-
ance spaces and fuzzy sets, the gpass mark is a
fuzzy set h35� 40� 45i and any mark m is repre-
sented by the fuzzy number em � hm�5� m� m�
5i. The variable seminar takes values from the
pre-ordered set

performance � fnone, very poor, poor,
mediocre, competent, excellent, superbg�

The cardinality of this set is seven. This is the
optimum cardinality for a term set based on the
semantic differential technique �Osgood 1957�,
the number of pieces of information a person
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can handle at any time �Miller 1956� and that
used in comparable fuzzy systems �Godo 1989�.

The prototypical minimum and maximum val-
ues for �performanceseminar� pass� are fcom-
petent, superbg and the concatenated term set
is fcompetent� excellent� superbg. The proto-
typical term set for �performanceseminar� fail�
is fnone, very poor, poorg. For the numeric
linguistic variable a similar process gives
�emmark� pass� � e40 so �emmark� fail� � e35.
The rule base is sparse because pairs such as
� e35mark� excellentseminar� do not have a known
extent and are not included within the know-
ledge base of cases which have a known deci-
sion type.

7. Reasoning in Sparse Rule Bases

In the absence of a complete rule base some
other means of inference is required. The ap-
proach taken here takes Hume’s view that:

All kinds of reasoning consist in noth-
ing but a comparison, and a disco-
very of those relations, either con-
stant or inconstant, which two or
more objects bear to each other.
�D.Hume, The Treatise, Book I, Part
III, Section II�

Suppose for a given inference we have a body
of evidence E and a hypothesisH but no prob-
abilistic data, function or relation mapping E to
H. In the decision making context this is equiv-
alent to having a known decision dj and a case
to be classified cj and no firm data linking dj to
cj. Then, one way forward is to use similarity
or possibility-based methods.

Ruspini �Ruspini 1996� characterizes possibilis-
tic reasoning as follows:

Possibilistic reasoning methods, � � �,
determine if there is a modified ver-
sion ofH (or relaxation) that is con-
sistent with the evidence E . We may
say that we are trying to find out how
far we need to stretch �or relax� the
truth to fit the hypothesis to the evi-
dence. Possibilistic methods exploit
relations of similarity and of rela-
tive preference between alternative
explanations of the evidence.

Figures 4 and 5 illustrate this process and show
how it may be applied to decision making.

Similarity is reflexive and symmetric but not
transitive and the process can therefore also be
seen as determining how far a hypothesis must
be stretched �relaxed� to tolerate the evidence.

Fig. 4. Possibilistic Reasoning — stretching the hypothesis to tolerate the evidence.

Fig. 5. Possibilistic Reasoning — relaxing the hypothesis to tolerate the evidence.
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This notion of stretching or relaxing a hypoth-
esis is closely related to the idea of transfor-
mational distance proposed by both Hahn and
Chater �Hahn 1997� and Imai �Imai 1977� in
the cognitive literature. The tolerances used in
section 3. are an example of this kind of stretch-
ing. The tolerance can be seen as the maximum
amount a hypothesis about the application of
a linguistic variable can be stretched and still
hold. So N�1� retains a degree of “oneness” on
all of �0� 2� but not at 2 and 0.

8. Distances between Vague Points

In section 4. we showed that linguistic terms
could be modeled with fuzzy numbers, toler-
ance spaces, and filter bases and that these rep-
resentations are homomorphic. This gives three
possible approaches to finding the distance be-
tween vague points. Before doing so, we firstly
introduce some distance measures which may
be useful in developing the arguments.

8.1. Metrics, Pseudo-metrics, Separations
and T0-metrics

Definition 25. (Metrics andPseudo-metrics)
A metric is a function d : X 	 X � R such that
the following conditions hold:

M1 d�x� y� � 0� d�x� y� � 0 
 x � y

M2 d�x� y� � d�y� x�; �x� y � X.

M3 d�x� y� � d�y� z� � d�x� z��x� y� z � X.

A pseudo-metric is a function dp : X 	 X � R
such that M1 is replaced by:

PM1 dp�x� x� � 0.

These definitions produce thewell knownHaus-
dorff or T2 spaces. A function can also be spe-
cified to find the separation between intervals
as follows:

Definition 26. The Hausdorff separation is a
non-symmetric function [Diamond 1994] (Fi-
gure 6) on two sets given by:

S ds
H�A� B� � supfd�a� B� : a � Ag.

This function is not a metric since ds
H�A� B� � 0

but A �� B is possible.

Fig. 6. Hausdorff separation of A and B.

The Hausdorff distance is a metric [Diamond
1994] on the sets A and B given by dH�A� B� �
maxfds

H�A� B�� d
s
H�B� A�g

Whilst the Hausdorff separation S shows how to
construct a non symmetric distance measure a
T0 metric �definition 27� shows how minimality
may also be dispensed with.

Definition 27. (T0-Metric) AT0 metric [O’Niel
1998] is a set X, with a function t : X	 X � R
such that the following axioms hold:

T1 t�x� x� � t�x� y� � t�y� y�� x � y.

T2 t�x� y� � t�x� z� � t�z� y�� t�z� z�
�x� y� z � X.

A space with this set of axioms has a T0 topo-
logy as follows.

Definition 28. Let �S� t� be a space equipped
with a T0 metric. Then for x � S and 0 � ε � R
define an open ball

Bε�x� � fy � S : t�x� y� � t�x� x� � εg

Lemma 1. If �S� t� is a space equipped with a
T0 metric then the open balls of S are a basis
for a T0 topology on S.

Proof. Suppose that Bεx�x� and Bεy�y� � �S� t�
and that z � Bεx�x� 
 Bεy�y�, next define

δ � min�t�x� x�� εx � t�x� z�� t�y� y�
� εy � t�y� z�� � 0

now show that Bδ �z� � Bεx�x� 
 Bεy�y�.
Suppose z� � Bδ �z� then by T2

t�x� z��� t�x� x� � t�z� z��� t�z� z�
� t�x� z� � δ
� t�x� x� � εx
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and z� � Bεx�x�. It can be shown in a similar
way that z� � Bεy�y�. Since S � �x�SB1�x� the
open balls form a basis for a topology on S.
Suppose x� y � S and t�x� x� � t�x� y�; let
ε � t�x� y� � t�x� x� � 0 then x � Bεx�x� but
y �� Bεx�x�. Hence the topology of �S� t� is
T0. �

Note that T1 establishes identity, but does not
require symmetry or minimality. T2 is the tri-
angle inequality modified to allow non zero self
distances.

Example 17. All metrics are trivially T0 met-
rics since d�x� x� � d�x� y� � d�y� y� � 0 im-
plies x � y and d�x� y� � d�x� z� � d�z� y� �
d�z� z� since d�z� z� � 0.

Example 18. As a more substantive example,
let X be the set of closed intervals �a� b� � R
then

t : X 	 X � R
t��a1� b1�� �a2� b2���max�b1� b2��min�a1� a2�

is a T0 metric but not a metric [Matthews 1997].

In section 3.1. it was established that the topo-
logy of a vague set of linguistic terms was T0,
but not necessarily T2 the use of a T0 metric
reflects this fact. The T0 metric in example 18
can be applied to the separation of a point p and
interval I � �a� b� so that

D�p� I� � max�t�p� a�� t�p� b��� t�I� I�

which gives

D�p� I�

�
� 0� p �� I
� 0� p � I

�

a property which will be useful in section 9.

8.2. Distance Measures and Cognitive
Similarity

The metric basis for similarity is proposed by
Shepard in the Universal law of Generalisation:

A psychological space is established
for any set of stimuli by determining
metric distances between the stimuli

such that the probability that a re-
sponse level to any stimulus will gen-
eralise to any other is an invariant
monotonic function of the distance
between them.

Tversky �Tversky 1997� on the other hand raises
two major objections to the metric basis of sim-
ilarity.

Minimality – M2, PM1 is questioned because
the probability of judging two stimuli as dif-
ferent is not constant for all stimuli. In
recognition experiments an object may be
identified with another object more often
than it is with itself.

Symmetry – M2 is questioned because many
statements of similarity appear to be direc-
tional so a is like b rather than b is like a. For
instance, an ellipse is judged more similar to
a circle than a circle to an ellipse. Note that
this is an asymmetry in the judged degree of
similarity, not a denial of the reflexivity of
similarity.

These objections can be overcome fairly straight-
forwardly when generalizing the metric space
axioms to apply to intervals rather than points:
the minimality objection by having a mapping
into R �as in a T0 metric� instead of R� the
symmetry objection by using non-symmetrical
directional separation functions reflecting the
fact that a hypothesis must be stretched or re-
laxed from some fixed point beyond which it no
longer holds.

If ametric-based approach is accepted, the ques-
tion then arises of what specific metric best
models the intuitive approach which people
have. Attneave �Attneave 1950� and Shepard
�Shepard 1980� both suggest the d1 or city block
metric given by equation 7

d1�xi� yi� �
nX

i�1

jxi � yij �7�

is the most appropriate. Shepard makes the par-
ticular point that

� � � there is a fundamental connection
between the sharp-cornered form of
the isosimilarity contour and the city
block metric and some of the signifi-
cant phenomena of discontinuous or
insightful learning and of instabili-
ties of choice � � �
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The isometric curves for the city block metric
are continuous but not differentiable. The com-
pression of an axis by weighting can therefore
mean minor shifts in adjudged distance cause
major shifts in judged similarity �Everitt 1997�.

In section 9. a distancemeasure is definedwhich
whilst a metric for points is not for intervals.
This measure also meets Tversky’s objections.
Summation will be applied in a way which
gives a d1 metric when it is applied to multi-
dimensional points.

8.3. Fuzzy Approaches

There are number of approaches to finding the
distance between fuzzy sets in the literature
�Klir 1995, Diamond 1994, Goetschel 1993,
Koczy 1993, Kaleva1987�. Most are based on
the Hausdorff distance between the alpha-level
cuts or the extension principle. However these
approaches are not guaranteed to produce output
sets of the same nature as the input sets �Dia-
mond 1984, Hsiao 1996�. In empirical studies it
has been found that the similarity measures on
fuzzy sets which correlate best with the similar-
ity between the verbal descriptions of those sets
are those which are based on the kernels �eA1�, or
the centre of gravity of the fuzzy sets �Yoshikava
1996, Zwick1988�. These are important find-
ings which lend further weight to the tolerance
space model of fuzzy sets discussed earlier.

Another approach to fuzzy numbers is to treat
them as tolerance spaces. We have already
shown in section 4. how we can derive fuzzy
sets from a tolerance space. Distances in a toler-
ance space can be treated as tolerance mappings
�definition 13� for example

d : hR� ξi	 hR� ξi� hR� ξi
d�x� y� � jx � yj

This is easily translated to a fuzzy set using the
techniques outlined earlier.

9. Distances between Cases and
Prototypes

In this section, a proposal for a distance mea-
sure, which meets the criteria outlined for it in
the preceding sections, will be made. Since

prototypes are composed of concatenations of
linguistic terms, they are represented by inter-
vals rather than points. The notion of an anchor
point introduced in section 6.2. will be needed
again here. The considerations discussed in sec-
tions 4. and 7. will also be taken into account.

Example 19. The anchor term of fcompetent
�excellent�superbg taken from the pre-ordered
set

performance � fnone, very poor, poor,
mediocre, competent, excellent, superbg

is superb. The anchor term of fpoor�medi-
ocre�competentg ismediocre. In applications
these terms are represented by a fuzzy number
which may be referred to as the anchor point.

The distance between two terms described by
fuzzy numbers can be found as follows. LeteA � ha1� a2� a3� a4i then its centre is c�eA1� is
�a2 � a3��2 and the alpha-cut at 1 gives a toler-
ance τ�eA1� � �a3 � c� the alpha-cut at 0 gives
the tolerances τL� eA0� � c � a1 and τR� eA0� �

a4� c so eA � hc� τL� c� τ� c� τ� c� τRi also
denoted hc; �τ� τL� τR�i.

For the prototype �intent, extent� pair

P � �
kY

i�1

Wi ePi� P�

and the case pair

C � �
kY

i�1

Wi eCi� C�

where Wi is the weight for the ith variable the
weighted distance between the centres of the
intent terms c�D� is:

c�D� : eRn
� 	 eRn

� � R

c�D�C� P���
nX
i

Wi

����
���

c�Ci��c�max�Pi���

if c�anchor�Pi���c�Ci��

c�min�Pi���c�Ci��

if c�anchor�Pi���c�Ci��
�8�

where eRn
�

is the set of trapezoidal fuzzy sets
hx1� x2� x3� x4i defined on Rn.
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Then the expression for the distance between
case and prototype becomes

D : eRn
� 	 eRn

� � eRn
�

D�C� P��
�

c�D�; �maxfWiτig� maxfWiτiLg�

maxfWiτiRg��

�
�

which is the trapezoidal fuzzy interval�
c�D��maxfWiτiLg� c�D��maxfWiτg�
c�D� � maxfWiτg� c�D� � maxfWiτiRg

�
�

Similarity can then be calculated as a function
of distance as in section 7. Similarity measures
based on D meet all of Tversky’s objections
to distance based similarity. D does not imply
minimality, since a case may be closer to a pro-
totype than to itself as self distance is around 0
but distance from a prototype may be negative.

A negative distance implies that, rather than be-
ing similar to the prototype, the case is to some
extent a typical example of that prototype �Os-
herson 1997�, unlike similarity which is usually
expressed in the interval �0, 1� typicality is not
necessarily bounded above �Osherson 1997, pp
190�. In decision making this is the type of case
whose outcome is immediately obvious to a hu-
man decision maker. In the student domain this
could be a student with a mark in excess of say
80 whose performance is excellent; such a stu-
dent is typical of the kind of student we would
wish to pass, and more typical than a student
with a mark of 45 who has performed compe-
tently in seminars. However both are examples
of the pass prototype.

The measured extent of similarity�typicallity
based on D is also neither symmetric nor transi-
tive. However, when applied to the crisp num-
bers, D is the d1 �city block� metric, as sug-
gested in section 3.1., and symmetry and tran-
sitivity are restored.

Example 20. Having acquired prototypes in
example 16, the student example is developed
further. Suppose that student obtains a mark of
38 and their performance in seminars is excel-
lent. Should that student be passed or failed?
Marks have been found to be 10 times more
important than seminar performance in making
this decision.

The fail prototype is represented by the �intent,
extent� pair

Pfail � �hfnone, very poor,poorg 	 �0� 35�i�
fail�

the anchor terms are none and 0; the maximum
terms are poor and 35. This gives the following
giving the numerical representation:

Pfail �

	
h�0� 3�; h� 0�25��0�75��0�75ii
	 h�0� 35�� h� 0��5��5ii� fail




with the centres of the anchor and maximum
points given by

c�anchor��0� 3��� � 0, c�anchor��0� 35��� � 0;

and

c�max��0� 3��� � 3, c�max��0� 35��� � 35�

which is normalised to

Pfail

	
h�0� 0�5�� h�0�04��0�13��0�13ii

	h�0� 0�35�� h�0��0�05��0�05ii� fail




Similarly the pass prototype is represented by
the �intent, extent� pair

Ppass �

	
hfcompetent, excellent,superbg
	�40� 100�i� pass




giving the normalised numerical representation
of the pass prototype as

Ppass

	
h�0�75� 1�� h� 0�04��0�13��0�13ii

	h�0�4� 1�� h�0��0�05��0�05ii� pass




applying the weighting to the mark variable
gives

Pfail

	
h�0� 0�5�� h� 0�04��0�13��0�13ii

	h�0� 3�5�� h� 0��5��5ii� fail




and

Ppass

	
h�0�75� 1�� h�0�04��0�13��0�13ii

	h�4� 10�� h� 0� �5��5ii� pass




a similar exercise for the input case

C � �hexcellent	 38i� case�

gives	
h0�83� h� 0�04��0�13��0�13ii

	h3�5� h� 0��5��5ii� case
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Applying equations 8 and 9 gives

D�C� Pfail� � h0�13� 0�59� 0�67� 1�13i

and

D�C� Ppass� � h� 0�22� 0�24� 0�32� 0�78i

Similarity �η� can be calculated by applying a
continuous monotone function; an exponential
function η � e�D is used here.

η�C� Pfail� � h0�32� 0�51� 0�55� 0�88i

and

η�C� Ppass� � h0�46� 0�73� 0�79� 1�25i

10. Outputs and Outcomes

There are five possible outcomes, four of which
are illustrated in Figures 7 and 8.

In these figures decA is the set representing
η�C� decA� �the similarity of an input case to

decision prototype A� and decB the set repre-
senting η�C� decB� where decX is a decision
prototype and C is a case. The support and
the kernel of the fuzzy set are denoted supp and
ker respectively and it is assumed in cases 1 – 4
that ker�η�C� decA��� ker�η�C� decB��

Case 1 supp �η�C� decA�� �� �η�C� decB��, Fig-
ure 7�a�. Where decision prototype decB
is strongly preferred. A person would not
usually hesitate to make this decision and
might describe it as self evident.

Case 2 supp �η�C� decA�� � supp �η�C� decB��,
Figure 7�b�. Where decision prototype
decB is preferred. A person would usually
make this decision and without difficulty
but it would not be self evident.

Case 3 ker�η�C� decA�� � supp �η�C� decB��,
Figure 8�a�. Where decision prototype
decB is weakly preferred. A person would
perhaps be hesitant in making this deci-
sion but would usually be content to make
it on the basis of the evidence.

Fig. 7. Cases 1 and 2.

Fig. 8. Cases 3 and 4.
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Case 4 ker�η�C� decA�� � ker�η�C� decB��,
Figure 8�b�. Where decision prototype
decB is very weakly preferred. These are
the cases where a person would usually
consider it advisable to apply another test
�assuming one is available� before mak-
ing a decision.

Case 5 ker�η�C� decA�� � ker�η�C� decB��.
Where it is undecidable which decision
prototype decA or decB is preferred. These
are the cases where a person would want
to apply another other test �or flip a coin!�
before making a decision.

This process allows a mapping from linguistic
inputs to linguistic outputs.

Example 21. Returning again to the exam-
ples 16 and 20 we have the output sets shown
in Figure 9 which shows supp �η�C� Pfail�� �
ker�η�C� Ppass�� So a decision to pass is weakly
preferred. This reflects the kind of decision
that might be made in reality given these cir-
cumstances. A student with a mark of 38, but
an excellent seminar record, would usually be
passed – but only just. For this example we
could have the following pre-ordered set of lin-
guistic outputs
poor fail � fail � just fail � viva voce �
just pass � pass � good pass.
Case 4 and case 5 have been assigned the same
linguistic output on this scale.

If the two distances do not overlap, then the
course of action should be clear. If they do
overlap, then it may be that an alternativeway of
distinguishing between the alternatives should

be considered depending on the degree of un-
certainty. In this domain it indicates if there
is a case for giving the student a viva voce; in
other domains it might trigger the use of some
other additional selection test. A measure of
the degree of overlap is given by intersection
of the membership functions. So in this exam-
ple the case for giving the student a viva voce
is stronger than the case for not doing so since
µD�C�PFail��x�
 µD�C�PPass��x� � 0�7. This gives
a decisionmaker an alternativeway of resolving
the case should they wish to do so.

11. Conclusion

By starting with an intuitive set of assumptions
about the mathematical properties of a set of
non numeric linguistic terms it has been shown
that pre-ordered sets of linguistic terms can be
modeled with fuzzy numbers, filter bases and
tolerance spaces. Using filter bases and toler-
ance spaces allows the distance between fuzzy
numbers to be found in a way which is consid-
ered more intuitive than the usual approaches
based on the extension principle for fuzzy num-
bers. The use of a measure which is not a met-
ric to find distances between cases and proto-
types overcomes objections �Tversky 1977� to
a purely geometric approach to similarity. The
relative distance of input cases from different
decision prototypes gives fuzzy numbers which
can then be used for similarity-based reasoning
in sparse, linguistically valued rule bases. The
relative positions of the output fuzzy sets also
make it possible to devise pre-ordered sets of

Fig. 9. Outputs for Student Example.
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linguistic outputs which offer a decision maker
guidance on how they may wish to proceed. In
developing systems using these techniques the
aim is not to replace the human decision maker
but rather to offer them the chance to take “ad-
vice” from a source not directly involved with
the decision.

References

�1� R.F. ALBRECHT, On Mathematical Systems Theory.
In Systems: Theory and Practice �R.F. Albrecht,
Ed.�, �1998� pp. 33–86. Springer.

�2� F. ATTNEAVE, Dimensions of similarity. American
Journal of Psychology, 63 1950, pp. 516–556.

�3� G. BOJADZIEV, M. BOJADZIEV, Fuzzy Sets, Fuzzy
logic, Applications, World Scientific, 1995.

�4� N. BOURBAKI, General Topology, Addison-Wesley,
1975.

�5� B.A. DAVEY, H.A. PRIESTLEY, Introduction to Lat-
tices and Order, Cambridge University Press, 1990.

�6� P. DIAMOND, P. KLOEDEN, Metric Spaces of Fuzzy
Sets: Theory and Application, World Scientific,
1994.

�7� A.O. ESBOGUE, R.C. ELDER, Fuzzy sets and the
modeling of the physician decision processes: Part
II: Fuzzy diagnosis decision models, Fuzzy Sets and
Systems, 3 1980, pp. 1–9.

�8� A.O. ESBOGUE, R.C. ELDER, Measurement and val-
uation of a fuzzy mathematical model for medical
diagnosis, Fuzzy Sets and Systems, 10 1983, pp.
223–242.

�9� B.S. EVERITT, S. RABE-HESKETH, The Analysis of
Proximity Data, Arnold, 1997.

�10� L. GODO ET AL., MILORD: The Architecture and
the Management of Linguistically based Uncer-
tainty, International Journal of Intelligent Systems,
4 1989, pp. 471–501.

�11� R. GOETSCHEL, W. VOXMAN, Topological Proper-
ties of Fuzzy Sets, Fuzzy Sets and Systems, 10 1983,
pp. 87–99.

�12� U. HAHN, N. CHATER, Concepts and similarity, In
Knowledge, Concepts and Categories �L. Lambert
and D. Shanks Eds.� 1992, pp. 43–91, Psychology
Press.

�13� J. HAMPTON, Conceptual combination, In Cate-
gories and Concepts �Mechelen, I.V. et al. Eds.�,
1993, pp. 67–96, Academic Press.

�14� W-H. HSIAO, ET AL., A new interpolative reasoning
method in sparse rule-based systems, Fuzzy Sets
and Systems, 93 1998, pp. 17–22.

�15� F. HOVESEPIAN, A Metalogical Anaysis of Vague-
ness: An Exploratory Study into the Geometry of
Logic, Ph.D. Thesis, University of Warwick, 1992.

�16� S. IMAI, Pattern similarity and cognitive transfor-
mations Acta Psychologica, 41 1977, pp. 433–447.

�17� O. KALEVA, S. SIEKKALA, On fuzzy metric spaces,
Fuzzy Sets and Systems, 12 1987, pp. 301–317.

�18� J.L. KELLEY, General Topology, Von Nostrand,
1955.

�19� G.J. KLIR, B. YUAN, Fuzzy Sets and Fuzzy Logic:
Theory and Applications, Prentice Hall, 1995.

�20� L.T. KOCZY, K. HIROTA, Ordering and closeness of
fuzzy sets, Fuzzy Sets and Systems 59 1993, pp.
282–293.

�21� V.B. KUZ’MIN, A parametric approach to the de-
scription of linguistic variables and hedges, Fuzzy
Sets and Systems 6 1981, pp. 27–41.

�22� P.J.M. VAN LAARHOVEN, W. PEDRYCZ, A fuzzy ex-
tension to Saaty’s priority theory, Fuzzy Sets and
Systems, 11 1983, pp. 229–241.
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