Journal of Computing and Information Technology - CIT 11, 2003, 3, 151-161 151

Component-Based Software
Engineering — New Challenges
in Software Development

Ivica Crnkovié

Malardalen University, Department of Computer Engineering, Vasteras, Sweden

The primary role of component-based software engi-
neering is to address the development of systems as
an assembly of parts (components), the development
of parts as reusable entities, and the maintenance and
upgrading of systems by customising and replacing such
parts. This requires established methodologies and tool
support covering the entire component and system life-
cycle including technological, organisational, marketing,
legal, and other aspects. The traditional disciplines from
software engineering need new methodologies to support
component-based development.

Keywords: software components, software engineering,
software architecture, COTS, component-based develop-
ment, component-based software engineering.

1. Software Development Challenges

We are witnessing an enormous expansion in
the use of software in business, industry, ad-
ministration and research. Software is no longer
marginal in technical systems but has now be-
come a central factor in many fields. Sys-
tem features based on software functionality,
rather than other characteristics, are becoming
the most important factor in competing on the
market, for example in car industry, the service
sector and in schools. Increasing numbers of
software users are non-experts. These trends
place new demands on software. Usability, ro-
bustness, simple installation and integration be-
come the most important features of software.
As a consequence of the wider area of software
utilisation, the demand for the integration of
different areas has increased. We distinguish
between vertical integration in which data and
processes at different levels are integrated, and
horizontal integration in which similar types of

data and processes from different domains are
integrated.

For example, in industrial process automation,
at the lowest levels of management (Field Man-
agement), the data collected from the process
and controlled directly, is integrated on the plant
level (Process Management), then is further
processed for analysis and combination with
the data provided from the market and finally
published on the Web (Business Management).

A consequence of all this is that software is be-
coming increasingly large and complex. Tradi-
tionally, software development addressed chal-
lenges of increasing complexity and dependence
on external software by focusing on one system
at a time and on delivery deadlines and budgets,
while ignoring the evolutionary needs of the
system. This has led to a number of problems:
failure of the majority of projects to meet their
deadline, budget, and quality requirements and
the continued increase in the costs associated
with software maintenance.

To meet these challenges, software develop-
ment must be able to cope with complexity and
to adapt quickly to changes. If new software
products are each time to be developed from
scratch, these goals cannot be achieved. The
key to the solution to this problem is reusabil-
ity. From this perspective Component-based
Development (CBD) appears to be the right ap-
proach. In CBD software systems are built by
assembling components already developed and
prepared for integration. CBD has many advan-
tages. These include more effective manage-
ment of complexity, reduced marketing time, in-
creased productivity, improved quality, greater

152

Component-Based Software Engineering— New Challenges in Software Development

degree of consistency, and wider range of us-
ability[1].

However, there are several disadvantages and
risks in using CBD which can jeopardize its
success.

— Time and effort required for the development
of components. Among the factors which
can discourage the development of reusable
components are the increased time and effort
required, the building of a reusable unit re-
quires three to five times the effort required
to develop a unit for one specific purpose.
(B. Spencer, Microsoft, Presentation at 22nd
ICSE, 1999 is also an interesting observa-
tion about efficient reuse of real-time com-
ponents, made by engineers at Siemens |[2]
that, as a rule of thumb, the overhead cost
of developing a reusable component, includ-
ing design plus documentation, is recovered
after the fifth reuse. Similar experience at
ABB [3] shows that reusable components
are exposed to changes more often than non-
reusable parts of software at the beginning
of their lives, until they reach a stable state.)

— Unclear and ambiguous requirements. In
general, requirements management is an im-
portant part of the development process, its
main objective being to define consistent and
complete component requirements. Reusable
components are, by definition, to be used in
different applications, some of which may
yet be unknown and the requirements of
which cannot be predicted. This applies to
both functional and non-functional require-
ments.

— Conflict between usability and reusability.
To be widely reusable, a component must be
sufficiently general, scalable and adaptable
and therefore more complex (and thus more
complicated to use), and more demanding of
computing resources (and thus more expen-
sive to use). A requirement for reusability
may lead to another development approach,
for example building a new, more abstract
level which gives less flexibility and fine
tuning, but achieves better simplicity [3][4].

— Component maintenance costs. While appli-
cation maintenance costs can decrease, com-
ponent maintenance costs can be very high
since the component must respond to the dif-
ferent requirements of different applications
running in different environments, with dif-
ferent reliability requirements and perhaps

requiring a different level of maintenance
support.

— Reliability and sensitivity to changes. As
components and applications have separate
lifecycles and different kinds of requirements,
there is some risk that a component will not
completely satisfy the application require-
ments or that it may include concealed char-
acteristics not known to application devel-
opers. When introducing changes on the ap-
plication level (changes such as updating of
operating system, updating of other compo-
nents, changes in the application, etc.), there
is arisk that the change introduced will cause
system failure.

To enjoy the advantages and avoid the prob-
lems and risks, we need a systematic approach
to component-based development at the process
and technology levels.

2. Component-Based Software
Engineering

The concept of building software from compo-
nents is not new. A “classical” design of com-
plex software systems always begins with the
identification of system parts, designated sub-
systems or blocks, and on alower level modules,
classes, procedures and so on. The reuse ap-
proach to software development has been used
for many years. However, the recent emergence
of new technologies has significantly increased
the possibilities of building systems and appli-
cations from reusable components. Both cus-
tomers and suppliers have had great expecta-
tions from CBD, but their expectations have not
always been satisfied. Experience has shown
that component-based development requires a
systematic approach to and focus on the compo-
nent aspects of software development [3]. Tra-
ditional software engineering disciplines must
be adjusted to the new approach, and new pro-
cedures must be developed. Component-based
Software Engineering (CBSE) has become rec-
ognized as a new sub-discipline of Software En-
gineering.

The major goals of CBSE are the provision of
support for the development of systems as as-
semblies of components, the development of
components as reusable entities, and the main-
tenance and upgrading of systems by customis-
ing and replacing their components [5]. Build-
ing of systems from components and building

Component-Based Software Engineering — New Challenges in Software Development

153

of components for different systems require es-
tablished methodologies and processes not only
in relation to the development/maintenance as-
pects, but also to the entire component and sys-
tem lifecycle including organisational, market-
ing, legal, and other aspects. In addition to
specific CBSE objectives such as component
specification or composition and technologies,
there are a number of software engineering dis-
ciplines and processes which require specific
methodologies for application in component-
based development. Many of these methodolo-
gies are not yet established in practice, some
are not even developed. The progress of soft-
ware development in the near future will depend
very much on the successful establishment of
CBSE and this is recognized by both industry
and academia. All major software engineer-
ing conferences now include sessions related
to CBSE and CBSE workshops are held fre-
quently[6][7][8][9][10]. According to the Gart-
ner Group [11] “By 2002, 70 percent of all new
applications will be deployed using component-
based application building blocks.”

Overviews of certain CBSE disciplines and some
of the relevant trends and challenges in the near
future are presented below.

3. Component Specification

For a common understanding of component-
based development, the starting point is an agree-
ment of what a component is and what it is not.
As a generic term the concept is pretty clear —
a component is a part of something — but this
is too vague to be useful. The definition of a
component has been widely discussed [13][14].
However, we shall adopt Szyperski’s definition
[4], which is the most frequently used today:
A software component is a unit of composition
with contractually specified interface and ex-
plicit context dependencies only. A software
component can be deployed independently and
is subject to composition by third parts.

The most important feature of a component is
the separation of its interface from its imple-
mentation. This separation is different from
those which we can find in many program-
ming languages (such as ADA or Modula-2),
in which declaration is separated from imple-
mentation, or those in object-oriented program-
ming languages in which class definitions are

separated from class implementations. We re-
quire that the integration of a component into
an application should be independent of the
component development lifecycle and that there
should be no need to recompile or re-link the
application when updating with a new compo-
nent. Another important characteristic of the
separation is that the component implementa-
tion is only visible through its interface. This
is especially significant for components deliv-
ered by a third party. An implication of this
is the requirement for a complete specifica-
tion of a component including its functional
interface, non-functional characteristics (per-
formance, resources required, etc.), use cases,
tests, etc. While current component-based tech-
nologies successfully manage functional inter-
faces, there is no satisfactory support for man-
aging other parts of a component specification.

The component definition adopted above is fo-
cused on the use of components. It says little
about how to design, implement and specify a
component. There are, however, other defini-
tions which point to other aspects of component-
based development. For example there is a
strong relation between object-oriented program-
ming (OOP) and components. Component
models (also called component standards)
COM/DCOM [15][16], .NET[17], Enterprise
Java Beans (EJB)[18][19], and CORBA Com-
ponent Model (CCM) [20] relate Component
Interface to Class Interface. Components adopt
object principles of unification of functions and
data encapsulation. Cheesman and Daniels [21]
consider that a component can exist in several
forms during its lifecycle: Component Specifi-
cation (component characteristics, component
function), Component Interface (a part of its
specification, a definition of a component’s be-
haviour), Component Implementation (A reali-
sation of a Component Specification), Installed
Component (deployed instance of a Component
Implementation) and Component Object (an in-
stance of Installed Object). Not all researchers
agree that components are extensions of OOP.
On the contrary, they think that the difference
between components and objects lies in the fact
that an object has state and is a unit of instan-
tiation, while a component is stateless and is a
unit of deployment [4].

There are also different comprehensions of CBD
inacademia and industry [22]. While researchers
in academia define components as well defined
entities (often small, and with easily understood

154

Component-Based Software Engineering— New Challenges in Software Development

functional and non-functional features), indus-
try sees components as parts of a system which
can be reused, but are not necessarily well de-
fined with explicit interfaces and with slight or
no conformance with component models. A
component can be an amorphous part of a sys-
tem, the adaptation of which may require much
effort. Such components (or rather reusable en-
tities) are of extreme importance, as the larger
the components, the greater the productivity
which can be achieved by their reuse.

Component specification remains a topic of re-
search. Component standards are mostly con-
centrated on the interface definition, while non-
functional properties are specified (if specified
at all) informally in separate documentation.
Some improvements in that direction, by gath-
ering both functional characteristics and design
characteristics, have been made in the new Mi-
crosoft Component Model .NET.

4. Component-Based System
Development Lifecycle

CBSE addresses the requirements, challenges
and problems similar to others encountered else-
where in software engineering. Many of the
methods, tools and principles of software engi-
neering can be used in the same or similar way
as in other types of applications or systems, but
there is one distinction: CBSE covers both com-
ponent development and system development
with components. There is a slight difference
in the requirements and business ideas in the
two cases, therefore different approaches are

necessary. Of course, when developing com-
ponents, other components can be (and often
must be) incorporated, but the main emphasis
is on reusability: Components are built to be
used and reused in many applications, some not
yet existing. A component must be well spec-
ified, easy to understand, sufficiently general,
easy to adapt, easy to deliver and deploy and
easy to replace. The component interface must
be as simple as possible and strictly separated
(both physically and logically) from its imple-
mentation. Marketing factors play an important
role as development costs must be compensated
from future earnings, this being especially true
for COTS. However, the main problem in de-
veloping components is in the acquisition and
elicitation of requirements in combination with
COTS selection [23] because the process in-
cludes multi-criteria decisions. If the process
begins with requirements selection, it is highly
probable that a COTS meeting all the require-
ments will not be found. If components are
selected too early in the process, the system ob-
tained may not meet all the requirements.

Development with components is focused on
the identification of reusable entities and rela-
tions between them, starting from the system re-
quirements. The early design process includes
two essential steps: Firstly, specification of a
system architecture in terms of functional com-
ponents and their interaction, this giving a log-
ical view of the systems and secondly, speci-
fication of a system architecture consisting of
physical components.

Different lifecycle models, established in soft-
ware engineering, can be used in CBD. These

i Requirements Design Implementation Test Release | Maintenance E
; -»> > > -»> > |
1 | 1
e I— i
A 3 Create A A
r h M
1 Find 2 Select 4 Adapt 4 Test 5 Deploy 6 Replace
J 7Y T T T T
RV o | L] L7 m L) m
< <
o =3 =] &)

Fig. 1. The development cycle compared with the waterfall model.

Component-Based Software Engineering — New Challenges in Software Development

155

models will be modified to emphasise compo-
nent-centric activities. Let us consider, for ex-
ample, the waterfall model using an extreme
component-based approach. Fig. 1 shows the
waterfall model and the meaning of the phases.
Identifying requirements and a design in the
waterfall process is combined with finding and
selecting components. The design includes the
system architecture design and component iden-
tification/selection.

The different steps in the component-based sys-
tems development process are:

— Find components which may be used in the
system. All possible components are listed
here for further investigation. To success-
fully perform this procedure, a vast number
of possible candidates must be available as
well as the tools for finding them. This is-
sue relates not only to technology, but also
to business.

— Select the components which meet the re-
quirements of the system. Often the require-
ments cannot be fulfilled completely and
a trade-off analysis is needed to adjust the
system architecture and to reformulate the
requirements to enable use of the existing
components.

— Alternatively, create a proprietary compo-
nent to be used in the system. In acomponent-
based development process this procedure
is less attractive as it requires more efforts
and lead-time. However, the components
that include core-functionality of the prod-
uct are likely to be developed internally as
they should provide the competitive advan-
tage of the product.

— Adapt the selected components so that they
suit the existing component model or speci-
fication of requirements. Some components
would be possible to directly integrated in to
the system, some would be modified through
parameterisation process, some would need
wrapping code for adaptation, etc.

— Compose and deploy the components using a
framework for components. Typically com-
ponent models would provide that function-
ality.

— Replace earlier with later versions of com-
ponents. This corresponds with system main-
tenance. Bugs may have been eliminated or
new functionality added.

There are many other aspects of CBD which re-
quire specific methods, technologies and man-
agement. For example, development environ-
ment tools [24][25], component models and sup-
port for their use, software configuration man-
agement [26], testing, software metrics, legal
issues, project management, development pro-
cess, standardisation and certification issues,
etc. Discussion of these is beyond the scope
of this article. The relation between software
architecture and CBD is discussed in the fol-
lowing.

5. Software Architecture and
Component-Based Development

Software architecture and components are clo-
sely related to each other. All software systems
have an architecture which can be viewed in
terms of the decomposition of the system into
components and their relations. A commonly
used definition of Software architecture is [28]:
“The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software compo-
nents, the externally visible properties of those
components and the relationships among them.”
Traditionally, software architecture is at the fo-
cus in the early design phase when the overall
structure of the system is designed to satisfy
functional and non-functional requirements. In
monolithic applications, the architecture spec-
ified in the design process is concealed at ex-
ecution time in one block of executable code.
Component technologies focus on composition
and deployment, closer to or at execution time.
In a component-based system, the architecture
remains recognizable during the application or
system execution, the system still consisting
of clearly separated components. The system
architecture thus remains an important factor
during the execution phase. Component-based
software engineering embraces the total lifecy-
cles of components and component-based sys-
tems and all the procedures involved in such
lifecycles.

In a “classical” approach, the design of soft-
ware begins with determining its architecture,
structuring the system in smaller parts, as in-
dependent as possible. The first phase of this
structuring is functionality-based architectural
design. The second phase is software architec-
ture assessment during which the software ar-

156

Component-Based Software Engineering— New Challenges in Software Development

chitecture is evaluated with respect to the driv-
ing quality requirements. Once the software
architecture has been defined, the components
which are to constitute the system must be de-
veloped or selected. We can distinguish dif-
ferent categories of components in relation to
the requirements of the system: special pur-
pose components, developed specifically for the
system, reused components, internally devel-
oped for multiple usage, and final commercial
components (COTS). Pre-existing components
typically need to be integrated into the system
using glue code or a modification of the com-
ponents themselves. This top-down approach
ensures fulfilment of the requirements, or at
least a better control thereof. However, this
approach does not encourage the reuse of pre-
existing components, especially not commer-
cial components, since there is a high degree
of probability that the pre-existing components
do not exactly fit into the system. Another ap-
proach, a mix of bottom-up and top-down ap-
proaches, begins with the system requirements
and the analysis of possible candidate compo-
nents. The component specification and selec-
tion have impact on final requirements and the
system architecture. In this case, software ar-
chitecting is primarily concerned with identify-
ing means of optimising interactions between
the given components. Since components and
their composition are basic artefacts for both
software architecture and component technolo-
gies, it is natural that they will merge, i.e. use
common techniques, methods and tools. Archi-
tectural definition languages (ADLs), for ex-
ample ACME [29], can be used for designing
component-based-systems and implemented for
the existing component models.

Software architecture is often related to a pro-
cess of tradeoff analysis. Experience has shown
that the many attributes of large software sys-
tems live principally in the system’s software
architecture. In such systems the achievement
of quality attributes depends more on the overall
software architecture than on code-level prac-
tices such as language choice, detailed design,
algorithms, data structures, testing, and so on.
There are several methods for such analysis, for
example SAAM (Software Architecture Anal-
ysis Method) [30] and ATAM (Architecture
Tradeoff Analysis Method) [31]. Both ATAM
and SAAM are scenario-based methods. How-
ever, unlike the SAAM, the ATAM focuses on
multiple quality attributes (modifiability, avail-
ability, security, and performance) and is aimed

at locating and analysing tradeoffs in a soft-
ware architecture. For component-based sys-
tems a modified approach in these analyses is
required. The components have pre-determined
attributes, some of them immanent only to the
component, but some of them emerging in com-
position with other components. A tradeoff
analysis helps in selecting the proper compo-
nents and in predicting the attributes of compo-
nent compositions. At the same time inclusion
of the pre-existing components sets the bound-
aries in which the analysis can be performed.
For example one characteristic of a candidate
component can be high reusability but poor per-
formance, while of the other candidate a better
performance but a lower reusability. Architec-
tural analysis will help in making decision in
component selection.

Software architecture and CBD are successfully
used in the development of software product
lines [22][27] from which many variants of a
product are delivered. Typical product variants
contain a set of core-components and a num-
ber of additional components. The component-
based approach and architectural design play
important role in product configuration man-
agement.

6. UML and Component-Based Systems
Modelling

UML (Unified Modelling Language) can be
used for both component and system modelling,
as shown in [21]. Component-driven design
concentrates on interface definitions and col-
laboration between the components through the
interfaces. The design process continues with
the modelling of the system with physical com-
ponents, which do not necessarily match the
logical structure. These may be pre-existing
components, with interface already specified
and possibly in need of wrappers. One logi-
cal component, identified in the first phase of
design, may consist of several physical compo-
nents. Finally, there is a deployment aspect, the
components being executed on different com-
puters in a distributed application. In a non-
component-base approach the first, the design
phase, is important, while mapping between the
conceptual and implementation levels is a di-
rect mapping, and the deployment phase is the
same for the whole application. In principle,
UML [32] can be utilized to provide support for

Component-Based Software Engineering — New Challenges in Software Development

157

<<interface>>
|Account 4 <<subsystem>> Canonical Form
Account
+getAccount()
O—— <<subsystem>>)
IAccount Account Elided Form

Fig. 2. UML component.

designing component-based systems covering
all these aspects[1],[5]. Interfaces are presented
as multiple subsystems (multiple interfaces may
also be realised by a subsystem), which indicate
the possibility of changing the implementation
without replacing the interface. An interface
can be presented in two ways (see Fig. 2), the
second alternative being the more common pre-
sentation.

Fig. 3 shows the three aspects of system archi-
tecture. The conceptual architecture is a re-

1

IComA ComA

<<subsystem>>[-------

sult of a top-down system analysis and design
and, in at least the first step, is not different
from a “non-component-based” design. In the
conceptual part, the components are expressed
by UML packages with the <<subsystems>>
stereotype. In the implementation architecture
part, the physical components are represented
by UML components and the <<imp>> stereo-
type. Note that the implementation part is not
necessary only the refinement of the conceptual
level, but that also the structure can be changed.
For example, different packages can include the
same physical components. It may also happen
that the component selection requires modifica-
tions of the conceptual architecture.

However, UML is not specialised for CBD
and certain extensions to standard UML (such
as naming convention, or stereotypes) are re-
quired. The component interfaces cannot be
described by UML at such a detailed level that
they can be used directly. For this reason there
are extensions to UML, for example Catalysis
[33]. Further work on UML related to CBSE
is expected. The next major version of UML

1

<<subsystem>>
ComB

Conceptual

Architecture
ComC

O— <<imp>> ‘__,yo— <<imp>>
IComA ComA [~~ IComB ComB
/i)_ <<imp>>
ComC -~~~ 1ComY ComY

&— <<imp>> o

SysX

<<imp>>

Implementation
Architecture

Deployment

Architecture

% :ComB
»

£

Server

DataServer

Fig. 3. Examples of different aspects of component-based architecture.

158 Component-Based Software Engineering— New Challenges in Software Development

(UML 2.0) [34] proposes extensions for de-
scribing Enterprise Java Beans, data modelling
entities, real-time components, XML compo-
nents, etc. Many of these are related directly or
indirectly to CBSE.

7. Future of Component-Based Software
Engineering

It is obvious that CBD and CBSE are in the
very first phase of their lives. CBD is recog-
nized as a new, powerful approach that will, if
not revolutionise, at least significantly change
the development of software and software use
in general. We can expect that components and
component-based services will be widely used
by non-programmers for building their applica-
tions. Tools for building such applications by
component assembly will be developed. Au-
tomatic component update over the Internet,
already present in many applications, will be
a standard means of application improvement.
Another trend we can see is the standardisa-
tion of domain-specific components on the in-
terface level. This will make it possible to build
applications and the system from components
purchased from different vendors. Standardis-
ation of domain-specific components requires
standardisation of domain-specific processes.
Widespread work on standardisation in differ-
ent domains is already in progress, (a typical
example is OPC Foundation [35], working on
a standard interface to enable interoperability
between automation/control applications, field
systems/devices and business/office applica-
tions). Support to the exchange of information
between components, applications and systems
distributed over the Internet will be further de-
veloped. Works related to XML [36] will be
further expanded.

Today CBSE is facing many challenges, some
of which are summarised in the following.

— Trusted components — Because the trend is
to deliver components in binary form and the
component development process is outside
the control of component users, questions re-
lated to component trustworthiness become
very important. The meaning of “trust-
worthiness” is, however, not precisely de-
fined. Although there are formal definitions
of many attributes associated with the con-
cept “trustworthiness” (reliability and ro-
bustness, for example), there is no formal

definition or understanding of “trustworthy”
and no standardised measurement or trust-
worthiness . What are the effects of dif-
ferent degrees of trustworthiness on system
attributes is not known.

Component certification— One way of clas-
sifying components is to certificate them.
In spite of the common belief that certifica-
tion means absolute trustworthiness, itin fact
only gives the results of tests performed and
adescription of the environment in which the
tests were performed. While certification is
a standard procedure in many domains, it
is not yet established in software in general
and especially not for software components
[37][38].

Composition predictability — Even if we as-
sume that we can specify all the relevant at-
tributes of components, it is not known how
these attributes determine the corresponding
attributes of the systems of which they are
composed. The ideal approach, to derive
system attributes from component attributes
is still a subject of research. A question
remains — “Is such derivation at all pos-
sible? Or shouldn’t we concentrate on the
measurement of the attributes of component
composites?” [39].

Requirements management and component
selection — Requirements management is a
complex process. A problem with require-
ments management is that requirements in
general are incomplete, not precise and con-
tradictory. In an in-house development, the
main objective is to implement a system
which will satisfy the requirements as far
as possible within a specified framework of
different constraints. In component-based
development, the fundamental approach is
reuse of existing components. The process
of engineering requirements is much more
complex as the possible candidate compo-
nents usually lack one or more features which
meet the system requirements exactly. In
addition, even if some components are indi-
vidually well suited to the system, it is not
necessary that they do not function optimally
in combination with others in the system-or
perhaps not at all. These constraints may re-
quire another approach in requirements en-
gineering — an analysis of the feasibility of
requirements in relation to the components
available and the consequent modification of

Component-Based Software Engineering — New Challenges in Software Development 159

requirements. As there are still many uncer-
tainties in the process of component selec-
tion, suitable strategies are needed for risk
management selection of components and
the evolution process [40],[5].

Long-term management of component-based
systems — As component-based systems in-
clude sub-systems and components with in-
dependent lifecycles, the problem of system
evolution becomes significantly more com-
plex. There are many questions of differ-
ent types: technical issues (can a system be
updated technically by replacing the com-
ponents?), administrative and organisational
issues (which components can be updated,
which components should be or must be up-
dated?), legal issues (who is responsible for
a system failure, the producer of the sys-
tem or the producer of the component?), etc.
CBSE is a new approach and there is little
experience as yet of the maintainability of
such systems. There is a risk that many such
systems will be troublesome to maintain.

Development models — Although existing
development models demonstrate powerful
technologies, they have many ambiguous
characteristics, they are incomplete and dif-
ficult to use.

Component configurations — Complex sys-
tems may include many components which,
in turn, include other components. In many
cases compositions of components will be
treated as components. As soon as we be-
gin to work with complex structures, the
problems involved with structure configu-
ration emerge. For example, two composi-
tions may include the same component. Will
these components be treated as two different
entities or will they be assumed to be one
identical entity? What happens if these com-
ponents are of different versions, which ver-
sion will be selected? What happens if these
versions are not compatible? The problems
of dynamic updating of components are al-
ready known, but their solutions are still the
subject of research [41].

Dependable systems and CBSE — The use
of CBD in safety-critical domains, real-time
systems, and different process-control sys-
tems in which the reliability requirements
are more rigorous, is particularly challeng-
ing. A major problem with CBD is the lim-
ited possibility of ensuring the quality and

other non-functional attributes of the com-
ponents and thus our inability to guarantee
specific system attributes.

— Tool support — The purpose of Software

Engineering is to provide practical solutions
to practical problems, and the existence of
appropriate tools is essential for success-
ful CBSE performance. Development tools,
such as Visual Basic, have proved to be ex-
tremely successful, but many other tools are
yet to appear — component selection and
evaluation tools, component repositories and
tools for managing the repositories, com-
ponent test tools, component-based design
tools, run-time system analysis tools, com-
ponent configuration tools, etc. The objec-
tive of CBSE is to build systems from com-
ponents simply and efficiently, and this can
only be achieved with extensive tool support.

These are some of the many challenges facing
CBSE today. The goal of CBSE is to stan-
dardise and formalise all disciplines supporting
activities related to CBD. Success of the CBD
approach depends directly on further research
and the implementation of CBSE.

References

[1] BROWN, A., Large-Scale Component-Based Devel-
opment, Prentice Hall, 2000.

[2] MRVA, M., Reuse Factors in Embedded Systems
Design, High-Level Design Techniques Dept. at
Siemens AG, Munich, Germany, 1997.

[3] CRNKOVIC, 1. AND LARSSON, M. A., Case Study:
Demands on Component-Based Development, Pro-
ceedings 22nd International Conference on Soft-
ware Engineering, ACM Press, 2000.

[4] SzYPERSKI C., Component Software-Beyond Object
-Oriented Programming, Addison-Wesley, 1998.

[5] HEINEMAN, G. AND COUNCILL, W., Component-
Based Software Engineering, Putting the Pieces
Together, Addison Wesley, 2001.

[6] ICSE 2000, Workshop on Component-Based Soft-
ware Engineering (CBSE 3), http://www.sei.
cmu.edu/cbs/cbse2000/CFP2000.html,
Access date 2001-07-14.

[7] ICSE 2001, Workshop on Component-Based Soft-
ware Engineering (CBSE 4), http://wuw.sei.
cmu . edu/pacc/CBSE4-Proceedings.html,
Access date 2001-07-14.

[8] ECOOP 2000, Workshop on Component-
Oriented Programming, http://www.ipd.hk-r.
se/bosch/WCOP2000/, Access date 2001-07-14.

160 Component-Based Software Engineering— New Challenges in Software Development

[9] Euromicro 2001, Workshop on Component-Based
Software Engineering, http://www.idt.mdh.
se/ecbse/, Access date 2001-07-14.

[10] Workshop on CBSE — ABB Corporate Research
Centre, Switzerland, 2000, http://icawww2.
epfl.ch/~opreiss/CBSE Conference2000/,
Access date 2001-07-14.

[11] GARINER GROUP, http://www.gartner.com,
Access date 2001-07-14.

[12] BROWN, A. AND WALLNAU, K., The current state of
CBSE, IEEFE Software, 1998.

[13] SzYIPERSKI, C. AND PFISTER, C., Workshop on
Component-Oriented Programming, Summary. In
Miihlhduser M. (ed.) Special Issues in Object-
Oriented Programming — ECOOP96 Workshop
Reader, Springer 1997.

[14] ICSE 1999, Workshop on Component-Based Soft-
ware Engineering (CBSE 2), http://www.sei.
cmu.edu/cbs/icse99/cbsewkshp.html,
Access date 2001-07-14.

[15] BOX, D., Essential COM, Addison-Wesley, 1998.

=
D

Microsoft Component Object Model, http://
www.microsoft.com/com/, Access date 2001-07-
14.

_
~

Microsoft. NET Component Model, http://www.
microsoft.com/net, Access date 2001-07-14.

[18] Enterprise Javabeans technology, http://java.
sun.com/products/ejb/, Access date 2001-07-
14.

[19] MATENA, V. AND STEARNS, B., Applying Enterprise
JavaBeans(TM): Component-Based Development
for the J2EE(TM) Platform, Addison-Wesley, 2000.

[20] OMG, CORBA, http://www.omg.org/ tech-
nology/documents/spec_catalog.htm, Access
date 2001-07-14.

[21] CHEESMAN, J. AND DANIELS, J. UML Components —
a Simple Process for Specifying Component-Based
Software, Addison-Wesley, 2001.

[22] BOSCH J. Design & Use of Software Architecture,
Addison Wesley, 2000.

[23] MAIDEN, N. AND NCUBE, C., Acquiring Require-
ments for Commercial Off-The Shelf Package Se-
lection, IEEE Software, Vol. 15, No. 2, Mar., 1998.

[24] Microsoft Visual Studio,
http://msdn.microsoft.com/vstudio/,
Access date 2001-07-14.

[25] Development tools — Forte™ tools, http: //www.
sun.com/forte/, Access date 2001-07-14.

[26] LARSSON, M. AND CRNKOVIC, L., New challenges

for configuration Management, Proceedings of 9™
Symposium on System Configuration Management,
Lecture Notes in Computer Science, Springer, 1999.

[27] BOSCH J., Software Product Lines: Organisational
alternatives, ICSE 2000 Proceedings, ACM Press,
2001, pp. 91-100.

[28] L. BAss, P. CLEMENTS, R. KAZMAN, Software Ar-
chitecture In Practice, Addison Wesley, 1998.

[29] ACME architecture definition language,
http://www.cs.cmu.edu/~acme/,
Access date 2001-07-14.

[30] KAZMAN, R., ABOWD, G., BASS, L., CLEMENTS, P,
“Scenario-Based Analysis of Software Architec-
ture”, IEEE Software, Nov. 1996, pp. 47-55.

[31] Rick KAZMAN, MARIO BARBACCI, MARK KLEIN,
S. JEROMY CARRICRE, Experience with Performing
Architecture Tradeoff Analysis, ICSE 1999 Pro-
ceedings, ACM Press, 1999, pp. 54-63.

[32] BOOCH G., JACOBSON I AND RUMBAUGH J., The
Unified Modeling Language User Guide, Addison-
Wesley, 1998.

[33] D’Souza D. AND WILLS A., Objects, Components,
and Frameworks With UML : The Catalysis Ap-
proach, Addison-Wesley, 1998.

[34] OMG UML, http://www.omg.org/technology
/uml, Access date 2001-07-14.

[35] OPC Foundation, http://www.opcfoundation.
org/, Access date 2001-07-14.

[36] Extensible Markup Language (XML), http:
//www.w3.org/XML, Access date 2001-07-14.

[37] VOAs J. AND PAYNE J., Dependability Certification

of Software Components, Journal of Systems and
Software, No. 52, 2000, pp. 165-172.

[38] MORRIS J., LEE G., PARKER K., BUNDELL G., PENG
LaM C., “Software Component Certification”, IEEE
Computer, 2001, September.

[39] WALLNAU K. AND STAFFORD J., Ensembles: Ab-
stractions for a New Class of Design Problem, 27"
Euromicro Conference 2001 Proceedings, IEEE
Computer Society, 2001, pp. 48-55.

[40] KOTONYA G. AND RASHID A., A strategy for Man-
aging Risks in Component-Based Software Devel-

opment, 27" Euromicro Conference 2001 Proceed-
ings, IEEE Computer Society, 2001, pp. 12-21.

[41] CRNKOVIC 1., LARSSON M., KUSTER FILIFE J. K.,
LAu K., Databases and Information Systems, Fourth
International Baltic Workshop, Baltic DB&IS, Se-
lected papers, Kluwer Academic Publishers 2001,
pp- 237-252.

Received: June, 2003
Accepted: September, 2003

Contact address:

Ivica Crnkovi¢

Milardalen University

Department of Computer Engineering
Viisteras, Sweden

Phone: +4621 1031 83

Fax: 446 21 1041 60

e-mail: ivica.crnkovic@mdh.se
Web: http://wuw.idt.mdh.se/~icc

Component-Based Software Engineering — New Challenges in Software Development 161

IvicaA CRNKOVIC is a professor of industrial software engineering at
Milardalen University where he is the administrative leader of the
software engineering laboratory and the scientific leader of the in-
dustrial software engineering research. His research interests include
component-based software engineering, software configuration man-
agement, software development environments and tools, as well as
software engineering in general. Professor Crnkovt is the author of
more than 40 refereed articles and papers on software engineering top-
ics and a co-autor and co-editor of two books: Builiding Releiable
Component-Based Systems, and Implementing and Integrating Prod-
uct Data Management and Software Configuration Management. He
has co-organized several workshops and conferences related to soft-
ware engineering (in particularly component-based software engineer-
ing) and participated in Program Committees of software configuration
management symposia and workshops. From 1985 to 1998, Profes-
sor Crnkovi¢ worked at ABB, Sweden, where he was responsible for
software development environments and tools. He was a project leader
and manager of a group developing software configuration management
systems and other software development environment tools and meth-
ods for distributed development and maintenance of real-time systems.
From 1980 to 1984, he worked for the Rade Koncar company in Zagreb,
Croatia. Professor Crnkovi¢ received an M.Sc. in electrical engineer-
ing in 1979, an M.Sc. in theoretical physics in 1984, and a Ph.D. in
computer science in 1991, all from the University of Zagreb, Croatia.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

