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Evolutionary Timetabling Using
Biased Genetic Operators

Daniel Danciu
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Evolutionary Algorithms have proved to be a flexible
and effective technique for addressing various instances
of the timetabling problem. This article describes
an investigation and its results on an evolutionary ap-
proach to solving a particular class of highly constrained
timetabling problems. The convergence speed of the
evolution program has been significantly improved with
the usage of biased operators, which generate offspring
by preserving the building blocks of the parents. We
also describe two metrics for measuring the efficiency
of the genetic operators and how convergence speed has
been improved by applying these metrics to fine-tune
the probability of the genetic operators. Computational
experiments over real test problems showed promising
results.

Keywords: timetabling problem, biased operators, pres-
ence quotient, improvement rate.

1. Introduction

The timetabling problem is a particular opti-
mization problem, and consists of arranging a
sequence of meetings between teachers and stu-
dents in a period of time, subject to constraints
of several types. In this paper we consider a
particular instance of the timetabling problem,
called school timetabling, which consists of cre-
ating the daily schedule for all the classes of a
high school, according to a predefined curricu-
lum. Our main goal was to provide adminis-
trative staff of public high schools in Romania
an alternative solution for the handmade timeta-
bles, which would both decrease the time spent
in elaborating the timetable and produce better
results. The particular characteristics observed
for Romanian high schools are:

1) Each class of pupils is preassigned to a certain
room. There are some exceptions to this rule,

when a certain subject is to be held at a predeter-
mined room or group of rooms (e.g. computer
science is taught in labs, sports in the sports
room etc.); in this case care should be taken
that the number of subjects held simultaneously
does not exceed the number of available rooms;

2) There are some subjects for which the class
of pupils is divided into two subgroups, each
subgroup being tutored by a different teacher
(e.g. foreign languages);

3) Teaching starts at a predefined time for all
classes and breaks are not allowed in the pupils’
schedule. The number of hours per day varies
between a predefined minimum and maximum;

4) Some of the subjects have to be grouped to-
gether in a continuous block.

The central problem in applying genetic algo-
rithms to optimization problems is that of con-
straints - and the timetabling problem incor-
porates many nontrivial constraints of various
kinds, which have been studied and categorized
according to various criteria [5, 1]. Our ap-
proach of handling constraints is based on the
principles of evolutionary programming [6]: ad-
equate data structures and specialized genetic
operators will take care that the potential solu-
tions will satisfy the most important problem
constraints. The remaining constraints are en-
forced via penalties, and have been grouped in
the following categories:

— teacher clashes: the most prominent overall
constraint (central to all timetabling problems)
is that there should be no clashes [8]; that is,
any pair of lectures which are supposed to share
students or teachers should not be scheduled
simultaneously;
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— organizational constraints (e.g. having no
more than two sports classes at the same time);

— didactic constraints (e.g. having more dif-
ficult subjects distributed in the first part of the
day);

— personal costs (e.g. all teachers prefer to
have their lectures for a day scheduled continu-
ously, without breaks).

The convergence speed of the evolutionary al-
gorithm is improved with the usage of biased
genetic operators, which take into consideration
information regarding violation of the penalties,
calculated at the evaluation step. Biasing is ap-
plied to both the mutation and the crossover
operators. The role of mutation in genetic algo-
rithms using non-binary encodings of the solu-
tions goes beyond recovering desirable genes
that have been accidentally deleted from the
population [9, 4]. In evolutionary programming,
the mutation operator plays an important role as
an exploratory tool as well, seeking to iden-
tify new desirable genetic structures. The bi-
ased mutation operators described in this paper
are devised as an enhanced exploratory tool,
which replaces "blind", random alterations of
the chromosomes with changes that preserve
building blocks and are more likely to produce
better offspring. The role of crossover in ge-
netic algorithms is to combine features in the
mating parents to produce, hopefully, better off-
spring. Driven by this idea, there have been
many efforts to improve the crossover opera-
tors for the timetabling problem, which often
resulted in better, but more complex and com-
putationally intensive operators [10, 11]. The
biased crossover operator defined in section 2.4
has the advantage that it is both computationally
efficient and clearly outperforms the unbiased
version.

We measure the efficiency of the proposed ge-
netic operators using two metrics: improvement
rate and presence quotient. Even though de-
fined in the timetabling context, the two metrics
can be used to measure the effectiveness of the
genetic operators of any evolutionary algorithm.

The paper is divided as follows: Section 2 de-
scribes the particular elements of the evolu-
tionary algorithm that solves the high school
timetabling problem: the solution encoding,
the objective function, the genetic operators,
and the initial population. Section 3 presents

the operator efficiency metrics, the experimen-
tal setup and the results. Section 4 provides a
concluding discussion and pinpoints some di-
rections for further work.

2. The Problem

There are many versions of the timetabling
problem, and most of the efficient approaches
are tailored to a particular version. In our case,
we have a list of teachers 11, T, ..., Tj;,, a list
of classes Cy, C», ..., Cy, alist of one hour time
intervals Hy, Hy, . . ., H, (partitioned into g sub-
sets corresponding to the working days of the
week), we have to find an optimal timetable,
i.e. a timetable that satisfies the constraints de-
scribed in Section 1.

2.1. Solution Encoding

The most natural (but, surprisingly, not used)
data structure for the chromosome representa-
tion of a potential solution is the matrix rep-
resentation in which the rows are the classes,
the columns are the hours of the day, and the
cells contain the teacher(s) lecturing a particu-
lar class at a given time, plus some additional
information as described below.

Colorni et al. use in [1] a similar matrix rep-
resentation, except that the rows in their case
represent the list of teachers and the cells con-
tain the classes. Gyori et al. [5] have intro-
duced the notion of set, which consists of any
number of teachers, classes and rooms, and al-
lows class merging and splitting in a very flexi-
ble way, with the cost of imposing supplemen-
tary constraints (which were otherwise handled
by the matrix representation) via penalties. In
our approach, splitting of classes is handled by
encoding supplementary information inside the
cells of the matrix. An element x;; of the chro-
mosome matrix consists of a tuple (¢1, t2, ¢, p).
The first two components of the tuple contain
the teachers that lecture C; at time H; (a value of
0 means “no teacher”). The third component,
¢, represents the category to which the subject
belongs. Dividing subjects in categories is use-
ful for enforcing supplementary constraints on
certain subject groups. For example, we may re-
quire that for a particular subject group no more
than two subjects belonging to that group can
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be taught simultaneously, due to some limited
resources (computer science labs, sports rooms
etc.). Since these rules are problem specific,
they are imposed via the evaluation function.
The forth component, p, encodes special prop-
erties of the lecture, which need to be considered
by the genetic operators and/or the evaluation
function:

— Immutable: The lecture cannot be moved by
the genetic operator — it is required to remain
as it was set up initially.

— Block: The lecture is part of a block (com-
puter science labs are scheduled in blocks of
two, three or four hours); genetic operators are
allowed to move blocks, but are not allowed to
split blocks.

— Difficult: The subject has an increased level
of difficulty, and thus it would be desirable to
schedule it at the beginning of the day; this
property represents a didactic constraint and is
handled via the evaluation function.

2.2. Objective Function

The representation of the solution described in
the previous paragraph handles most of the im-
portant constraints. Thus, the initial population
is generated so that the curriculum for each class
is respected and there are no breaks in the stu-
dents’ schedule; genetic operators do not alter
these constraints. The representation does not
allow class clashes. The rest of the constraints
are enforced via the selection pressure driven
by the objective function.

The objective function measures a generalized
cost, which represents the distance between a
perfect timetable, respecting all constraints, in-
cluding the organizational, didactic and per-
sonal requirements. Due to the contradictory
nature of the constraints, in most of the cases
the value of the objective function is positive for
all timetable instances. The objective function
for a timetable matrix X is defined as:

fX)=0a-c+B-b+y-0o(X)+6-d(x)+e-p(X)

where c is the number of clashes in X, b is the
number of undesired breaks for teachers, o(X)
is the cost of unsatisfied organizational costs for
X, d(X) is the cost of unsatisfied didactic costs
for X, and p is the cost of unsatisfied personal

costs. The organizational, didactic and personal
costs differ from one school to another, and thus
0, d and p are defined ad-hoc for each particular
instance. By choosing oo < f >~y < § =~ ¢,
we induce a hierarchical structure in the objec-
tive function [1], so that we are able to drive
the evolutionary process towards solving a par-
ticular category of constraints at each evolution
stage.

The objective function represents the basis for
the computation of the fitness function, which
has the role of environmental feedback in the
evolutionary process. The need to distinguish
between the objective and the fitness function is
given by the need of making the selection pro-
cess more effective [6]. We have used F(X) =
1/(1 + f(x)) as the fitness function, combined
with a linear dynamic fitness scaling [6, 1] pro-
cedure. Due to the nature of the objective func-
tion, it is essential to use the fitness scaling
method, as otherwise the algorithm reduces to
a blind search in the solution space.

2.3. Initial Population

Unlike other approaches [3, 1], which used
the available handmade timetables as the ini-
tial population, we have used as a starting point
a randomly generated population optimized us-
ing a simple heuristic approach, to reduce the
number of clashes. We have also tested the al-
gorithm with completely random populations;
this made the evolutionary process somewhat
longer, but did not significantly influence the
final outcome. In both cases the initialization
process was constructed so that all individuals
respect the constraints that can be maintained
via the solution encoding, as described in the
previous paragraph.

2.4. Biased Operators

The genetic operators used in the algorithm, are
the classical matrix genetic operators, as de-
scribed in [1, 2]. We managed to improve the
convergence speed of the algorithm by altering
the above operators to act in a biased way in-
stead of a uniform way. The idea is that both the
crossover and the mutation operators randomly
pick some lines (classes) and columns (time in-
tervals) that are subject to their action. Whereas
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in most evolutionary approaches the nature of
the solution encoding does not allow localizing
the genes that are the cause of the constraint
violations, in our matrix representation this is
quite straightforward to do.

When evaluating an individual, the evaluation
algorithm counts, for each row and each col-
umn, the number of cells that are causing con-
straint violations (clashes, breaks in the teach-
ers’ schedule etc.) and calculates a weighted
sum of these infeasibilities, in a similar man-
ner as for the hierarchical objective function.
This sum represents a violation score that can
be used to infer which classes and time inter-
vals are more problematic in the timetable rep-
resented by the current individual. We put this
information to use in two ways: direct the mu-
tation operators towards problematic genes and
preserve building blocks in crossover operators.

Most of the matrix mutation operators basically
reduce to exchanging two groups of cells, ran-
domly selected. We can use the violation score
for each row and column to direct the action of
the mutation operators in a very simple way.
The idea is to move away the cells that are
causing constraint violations into zones with-
out or with less constraint violations. Thus,
when selecting the first group of cells, we assign
each row and column a probability of selection,
which is directly proportional to the violation
score. We can then use any of the standard evo-
lutionary selection schemes to select the rows
and columns that belong to the first group of
cells. We have chosen to use the straightforward
roulette wheel method for this. A good reason
for this choice is simplicity. For example, we
can easily select a column by generating a ran-
dom number between 0 and the total violation
score for all columns. After that, we traverse the
columns, decreasing the random number with
the column’s violation score, until it becomes
negative. The column where we stopped is se-
lected for mutation. Rows can be selected in a
similar manner.

The idea of using violation-directed mutation
operators is not new. Ross et al. [7], have de-
vised and studied an improved mutation opera-
tor, called directed mutation, which exchanges
two genes selected using constraint violation in-
formation in a similar way. The differences are
that Ross et al. also consider constraint viola-
tion information for choosing the allele where

the first group is going to be placed, whereas in
our case the second group of cells is randomly
selected, and Ross et al. only consider sin-
gle gene mutations, while the matrix encoding
used in this paper naturally allows biasing for all
mutation operators (for example, day-swap mu-
tation, which exchanges two blocks of genes).
The reason for randomly selecting the second
group of cells is that calculating the constraint
violation score for each possible allele position
is computationally expensive and seems more
adequate for a genetic repair algorithm ([2, 1])
than for a mutation operator.

The violation score can also be used for devising
efficient crossover operators, which tend to pre-
serve building blocks. It is known that crossover
is the main source of exploration in the evolu-
tionary process. The problem in crossover is to
find the proper tradeoff between preservation of
schemata (and thus, of the building blocks) and
the effective recombination. In other words,
we need to find a balance between the extent
to which good solutions obtained at a certain
phase are preserved and the extent to which new
regions of the search space are explored. By bi-
asing the crossover operator we address exactly
this problem.

Our algorithm uses two crossover operators:
section crossover and line-swap crossover. Sec-
tion crossover takes two parents and generates
two offspring by horizontally cutting the par-
ent matrices (at a random line) and exchanging
the lines below the cut. Similarly, line-swap
crossover takes two parents and generates two
offspring by selecting several lines from each
parent that are going to be replaced with lines
from the other parent. Line-swap crossover can
be easily enhanced by making use of the vio-
lation score. Instead of randomly selecting the
lines that are going to be swapped, we bias the
probability of selection, so that lines having a
larger violation score have more chances to be
selected for being replaced. Thus, the resulting
operator will tend to keep the building blocks
(solved subproblems) of the parents and pass it
further to the offspring. The usage of biased op-
erators has brought considerable improvements
in the efficiency of the genetic operators and
thus in the evolutionary process itself, as de-
scribed in the next section.
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3. Efficiency Measurement of the Genetic
Operators

Given the matrix representation of the timetable,
it is very easy to devise several mutation and
crossover operators [2]: cell-swap mutation,
day-swap mutation, day-permutation mutation,
column-swap mutation, section crossover, line
crossover etc.

The list could go on with several other opera-
tors, but the question is how much does each of
these operators improve the convergence speed
of the evolutionary algorithm? One could ex-
periment with assigning different probabilities
to each of the operators and see how the qual-
ity of the results is affected over several test
runs. However, this method does not always
give conclusive results and does not offer con-
crete comparison criteria between the genetic
operators. We have devised two simple metrics
which characterize the efficiency of the genetic
operators: improvement rate and presence quo-
tient.

The improvement rate is defined as the num-
ber of times the operator actually brings an im-
provement on the individual divided by the total
number of times itis applied. The presence quo-
tient’s calculation is slightly more complex. For
each individual in the population, we store the
sequence of operators that has lead to its ge-
neration. We call this sequence operator chain.
Then, we count how many times a specified
operator appears in the operator chain and di-
vide this number with the expected number of
appearances, obtaining the presence quotient. If
operators would be equally efficient, the pres-
ence quotient should be approximately equal to
1. However, practice has proven that this is not
the case. Naturally, we are interested in the
presence quotient of the best individuals in the
population, as this gives a good hint upon how
much each operator has contributed to obtaining
the solution of the problem.

In order to test the performance of our evolu-
tion program, we implemented it in Java (source
code available at http://www.danciu.ro/tt),
and tested it using concrete inputs. The input
data contained m = 54 teachers and n = 23
classes. We considered ¢ = 5 working days,
each day having at most 7 hours; the number
of time intervals is p = 35. The total num-
ber of hours to be taught is 739, out of which

123 are taught in subgroups (two teachers at
the same time), which gives an average of 16
hours per teacher and a coverage of 91% of
the available time. The generated timetables
were better in terms of cost than the handmade
ones: they contained no clashes, no undesired
breaks in the teachers’ schedules and managed
to fulfill most of the organizational, didactic and
personal goals.

Table 1 summarizes the average values for the
improvement rate and presence quotient of the
six genetic operators enumerated above plus the
biased versions of cell-swap mutation and line-
swap crossover operators. The superiority of
the biased operators over their unbiased coun-
terparts is clearly proved by both a higher im-
provement rate and a higher presence quotient.

Genetic operator Impr. rate Eﬁ:osggrclf
Section crossover 0.14 1.30
Line-swap crossover 0.09 1.07
Biased line-swap crossover | 0.12 1.30
Cell-swap mutation 0.03 0.95
Biased cell-swap mutation | 0.05 1.24
Day-permutation mutation | 0.02 1.58
Day-swap mutation 0.01 0.21
Column-swap mutation 0.007 0.07

Table 1. Average values of the efficiency metrics for the
genetic operators over ten test runs.

By analyzing the values in Table 1 we came to
the following conclusions:

— the biased versions of the operators are
clearly superior to their unbiased counterparts,
thus the unbiased versions can be eliminated;

— the cell-swap mutation operator is far more
efficient than the other mutation operators and,
from this point of view, it competes with the
crossover operators. Thus, increasing its proba-
bility of application will have the benefit of both
enhancing population diversity and increasing
convergence speed. This is proven by the graph
in Fig. 1, which plots the values of the best
individual over each generation, for two differ-
ent probability configurations of the evolution
program: the initial configuration and the fine-
tuned configuration, based on the operator met-
rics. The result is surprising from the classical



198

Evolutionary Timetabling Using Biased Genetic Operators

genetic algorithms theoretical point view: an
algorithm with a mutation rate higher than the
crossover rate clearly outperformed the classi-
cal algorithm with low mutation rates;

— day-swap and column-swap mutation opera-
tors bring little contribution to the convergence
speed and their probability can be reduced;

— since the values of the improvement rate and
of the presence quotient are consistent (lower
improvement rate corresponds to lower pres-
ence quotient and vice versa) we can conclude
that the two metrics are a valuable tool for em-
pirically measuring the relative efficiency of the
genetic operators.

It is interesting to note that higher values of
the improvement rate for the operators over two
distinct configurations of the evolutionary al-
gorithm do not necessarily imply a better con-
vergence rate. On the contrary, by introduc-
ing inefficient genetic operators, which tend to
slow down the evolutionary process, the im-
provement rates for the rest of the operators get
higher, but this is only because the new opera-
tors increase the diversity of the population and
thus give more chances for the other operators
to repair below-average individuals.

0.07 -
1l ------ Unoptimized
0.06 probabilities
8005 Optimized
=2 babiliti
% 0.04 ancimade.
003 timetable
0

1101 201 301 401 501 B0 Y01 801 801

Generation number

Fig. 1. Best individual fitness over 1000 generations for
the initial and the fine-tuned probabilities; repeated runs
give very similar results.

4. Conclusion

We have shown that concrete timetabling prob-
lems can be effectively addressed by an evo-
lutionary algorithm which uses a direct matrix
representation and well-selected genetic oper-
ators. The biased genetic operators have been
proposed as an alternative to the classic matrix
operators. The operator efficiency metrics mea-
sure the effectiveness of the genetic operators

from two points of view. The presence quotient
shows how much each operator has contributed
to creating the best individual, while the im-
provement rate measures how much each oper-
ator has contributed to improving or repairing
the individuals in the population. The expe-
riments performed have shown that these two
metrics are consistent and can be reliably used
to compare the relative efficiency of the genetic
operators defined for an evolution program. The
proposed algorithm will be experimentally used
in the next year at the Computer Science high
school in Bragov.
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