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Detecting Noise in Chaotic Signals
through Principal Component
Matrix Transformation
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We study the reconstruction of continuous chaotic at-
tractors from noisy time-series. A method of delays
and principal component eigenbasis (defined by sin-
gular vectors) is used for state vectors reconstruction.
We introduce a simple measure of trajectory vectors
directional distribution for chosen principal component
subspace, based on nonlinear transformation of principal
component matrix. The value of such defined measure
is dependent on the amount of noise in the data. For
isotropically distributed noise (or close to isotropic),
that allows us to set up window width boundaries for
acceptable attractor reconstruction as a function of noise
content in the data.
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1. Introduction

In signal processing applications one usually
analyzes data from experimental measurements
in the form of a finite scalar time series or
“chaotic like” signals, contaminated with the
noise of various origins. To uncover underlying
dynamical structure of the data, several meth-
ods have been proposed. Packard et al. [18]
suggest that dynamically equivalent phase por-
trait could be reconstructed from time deriva-
tives of the single variable time series. The
method commonly used today is known as the
“method of delays” and is based on Takens’s
embedding theorem [22]. Takens showed that
for n-dimensional dynamical system it is suffi-
cient to use dg > 2n + 1 (“E” denotes embed-
ding) data from single variable measurements
x(t), as a coordinate of a respective trajectory

point in dg dimensional space, to progressively
reconstruct dynamically equivalent phase por-
trait of original trajectory. The scalar time series
x(t) is presumed to be the result of smooth mea-
surement function on the n-dimensional mani-
fold that contains original trajectory.

The dynamically equivalent phase portrait me-
ans that such defined map is an embedding i.e.
that it preserves geometrical invariants such as
the fractal dimension of the attractor, Lyapunov
exponents of a trajectory, eigenvalues of a fixed
point etc. Nevertheless, it is quite possible that
the dimension less then 2n + 1 is enough to
reconstruct attractor [19].

The respective state “delay” vector in dg-dimen-
sional embedding space is given as:

xiT = [x(#;), x(t; + 1), x(t; + 27),

x(ti + (dg — 1)7)],
where 7 is the “lag time” defined as some
integer multiple of sampling time (7 = nty;
ts = tiy1 — t;). The product (dg — 1)7 is cus-
tomarily known as “window width” denoted as
Tip-

For infinite noise free data sets the choice of
reconstruction parameters such as lag time or
window width is almost arbitrary, (providing
that dg is sufficiently high).

For limited noisy data sets using window widths
near one of the characteristic periods of the sys-
tem, local collapse of the attractor can occur.
Likewise, in the presence of noise, excessive
spreading of the attractor, using large 7,,, addi-
tionally unclear the attractor structure due to in-
sufficient separation of opposite flow trajectory
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paths. One of the major problems in attractor
reconstruction from noisy data also occurs for
small window widths. Although in ideal cases
with infinite resolution noise free data, theoret-
ically there are no limitations on smallness of
delay time [9, 22], for noisy data, employing
the small window widths is totally unsuitable.
Such reconstruction forced the trajectory to oc-
cupy narrow m-dimensional ellipsoid along the
main diagonal of the embedding space and the
geometry of the attractor in all other directions
could become completely obscured.

Accordingly, in practice, the choice of recon-
struction parameters becomes very important
and it is necessary to perform some optimiza-
tion analysis for their selection. Various meth-
ods for choosing adequate delay time 7 (and
consequently 7,,,) have been proposed. Schus-
ter [20] fixed the delay time at the first zero of
autocorrelation function (AFC) to ensure linear
independence of the coordinates. Fraser and
Swinney [8] used the first minimum of “mutual
information” which generally measures depen-
dence of two variables. Broomhead and King
[5] proposed singular value decomposition —
SVD, (also known as principal component ana-
lysis — PCA) of the trajectory matrix to obtain
satisfactory orthonormal coordinate projection
basis.

Recently a variety of different algorithms have
been proposed by Liebert et al. [16], Kember
and Fowler [11], Kantz and Olbrich [10], Libton
and Dabke [17] and Zoltowski [23].

Most of aforementioned methods are based on
maximization of some measure of expansion of
the attractor in the phase space. Such methods
are generally not directly related to the amount
of noise in the data. Moreover, they are re-
latively insensitive to it (with the exception of
the method introduced in [5]). Because of that,
propositions of that kind are to some extent in-
complete.

More thorough account on reconstruction of the
chaotic attractors in the presence of noise was
reported by Casdagli et al. [7] and Gibson et al.
[9]-

In the present paper we limited our study to
continuous low-dimensional chaotic processes
i.e. flows (discrete chaotic maps are not con-
sidered) contaminated with isotropic-like noise,

that is, the distribution of the noise vectors is as-
sumed to be close to isotropic. Such distribution
is characteristic of several types of noise such
as white Gaussian noise, quantization noise (if
it isn’t too crude), noise that originates from
round-off errors in computing process or from
limiting resolution of experimental apparatus,
etc.

We establish a simple, noise-dependent measure
of anisotropicity for selected principal com-
ponent subspace that allows us to set up a
criterion for choosing adequate window width
boundaries for satisfactory reconstruction of the
chaotic attractor. The details of the analysis are
presented in Section 2.

2. Noise-Related State Vectors Distribution

2.1. Review of Principal Component
Coordinates

Principal component analysis — PCA, also kno-
wn as singular value decomposition — SVD
(or as Karhunen-Loéve decomposition), is the
method that defines specific orthogonal projec-
tion basis.

If the trajectory points of the chaotic attractor
are thought of as a collection of N point masses
distributed in m-dimensional space, then prin-
cipal components are projections of associated
state vectors onto the principal axes of inertia of
such mass distribution.

Equivalently, principal component coordinates
coincide with an orthonormal basis that is gen-
erated by process of maximizing the root mean
square (rms) projection of trajectory state vec-
tors onto a set of m orthonormal vectors that
span m-dimensional embedding space. The co-
ordinate system is centered at the center of mass
of the trajectory. The principal component ma-
trix Y is given by matrix equation

Y = XS,
or equivalently;
T T

Y1 X

Nt [shl s;ﬂ], (1)

=-
= .
z-

y



Detecting Noise in Chaotic Signals through Principal Component Matrix Transformation 57

where X is normalized N x m trajectory matrix
with zero mean value and S is m x m orthogo-
nal rotation matrix with columns composed of
orthonormal vectors that coincide with princi-
pal axes of inertia, ordered by the magnitude of
corresponding moment of inertia. The matrix
S can be easily calculated by standard methods
from linear algebra [15] i.e. by diagonalization

of covariance matrix defined as = = XTX.

Since = is real symmetric m X m matrix we
can write: X° = S~1=S, where S is m x m
orthogonal and X ismxm diagonal matrix
with eigenvalues of o of = on the diagonal
(i= 1,2,...m,anda'% Za% >...>a2).

The columns of § are normalized eigenvectors

(singular vectors) of = with respective eigen-
values o7 and consequently each No7 is respec-
tive moment of inertia. The set {a7, o3, ...,
a2} is known as a singular spectrum and o; are

respective singular values.

The benetits of projecting delay coordinates on
principal component basis, especially for noisy
data, have been extensively studied [5, 9, 12,
13]. Here, we just wish to emphasize that by
using high delay dimension dg and projecting
the trajectory onto first k principal component
eigenvectors generally acts like noise filter. Fur-
thermore, for noise vectors that are distributed
isotropically, first k& subset of principal compo-
nents is the optimal choice for coordinate trans-
formation, since those have maximum variance
of the data and, therefore, maximum signal to
noise ratio (SNR). This is because the projec-
tion of isotropic noise vectors on any direction
has the same variance.

Gibson et. al. [9] showed that, for clean data

and small window width, the eigenvalues o7

decreased exponentially with i and each o7 ex-
hibits (7, )% power-law scaling with 7,,. That is
the reason why, for small 7, the attractor pro-
jection on any p-dimensional subspace of dg,
spanned by respective p principal component
eigenvectors, is stretched along the line defined
by the respective largest eigenvalue. Further-
more, for small 7, value interval, the structure
of the attractor remains nearly the same (except
for the scaling factor). When 7, nears some
characteristic recurrence time of the system, the
structure begins to complicate and loses its ori-
ginal “simplicity”. So, in the absence of noise,

using small 7,, with appropriate linear scaling
of higher principal components, adequate re-
construction can be realized.

The presence of noise violates such favorable
conditions and forces us to increase T, up un-
til the last of the important eigenvalues (0',%) 1s
sufficiently extracted from the noise floor [5, 9].
However, following such approach, when in-
creasing T, by increasing “lag time” with fixed
dg, one can end up with highly complex attrac-
tor structure and, at the same time, with overall
worse SNR, since higher unimportant eigenval-
ues could be increased too much at the expense
of the first ones. This could happen because the
trace of a matrix is invariant under similarity
transformations and it is bounded with the total
variance of the data in dg-dimensional space,
i.e. the following expression is valid:

TrX'X = TrY'Y,

or equivalently

di
N Z o7 = dp(x*). (2)
i=1

Appropriate balance between these opposing ef-
fects strongly depends on the type of the attrac-
tor and on the further use of the reconstruction.
So, to find acceptable unique rule for recon-
struction, is an intricate task.

2.2. State Vectors Nonlinear
Transformation

2.2.1. State Vectors Submatrix Definition

As explained in the previous chapter, for small
Ty, the attractor projection on any p-dimensional
principal component subspace of dg, looks like
a thin ellipsoid with highly anisotropic state
vectors distribution. As we increase T, the
ellipsoid becomes thicker and thicker. Conse-
quently, anisotropicity of the projection is pro-
gressively decreased to some point when com-
plex oscillatory behavior starts.

If isotropic noise, with variance of the same
magnitude as the largest projection eigenvalue,
is added, the ellipsoid would be changed to a
p-dimensional ball with almost ideal isotropic
vector distribution. Deterministic character of
chosen projection would be totally lost.
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For some chosen dg and 7, the effect of noise
would be most dominant in higher subspaces
where trajectory vectors’ projections are not yet
extracted from the noise floor. If we assume that
the first j-dimensional projection is sufficient for
embedding, our primary goal is to filter the noise
from that primary j-subspace. That constitutes
the standard noise filtering in global PCA ap-
proach i.e. we embed the attractor in relatively
high dg-dimensional space and then project it on
the first jy, principal components. Among them,
the most critical is trajectory vectors’ projec-
tion on the last jy, eigenvector where the noise
is more dominant than in the first ones. We
can analyze that noise effect by considering the
trajectory vectors directional distribution when
projected on the higher p-dimensional subspace
(where p = dg —j + 1) that is fronted by that
Jth eigenvector.

To model such general directional properties of
attractor’ projection vectors in the presence of
noise, we introduce principal component sub-
matrix associated with jy, eigenvector as fol-
lows:

r}‘ . . .
rN . . .

where r; is normalized (normalization factor is
N-V 2) projection of x; on p-subspace, s; is the
ith eigenvector, m denotes dimension of embed-
ding space (m = dg) and j indicates associ-
ated first eigenvector of p-subspace. Forj = 1,
submatrix RU™ is identical to original princi-
pal component matrix i.e.: RU™) =Y, and for
Jj=2,3,..., m, resulting submatrix RUm) rep-
resents projection of the trajectory vectors on
a subspace spanned by the last p = m —j + 1
principal component eigenvectors.

2.2.2. Characterization of the State Vectors
Directional Properties

The next step is characterization of attractor’ di-
rectional properties through some quantitative
measure associated with selected p-subspace
that will clearly indicate the presence of noise
in the chosen subspace and that will change
gradually with attractor spreading, that is, as a
function of window width 7.

If the p-subspace is dominated by isotropic

noise (small 7, ), the power distribution among

associated eigenvalues would be balanced since

the noise variance is the same in any direction,

that s, the following relation would be satisfied:
2 2 2

0'1 Naj_l_lw...wo-m.

Accordingly, it is tempting to use some function
of a'J2 and its dependence on T, as a measure

of noise impact on trajectory vector’ directional
distribution in p-subspace.

The role of higher non-prime singular values
o; was also reported by others [3] in the con-
text of the detection of determinism in a time

series. The natural choice would be to use
m

,\2 _ 2 2 . . .

&; = o/ )_ o}, since such normalized eigen-

J
i=j

value reflects, on average, the extraction of
trajectory vectors’ projections on jy, principal
axes from the noise floor and, at the same
time, its value varies from =~ 1/p (note that
p = m — j + 1) for noise-dominated to ~ 1,
for highly anisotropic and noise-free vectors’
distribution in p-subspace (small 7, and clean
data). Nevertheless, such measure is generally
too crude for quantitative assessment of noise
impact on trajectory vectors’ directional distri-
bution, which is apparent from the following
analysis:

The sole contribution of a particular &y, trajec-
tory vector to ji, eigenvalue is as follows:

AkO'J2 = N_l(xk . Sj)2 = (I‘k ° Sj)2

= (|lrel| cos Br)?
= (||re + ng||* cos® By, (4)

where r; and ry are noisy and clean data vectors’
projection on p-subspace, ny is the noise vector
and f is the angle between ry and s;.

It is obvious from relation (4) that, for large tra-
jectory vectors projections on p-subspace (||r|]
> ||ng]|), the noise doesn’t significantly change

their average contribution to G'JZ. For small

data vectors’ projections when ||ri|| ~ ||rgl,
although noise alters their direction severely,
their average impact on 0']2 is minor, because
it is limited by their lengths. As the result, as
soon as the majority of the largest data vectors
projections r; float up from the noise floor, the
dependence of O'JZ on noise becomes constrained

by attractors projection-dominant vectors. This
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could happen too soon i.e. for some value of 1,,
when the noise still dominates over attractors’
internal structure.

In order to find the measure that is more sus-
ceptible to noise-alteration of data vectors di-
rectional distribution in p-subspace, we refer to
equivalent formulation of PCA as a process that
defines m orthonormal vectors by minimizing
the sum of the squares of orthogonal distances of
trajectory state vectors to the respective eigen-
vectors and thus is equivalent to what is termed
orthogonal regression [15]. In a view of that,
the jin eigenvector s; is defined by minimizing
the sum

L= Z“Wl

under constraint [[s;|| = 1, where w; are arbi-
trary weights (in standard PCA w; = 1) and r;
are normalized projections of respective x; onto
p-subspace or, equivalently

(riesp)silll”  (5)

j—1

N2 |y — Z(xk o si)sk | - (6)

k=1

rp =

Since previous analysis showed that the noise
impact on state vectors directional distribution
in p-subspace (and, consequently, their aver-

age contribution to ajz) is inversely propor-
tional to its p-projected length, we introduce

1
7]
get: Lj = >

- ()]
[ JRY S
- (HnH )

with the notation ¢; = W
l

weights w; = into equation (5) and we

N 2

b

we finally may
write

clos )st]HZ, (7)

L—ZH

where s} denotes ji, weighted eigenvector. As-

sociated eigenvalues are accordingly defined as:
N

=N (e (®)
i=1

Equations (7) and (8) define weighted orthog-
onal regression or weighted PCA approach.

In agreement with (7) and (8), our referent com-
ponent submatrix RY™ is transformed to:

T
1

:T 9
CN

Generally, cum represents transformed p-pro-
jection of attractor trajectory. Geometrically, it
means that trajectory points are placed on the
unit p-dimensional sphere. The directions of
projected state vectors are preserved in this map-
ping, but their lengths are changed to unity. The
contribution of, in this manner, transformed in-
dividual p-projected vectors ¢; to the first princi-
pal component eigenvalue of the new trajectory
submatrix is highly dependent on the amount
of noise in the data. Severe noise-alteration of
small data vectors directions is now properly
taken into account by respective weights. Con-
sequently, the above approach more uniformly
traces overall data vectors extraction from the
noise floor.

RUM — clm) — N—1/2

where ¢; = “:—ZH
1

(%)

So, we proceed with minimization of the sum in
equation (7) using standard methods of linear
algebra, that is, we diagonalize new covariance
real symmetric p x p matrix @) defined as:

@Uvm) —

(cUm)Tlim), (10)

After diagonalization we get:

(AY"™2 = T-1@U™T, where T is p x p or-
thogonal and (A(”'”))2 is p X p diagonal matrix
with eigenvalues A7 of @Y™ on the diagonal
(i=12....pandAf > A7 > ... > A2).

Eigenvalues A7 have some obvious properties:
If the p-dimensional subspace is dominated by
isotropic noise, all eigenvalues are approxi-
mately the same due to isotropic distribution of

m
noise variance i.e., A? ~ 1/p since A% = 1.

On the contrary, for clean data and sjmall win-
dow widths, the relations amongst A? are qua-
litatively the same as amongst last p respective
o? (exponential law), since the trajectory points
are nested along the main principal axes of the
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p-subspace, i.e., in such situation, )le is close to
unity.

Therefore, we choose the largest eigenvalue /112

of associated real symmetric p X p matrix @U’m),
to be our quantitative measure of attractor’s
directional properties for selected p-subspace
that will reveal the presence of noise in respec-
tive subspace and that will change gradually
as a function of window width 7,,. We term
this quantity anisotropicity index of selected
p-subspace, and denote it I;,. Such measure
strongly depends on the amount of noise in the
data and partially reflects the behavior of the last
important singular value o; of trajectory matrix.
It eventually changes as we increase window
width, due to attractor spreading throughout the
p-subspace. It turns out (and will be demon-
strated in the next chapter) that such functional
dependence could be used for setting adequate
window width, that is related to chosen total
embedding dimension, for suitable reconstruc-
tion.

Finally, we select subspace spanned by last
p = m — j + 1 eigenvectors to be our refer-
ent subspace for calculation that will result in
setting up the criterion for adequate reconstruc-
tion in the presence of noise. By definition, this

determines submatrix CU:™).

Since the fractal dimension of the attractor and
the content of noise in the data are generally
not known, in a real experiment selection of
embedding parameters, such as dg and p, is es-
tablished through iterative procedure compris-
ing the analysis of system’s dynamical invari-
ants [1, 2]. Nevertheless, in PCA approach it
is a common practice to choose high dg for
filtering purposes [5, 12], and some smaller j-
dimensional subspace spanned by first j eigen-
vectors (j < dg), that presumptively assures
embedding, as a starting point of iteration pro-
cess. A more thorough account on defining
minimal embedding j-subspace is given at the
end of next chapter.

3. Common Examples

We apply the above-described concepts to three
well-known low dimensional attractors in cha-
otic regime i.e. Lorenz, Rossler and Duffing, as
they were described by Broomhead and King

[5], Fraser and Swinney [8] and Buzug et al. [6]
respectively. Calculations of anisotropicity in-
dex I; , were performed with various number of
data points, different sample times and embed-
ding dimensions. Several types and different
amounts of noise were added to the data sets.

To allow qualitative comparison of the results
for different dimensions of p-subspaces (differ-
ent embedding dimensions) we introduce nor-
malization of I; , as follows:

(ij)norm = ij,p = (Ij,p —1/p)/(1—=1/p).

Normalized in such way, ij, p ranges theoreti-
cally from zero for isotropic, to unity for ideally
anisotropic state vector space distribution. The
calculations were performed for m = dg = 5
up to m = 35 and with the addition of flat (uni-
form) noise with zero mean, ranging from zero
to about 40% noise content. The same was re-
peated with simulated equivalent quantization
error of approximately equal signal to noise ra-
tio (data were quantized in the range from 3 to
8 bits of precision). To examine the stability
of I;,, we use various number of data points.
Specifically, 2 000, 5000 and 20 000 points of
x(t;) were used for calculations.

Since we are dealing with known low dimen-
sional attractors, we use 3-dimensional sub-
space (j = 3) that assures embedding [5, 6,
8], so we choose p = dg — 3 + 1, in all three
cases.

3.1. Results and Discussion

We used Mathematica v. 4.0 program for solv-
ing differential equation systems. We adopted
resulting time series of 20000 points of x(#;)
that describes the attractors with original time
resolution of 0.005, 0.0314 and 0.01 for Lorenz,
Rdossler and Duffing equations respectively. The
typical result of i37 13 (dg = 15) calculations for
Lorenz system, using 5000 data points and 4
different levels of noise, is presented in Fig. 1.

The dashed curves in Fig. 1. present i37 13 for 4-
and 6-bit quantization noise respectively. Be-
low 4-bit quantization, the discrepancy from
isotropic distribution becomes too large and
thus misleading. For 8-bit quantization noise,
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Fig. 1. Normalized anisotropicity index i3,13 curves for the Lorenz attractor
with different noise content (7, = 0.005, N= 5000).

i3713 curves are indistinguishable from respec-
tive isotropic noise curves (the content of isotro-
pic noise was chosen to have approximately the
same rms as quantization noise). Results for
Rossler and Duffing systems were essentially
the same, except for different window width
scales.

In Fig. 1., the upper curve (almost straight line)
with negative slope, representing 13’ 13 for clean
data, is typical for deterministic (noise-free) be-
havior and it reflects gradual spreading of attrac-
tor projection in p-dimensional subspace due
to increase of window width. When we add
isotropic noise to the data, I3 ;3 starts at some
lower level (defined by the amount of noise)
and steeply increases until reaching it’s maxi-
mum at some 7. After that point, it begins to
fall and approximate clean data behavior.

So, we clearly recognize two different regions
of i3’13, one prior to the maximum that we
indicated as “noise-dominated” region in p-
subspace, and another after the maximum, which
is comparable to clean data behavior. For
smaller noise content and larger 7, the clean
data curve and the noise curve become practi-
cally indistinguishable.

The term “noise-dominated” in presented con-
text could be more precisely qualified as fol-
lows: Gradual increase of ij, p traces the extrac-
tion of o; from the noise floor in p-subspace. At
some point the extraction is slowed down due
to the increase of deterministic component of

higher singular values which prevails over the
noise vectors. Prior to that point there is a noise-
dominated region in p-subspace, because direc-
tional properties presented by iJ; p are essentially
governed by the superior value of the projection
of noise vectors (constant noise floor). Soon
after, deterministic directional properties, due
to spreading of the attractor in higher dimen-
sion, start to dominate and iJ; p CUI'VES approxi-
mate clean data behavior. The above described
qualitative analysis suggests that window width
(T )max» for which the maximum of respective

%

I; , curves occurs (the turning point), is approx-
imately defined by following relation:

m

Y o (p- 1D{nD,

i=j+1

(11)

where o7 denotes clean data eigenvalues, and
{n?) is noise variance.

Since for isotropic noise process and infinite
data series 07 = a7 + (n?), the relation (11)

i
can be rewritten as

m
Yoo xlp— 1)+ m—jn)
i=j+1
and with p = m — j + 1 we finally get:

Y o 2p— (0.

i=j+1

(12)
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Thus, the maximum of iJ; pcurves defines bound-
ary, after which extraction of the last important
eigenvalue from the noise floor is no more dom-
inant for directional properties of attractor pro-
jection on p-subspace. Therefore, it is reason-
able to select that window width as the lower
boundary for suitable reconstruction of the at-
tractor, judged by its p-subspace noise-related
directional properties. Furthermore, relation
(12) could be used to estimate the noise con-
tent in the data, assuming that the noise process
is close to isotropic. We checked it for all three
attractors and for all 4 different levels of noise.
The agreement was within 3% of the percentage
noise content.

Repeated calculations of i3713 using 2 000 and
20000 points produced the same results i.e. the

maximums of I3 13 curves occured at the same

window width. However, the i3713 values were
somewhat different due to the variation in ave-
rage noise effect when a smaller set was used.

That shows stability of ij, p as a measure of at-
tractor spreading, and, consequently, enables us
to perform calculations with smaller sets of tra-
jectory points.

The dependence of (7, )max, associated with

(i3, p)max on embedding dimension dg, for all
three attractors, was calculated and is presented
in Figure 2. The data with 2% noise content
were used in calculations. For small dg, slight
increase of (73, )max With dg is obvious. The in-
crease gradually slows down and for dg > 10,
the curves (almost constant) asymptotically ap-
proach some limiting (7, )max that is dependent
on the noise content in the data (Fig. 1.).

In view of the condition (11), such asymptotic
behavior is expected, because respective eigen-
values o7(dg) are roughly proportional to dg
andp=dg —j+ 1.

Since in PCA applications we generally use high
embedding dimensions for filtering the noise,
we choose that approximate limiting window
width (7, = (Tw)max; dg > 10) as the lower
boundary for suitable reconstruction of the at-
tractor. We conclude that proposed measure is
effectively defined by the window width, re-
gardless of the specified time delay and embed-
ding dimension. The importance of the window
width in the reconstruction process was reported
by other authors also [2, 14].

Although I; , and (73, ) max Were defined in fixed
dimensional embedding space, in practical PCA
application we should generally increase dg by
fixed lag time 7 (=sample time 7;) until we
reach a sufficiently large window width for our
reconstruction (7, = 7(dg — 1)). Such ap-
proach leads to maximal filtering effect for the
chosen window width.

Accumulation of (i3’13)max with higher noise

content, near some limiting 75, where the i3,13
curve slope for clean data starts to change, is
obvious (indicated by arrow in the Fig. 1.). In
our example, this occurs at 7, ~ 0.8. It ex-
hibits similar asymptotic behavior with the in-
crease of dg as (7 )max. It presents the up-
per boundary for reconstruction in fixed dimen-
sional space, above which no significant im-
provement in SNR could be expected.

0.7 -
Duffing
3
2 //
s
£ 05 1 Rosller*
-
g \
; /‘/
% 0.3 - Lorenz
©
£
= /-/’/
0.1 1 1 1 1 ; ; ; ; \
3 6 9 12 15 18 21 24 27 30

embedding dimension dg

Fig. 2. Dependance of (T,,)max on embedding dimension
*To accommodate the scaling in the figure, window width values for the Rissler system are divided by 27.
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What initial value of window width in the de-
terministic interval ((7)max < Tw < T™W™) of
p-subspace should one use for reconstruction?
As a general rule, for the data with small noise
content (< 2%), we propose T, that lay well be-
low 7, where attractor’ structure maintains its
simple shape. So, we propose T, that satisfies
simple condition:

(13)

where constant ¢ complies with: j — 1 < ¢ <.

Tw & ((Tw)max + Ty)/C

For the data with higher noise content the user
should pick 7, that is closer to (7 )max tO
avoid possibly complex attractor structure for
too large 7, without significant increase of
SNR. Accordingly, for such cases we propose
more subtle relation:

Tw & (Tw)max + (T, — (TW)maX)Z/(CTrv)a
with ¢ = J.

In both (13) and (14) equations we define con-
stant ¢ proportional to the minimal embedding
dimension of the attractor i.e., ¢ ~ j. That is
due to the fact that sizeable extraction of the
higher eigenvalues from the noise floor occurs
at higher 7, [5, 9], that is, (7}, )max is roughly
proportional to j. Because of that, setting ¢ ~ j
prevents us from using too large window widths
when encountering higher j-dimensional attrac-
tors.

It is important to notice that for high noisy
data the I;, curves deviate from their typical

shape, because the beginning of deterministic-
dominated region of p-subspace enters into os-
cillatory area of clean data curves. For such
cases the maximum of ij’ p CUrves is no more
well defined and we cannot tell, with certainty,
if the p-subspace deterministic region could be
reached at all.

If the noise content exceeds a threshold that is
dependent on data measurement sample rate,
it is generally recommended to perform some
pre-filtering of the data before PCA based re-
construction process. It is also dependent on
the user application. When using reconstruc-
tion for dimension calculations that are highly
sensitive to noise [14], pre-filtering is almost
unavoidable. Generally, it is recommended for
data with noise content over 10%. Nevertheless,
even for the data with smaller noise content the
use of PCA is effective only if sufficiently high
sampling is available (z;, < 7). To avoid de-
struction of dynamic invariants we recommend
the use of SVD-based FIR (finite impulse re-
sponse filters) linear filtering such as described
in [4, 21]. For predictive modeling, besides fil-
tering the data, it is more important to avoid
complex attractor structure when too large win-
dow width is used [9], which is accomplished
through equations (13) and (14).

As an illustration of adequacy of relation (14)
we present the PCA reconstruction of the Lorenz
attractor (7 = 0.005, N= 5000) using 8%
noisy x(¢) data in Figures 3 and 4.

{ N\
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Fig. 3. Lorenz attractor embedded from 8% noisy X(#) data and projected on the plane spanned by the second and
third eigenvectors using 7, = 0.44 (N= 5000, dg = 89, 7, = 0.005).
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Fig. 4. Lorenz attractor embedded from 8% noisy X(¢) data and projected on the plane spanned by the second and
third eigenvectors using 7, = 0.25 (N= 5000, dg = 51, 7, = 0.005).

Lorenz Rossler Duffing
Tw 0.32 1.95 0.75
dg 3 5 7 3 5 7 3 5 7
T [11] 0.26 0.3 0.32 2.1 2.5 2.6 0.42 0.5 0.53
Ty [16] — — — 1.75 — — — — _
Tw [9] 0.32 — — — — — _ _ _

Table 1. Comparison of the window width 7, with the results by other authors.

Figure 3 presents projection of the Lorenz at-
tractor in the plane spanned by the second and
third eigenvector using the window width ac-
cording to relation (14) with ¢ = j = 3, while
Figure 4 presents the same projection using in-
adequate window width (undersized dg).

Comparison of the results for window width 7,
for clean data using relation (13) and ¢ = 2.5
with available data from relevant literature is
presented in Table 1.

Agreement of the results from various sources
with our approach is very good. It reflects the
fact that all of them are based on the consider-
ation of some integral spreading features of the
attractors.

Since for generally unknown chaotic process
we have no information on intrinsic attractor
dimension, calculation of some dynamic invari-
ants such as correlation dimension can be used
to find minimal j for reconstruction [1,2].

A good choice is to start with 7, &~ ((73)max +
7)/(jmin — 1) for some assumed jmi, as the
initial value for calculations. The minimal di-
mension for which the convergence of attractor
correlation dimension is established defines ap-
propriate minimal j value. The approximate
values of (7, )max and 7, could be determined
using a smaller set of data with fixed dg > 10.
It is also possible to use false nearest neighbors
(FNN) algorithms [1] for determination of final
Jmin after filtering and after selection of proper
T, through presented PCA approach.

4. Conclusion

We have presented the noise-related characteri-
zation of chaotic trajectories that provides users
with quantitative measure for adequate recon-
struction of chaotic attractors in the realm of
PCA methodology. Introduced approach de-
fines the lower boundary for “deterministic”
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reconstruction, based on attractor’ directional
properties when projected on suitably chosen
principal component subspace. The method
is applicable for low-dimensional continuous
chaotic dynamical systems (flows) contami-
nated with isotropic-like noise. Such noise is
usually encountered in most experimental mea-
surements of chaotic signals from various artifi-
cial (electric circuits, chemical reactions, fluid
mechanics etc.) biological or environmental
sources [3].

Proposed values of window width for “deter-
ministic” reconstruction are closely related to
the amount of noise in the data. Such relation
balances two opposing effects in embedding
process i.e. filtering out the noise through attrac-
tor spreading in high dimensional embedding
space and avoiding ineffective excessive spread-
ing when too complex attractor structure occurs.
The calculations of introduced anisotropicity in-
dex can be performed on relatively small data
set (=~ 2000 data points) without violating the
results.
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