Journal of Computing and Information Technology - CIT 12, 2004, 3, 223-235

223

An Approach to Building Object Models
with UML in Embedded Systems

Mohamed T. Kimour and Djamel Meslati

Laboratory of Research on Computer Science (LRI), University of Annaba, Annaba, Algeria

The UML-based development methods of embedded sys-
tems are use case-driven. In these methods, identifying
objects that constitute the software system is a critical
and hard task, since there is no firm guidelines. In this
article, we propose a systematic approach to building
object models in embedded systems. After hierarchically
decomposing the system into its parts, the approach
consists of firstly converting the use case into a statechart
that models states of the concerned system parts and,
secondly, identifying the objects from the statechart. The
proposed approach bridges the gap between the outside
behavioral system description, as offered by use cases
and the system structure represented by the object model.

Keywords: embedded systems, object models, state-
charts, UML, use cases.

1. Introduction

A strongly increasing application area for real-
time systems are embedded systems, which re-
ceived their name because they are embedded
in a technical process. In the development of
these systems, there is a growing recognition of
the requirements engineering as the initial and
possibly the most important activity, where the
real demands to be placed on the system have
to be identified and captured in a consistent and
unambiguous manner [1, 2].

The most notable UML-based approaches for
real-time system development are based on use
cases to capture requirements [3, 4, 5, 6]. Use
cases are the first artifacts to be established in
the software development process. They de-
scribe interactions between the system and its
environment, and thus capture the functional re-
quirements of the system. Functional require-
ments are defined in terms of actors and use
cases. In the next phases, namely analysis and

design, static and dynamic models of the sys-
tem are developed. The static model defines the
structural relationships among domain classes,
which are covered by the UML object and class
diagrams [7]. The dynamic model describes the
system behavioral aspects. In particular, the
use case model specifies the functionality of the
system, whilst the object diagram specifies the
structure of the system. The latter is used as the
foundation for the design and implementation
phases [8, 9].

Once the use case diagram has been built, the
developer must identify the objects and classes
that describe the system under development.
The UML object diagram, sometimes referred
to as instance diagram, is useful for exploring
real world examples of objects and the rela-
tionships between them. This diagram provides
a conceptual description of the entities in the
application domain. It complements use cases
in describing requirements and provides an ini-
tial architecture that first captures these require-
ments. Itis an important model being used at al-
most all steps of the system development activi-
ties. For example, behavioral diagrams, such as
interaction model, cannot be constructed with-
out knowing the concerned objects [10]. This
is why it is fundamental to precisely identify
these objects early in the system development
process.

Nowadays, there are many methods dealing
with the problem of objects and classes iden-
tification [3, 8, 9, 11, 12]. Unfortunately, these
methods suffer from at least two drawbacks:
firstis a focus on classes rather than objects and,
second, a direct identification of classes and/or
objects from the use case textual description.

224

An Approach to Building Object Models with UML in Embedded Systems

However, when developing an embedded sys-
tem, it is easier and more important to start with
building the object model instead of the class
model [8]. Glinz et al. [13] state that class
models are inappropriate when more than one
object of the same class is used in a specific
situation. This is the case with the embedded
systems where the elements that do constitute
these systems are concrete entities that can be
directly mapped to objects. In contrast, classes
are the templates that are used for behavioral
sharing purpose and do not correspond to con-
crete elements. Moreover, classes’ emphasis is
put on commonalities, whereas objects in the
embedded systems are often specific.

On the other hand, transition from use cases to
objects is not straightforward, because there is
no direct one-to-one mapping from use cases
to objects. Moreover, identification of objects
depends on the use cases representation. Impre-
ciseness, ambiguities, and inconsistency may be
present in the textual description of use cases.
These description drawbacks make the object
identification process difficult and usually re-
sulting in unsatisfactory object or class model.

Current methods that are dedicated to object
and/or class identification can be classified into
two categories. In the first one, the methods are
based on linguistic analysis of the requirements
document, which is written in a natural lan-
guage. Objects and attributes correspond to the
nouns, and the operations are related to verbs.
In the second category, some tools that help
automate the transition from use cases to class
and object diagrams are proposed. However,
they only can treat a very restricted form of use
cases. For both, the main problem is the vague-
ness, ambiguity and inconsistency of the natural
language.

Therefore, transforming the use cases, which
divide the system in a functional way, into
objects and their properties (attributes, opera-
tions), needs some practical guidelines. In this
article, we propose an approach allowing object
identification from statecharts that are them-
selves established from use cases. Firstly, and
after a hierarchical decomposition of the system
into its controlled parts and controlling subsys-
tem, we convert the natural language description
of the use cases into statecharts, where states
and events on transitions refer to the system-
controlled units.

During statechart establishment, ambiguities,
inconsistency and impreciseness are removed.
Secondly, without any premature commitment
to design, we identify objects that directly con-
cern each controlled unit, and we identify ob-
jects of other types according to their catego-
rization. In doing so, we follow the separation
of concerns principle [14, 15]. Once objects
have been identified, classes to which those ob-
jects belong can be determined. In this way,
our approach is consistent with the Rumbaugh’s
bottom-up method to discover inheritance links
and organize classes [16)].

It is worth noting here that statecharts are pre-
cise models, easy to understand and work with.
They can be used in all the phases of the de-
velopment process, and hence they constitute a
highly reused artifact.

Based on statecharts, our approach not only al-
lows objects identification from use cases in a
systematic manner, but also provides the benefit
of an improved requirements specification. The
identified objects, in particular those that are re-
lated to the domain entities allow for enriching
use cases and making them clearer, more ade-
quate and useful. Furthermore, the presented
method is easy to apply, integrates nicely with
existing software development processes, such
as the unified process [4], and does not impose
an inappropriate overhead.

The rest of the article is organized as follows:
section 2 describes the UML models used in
our approach, namely, the use cases models,
the UML statechart with its extension for rep-
resenting the embedded systems behavior, and
the object model with the object categorization.
Section 3 presents our object identification pro-
cess. In section 4, we provide an overview of the
related works and compare them with our ap-
proach. Finally, in section 5 the conclusion and
future directions of our research are outlined.

2. Embedded Systems Modeling with UML

An embedded system consists of a controlling
subsystem and controlled units [17]. A control-
ling subsystem is a set of computer systems,
while the controlled units can be any of the
broad range of systems with mechanical be-
havior, any device, from a simple blender to a
complex robot. Typically, a controlling subsys-
tem performs control operations to receive input

An Approach to Building Object Models with UML in Embedded Systems

225

from the environment and/or sends commands
to the controlled units appropriately.

An embedded system can, therefore, be decom-
posed into its controlling subsystem and con-
trolled units. To control these units, the con-
trolling subsystem may perform computation
on their status information, from which it deter-
mines the necessary commands to send to these
units and then updates this status information
[18]. To facilitate the necessary object identi-
fication, we perform a hierarchical decomposi-
tion strategy. According to Glinz [13], a good
decomposition is one that follows the basic soft-
ware engineering principle of information hid-
ing and separation of concerns. This decompo-
sition will provide more clarity and preciseness
to the use case descriptions and the converted
statecharts, where actions and events will be
related to these controlling units, such as door
closed, elevator stopped in an elevator control
system.

In the following, we present the use case ele-
ments, the UML statechart as well as its exten-
sion to effectively model the features of embed-
ded systems, and finally the object categories
relevant to these systems.

2.1. Use Cases

To specify the ways in which a user uses a sys-
tem, a use case captures who (actor) does what
(interaction) with the system and for what pur-
pose (goal) [2]. An actor is often a human user
(see example in Figure 1). In embedded sys-
tems, an actor can be an external 1/O device
or a timer. External I/O devices and timer ac-
tors are particularly prevalent in embedded sys-
tems [6]. A complete set of use cases specifies
all different ways to use the system, and there-
fore defines all behavior required of the system.
Since use cases serve as a means of communi-
cation between developers and users, they are

Elevator Control
System

Elevator
Request

X

Floor
Sensor

Fig. 1. A use case diagram for an elevator request.

fundamentally written in simple text. However,
their textual description presents some draw-
backs such as the lack of precision and concise-
ness.

On the other hand, every large system needs
to be decomposed in order to make it compre-
hensible and manageable. Therefore, like in
RT-UML [5], the system use cases may be bro-
ken down into sub(system-level)-use cases us-
ing “include” and “extends”. The system use
case is then realized by the set of subsystems
collaborating together. Each subsystem is spec-
ified in terms of its subsystem level use case.

In our approach, we are interested in the descrip-
tion of a use case defined by a name, actor, pre-
conditions, postconditions, normal steps, and
alternative steps according to Cockburn’s tem-
plate [19]. To this template we have added a
quality of service section in which we describe
non-functional requirements (response time, se-
curity, cost, accuracy, etc.). Figure 2 illustrates
a typical textual description of a request elevator
use case in an elevator control system.

Thus, ause case can be seen as a tuple <ucName,
ucActor, ucPre, ucPost, ucSteps, ucAlt, ucQoS>
with ucName a label that uniquely identifies a
use case, ucActor a primary actor and the sec-
ondary actors, ucPre a set of preconditions, uc-
Post a set of postconditions, ucSteps a set of
ordered normal steps, ucAlt a set of alternative
steps, and ucQoS a set of qualities of services.

Each step in ucSteps is a tuple <sNumber,
sOper> with sNumber a step number, sOper an
operation (actor action(s) or system response(s)).
An operation may also be a branching statement
to another step. A normal step may be associ-
ated with a set of alternative steps.

An alternative step can be seen as a tuple <alt-
StepNumber, guardCond, altStepOper>, with
altStepNumber an alternative step number and
guardCond a guard condition on this step, and
altStepOper an alternative operation. The latter
may be divided into several sub-operations. A
subset of use case steps in an automated teller
machine system may be as follows:

{<1, User inserts card>;<2, System Asks for
PIN>, <2a, [invalid card|>, <2al, System
emits alarm>, <2a2, System ejects card>}.

226 An Approach to Building Object Models with UML in Embedded Systems

Use Case Name: Request elevator.

Context of Use: The elevator system has many
elevators that service many users at any one time,
taking them from one floor to another.

Primary Actor: User, Secondary actor: Floor
sensor

Precondition: User is at a floor and wants an ele-
vator.

Postcondition: Elevator has arrived at the floor in
response to user request.

Description:

1. User presses an up floor button. The system
selects an elevator to visit this floor.

2. If the elevator is idle, the system determines
in which direction the elevator should move
in order to service the new request.

3. The system commands the elevator door to
close. After the door has been closed, the sys-
tem commands the elevator to start moving,
either up or down.

4. As the elevator moves between floors, the
floor sensor detects that the elevator is ap-
proaching a floor and notifies the system.

5. The system checks whether the elevator should
stop at this floor. If so, the system commands
the elevator to stop.

6. When the elevator has stopped, the system
commands the elevator door to open.

7. If there are no other outstanding requests, the
elevator stays at the current floor with the door
open.

Alternatives:

la. User presses down floor button to move down.
The system response is the same for the main
sequence.

2a. The elevator is moving, Go to step 4.

5a. Current floor is not in the list of the floor to
visit, Go to step 4.

7a. When there are other outstanding requests, Go
to step 2.

Quality of Service:
1. Elevator movement must be minimized.
2. Use case response time must be minimized.

3. Doors must be closed before starting any ele-
vator movement

Fig. 2. Textual description of the
elevator request Use Case.

2.2. Statecharts

Statecharts, conceived as a visual formalism for
the design of reactive systems [20], extend fi-
nite state diagrams by hierarchy, concurrency,
and communication, which, besides the timing
constraints, are fundamental features of embed-
ded systems.

An UML statechart diagram consists of a finite
number of states and transitions between states
(Figure 3a). Actions are executed either on the
transition between states or on the entry into the
state. A state is a stage in the behavior pattern
of an entity. Modeling substates makes sense
when an existing state also exhibits complex
behavior, thereby motivating to explore its sub-
states. States are shown as rounded rectangles.

- A
Composite State

Initial State

J

-
-
-

-

-
L -

|
'

Transition [~~~

State

- — - 3
== -
T P

. S

J

Final State

Fig. 3a. Example of UML statechart syntax.

€3
V—\ e1ti.t2] - (_S
G >(s:)

5 s, e
[e1tts.e1Hy] {€1.€2}[not €3]

Fig. 3b. Example of extended UML statechart.

A transition is a progression from one state to
another and will be triggered by an event, that
is either internal or external, to the entity being
modeled. A guard is a condition that must be
true in order to traverse a transition. The transi-
tion is only taken if the named event occurs and
the guard evaluates to true. All these transition
elements are optional. The transition is shown
as an arrowed line (see Figure 3a).

An Approach to Building Object Models with UML in Embedded Systems

227

Although it is a valuable means for modeling
embedded systems behavior, UML statechart
still needs some extensions to make it both
enough expressive to represent the features of
these systems and enough precise to support ac-
tivities like object identification, property veri-
fication, test generation, etc. [21]. A detailed
description and justification of these extensions
is beyond the scope of this work. Figure 3b
illustrates these extensions that we summarize
as follows:

1. Guards can make reference to events, indi-
cating whether an event has occurred.

2. Associate a set of events to a transition, indi-
cating that the transition is triggered by the
concurrent occurrence of the set of events.
For example, the transition from S, to Sj3
is enabled only when the events e; and e,
occur, and in the absence of the event e3.

3. Associate a time interval to a transition, in-
dicating that the transition occurs at a time
(not known a-priori) belonging to the tem-
poral interval.

4. A time interval can specify a time window
as an expression of event occurrence. For
example, the transition from S; to S3 can be
triggered not earlier than t3 time units after
the occurrence time of the event e;, and not
later than t4 time units after the occurrence
time of that event.

2.3. Object Modeling and Categorizing

At the requirements analysis level, objects are
usually determined from use cases according to
certain categorization. Jacobson et al. have
divided the analysis space in three orthogonal
dimensions: information, behavior and presen-
tation [22]. This object categorization is useful
to control the system’s specification complex-
ity, creating a multidimensional modeling space
to allow a multiple-view analysis of the require-
ments with adequate semantic references. The
same categorization framework was adopted by
Fernandes and Machado in [8], with some em-
phasis on control objects as a crucial component
in any embedded system.

For the purpose of identifying objects from use
cases in embedded systems, we adapt the object
categories described in [6] for including coordi-
nation, application logic and timer objects, too.
We present this categorization as follows:

1. Interface object: handles the exchange be-
tween the system and its environment. An
interface object must be encapsulated in such
a way that if a change is made to the ex-
change between the system and its environ-
ment, only the interface object has to be
modified, leaving other objects unchanged.

2. Entity object: Long-living object that stores
information (typically the entities in entity-
relationship models). The entire behavior
associated to the manipulation of that infor-
mation must be included in the entity ob-
ject. Typically, an entity object is accessed
by many use cases.

3. Coordination object. Itis an overall decision-
making object that determines overall se-
quencing for a collection of related objects
inherent to a use case. It does not encap-
sulate any computation other than the one
needed for the coordination. Its main re-
sponsibility is to supervise other objects in
order to achieve the use case goal.

4. Application logic object: It contains the de-
tails of the application logic. It is needed to
hide the application logic from the data be-
ing manipulated (because it is likely that the
application logic could change regardless of
the data).

5. A timer object: encapsulates temporal con-
ditions and triggers activities in other ob-
jects, periodically or at appropriate time
points.

6. A control object: encapsulates appropriate
computations that involve a group of entity
objects or that cannot be naturally associated
to other objects.

We believe that this categorization of objects
makes models more stable, in the sense that
modifications made during the system develop-
ment are easier to locate and affect a smaller
number of objects. Moreover, this categoriza-
tion leads to the application of the separation of
concerns principle early in the system develop-
ment lifecycle. Separation of concerns princi-
ple makes the specification easier to understand,
more stable and reusable [14, 15].

228

An Approach to Building Object Models with UML in Embedded Systems

3. Object Identification Process

Based on the observation that an embedded sys-
tem is a controlling subsystem and a set of
controlled units, we first perform a hierarchi-
cal decomposition of the system into its parts.
This allows for better comprehension of the use
case and facilitates determining evolution state
of the controlled parts regarding the underlying
use case. Afterward, we derive the statechart in
an iterative and incremental way (main feature
of the unified process).

P Use Case H

(Statcchart gcncrating)%

'
>| Statechart -

v

. [Usecases
>

reviewing

ﬁ Control flow

,4 Data flow

EELE TR

[not valid]

[valid]

v
CObj ect Identifying} S

N -

®

Fig. 4. Object identification process.

Object
Model

Figure 4 illustrates our approach to identifica-
tion of objects from use cases after decomposing
the system into its parts. We first need to cir-
cumvent the drawbacks of the textual descrip-
tion use cases and give rise to the elements that
do constitute the objects, such as operations and
data items. To this end, instead of directly us-
ing the natural language in use case description,
we transform it into a statechart, according to
the appropriate procedure described in section
3.1. During this step, the use case text may be
reviewed and modified in order to remove am-
biguities and to exhibit more preciseness and
completeness.

Second, the obtained statechart is used with the
object categorization in embedded systems, to
determine the objects according to the appropri-
ate procedure described in section 3.2.

3.1. From Use Cases to Statecharts

In contrast to other approaches to derive state-
charts from use cases, such as [3, 9, 12, 23, 24|,
we do not restrict the textual description of use
case for capturing the requirements. Informal
notations are good for recording requirements
at an early stage, when great expressiveness and
ease of use is more important than formal cor-
rectness and executability. Table 1 describes
our procedure to transform a use case text into
a statechart. This procedure is structured into
four iterations as described below:

1. For each use case, build a graph of be-
havior sequences (GBS) where each node
corresponds to a step and each edge links
two nodes that correspond to the two con-
secutive steps in the use case.

2. Model the normal flow first, integrate the
alternative flows later and place the steps’
guards on the corresponding edges.

Iteration 1

1. Transform the GBS into a statechart.
Each node is transformed into a state and
the link is transformed into a transition.

2. Specify the operations of each step in the
entry of the corresponding state.

3. Specify explicitly the necessary opera-
tions related to the guards in the corre-
sponding states.

4. For each operation, specify the necessary
state variables.

5. Specify event names and possible guards
on the corresponding transitions.

Iteration 2

1. Group the states, corresponding to steps
that may be performed in parallel, into a
superstate.

2. If possible, decompose each state that in-
corporates more than one operation, into
substates such that:

e Operations blocks that may be per-
formed in parallel should be specified
in different parallel substates,

e Only one actor or one system unit
should be referred in a substate,

e Guarded operations block should be
specified in a separate substate.

3. Represent abstract use cases as hierarchi-
cal statecharts.

Iteration 3

An Approach to Building Object Models with UML in Embedded Systems

229

1. Check the statecharts to see if the follow-
ing has been achieved:

o States and events should be named ex-
pressively and consistently,

o All necessary states and transitions
should be specified. As the steps are
mapped to states, missing states will
emerge and need to be added.

o All the states in a statechart should be
connected.

o Check the event list created to see if all
relevant events are handled, and if all
the necessary operations are specified
in the statechart.

2. Identify possible timing constraints and
place them on the events that label the
corresponding transitions.

Iteration 4

Table 1. Statechart derivation procedure.

Iteration 1: Transforming the use case into a
Graph of Behavior Sequences (GBS).

Iteration 2: Transforming the GBS into a stat-
echart.

Iteration 3: Refining and restructuring the stat-
echart.

Step 1

¢

[floorNotInList]

|

ft

Step 2

Step 3

[[Elev. Moving]

Step 4

Step 5
[CurrFloorInList]
Step 6

[Other request]
[CurrFINotInList]

o

Step 7

[No other request]

¥

Fig. 5. Graph of the behavior sequence of an elevator
request use case.

Iteration 4: Checking the statechart for internal
completeness and consistency, and identifying
the possible timing constraints.

In Iteration 1, a use case is transformed into a
GBS (Figure 5), which is a graph where each
node corresponds to a use case’s step and the
edges link the use case’s ordered steps. In Iter-
ation 2, we transform the GBS into a statechart
(Figure 6). The nodes become states and the

(Step 1)

entry: U.pressButton()
S.determineElevator()
S.addRequest()

[elevator Idle] ¢

(Step 2]
entry: S.determineDirection() J

S

—~
—

\

(Step 3
entry: S.closeDoor()

S.startMoving()
S.updateStatus(moving)

[elevator Moving]

e 2

Step4

> |entry: S.getFloorSensor()
kS.updateCurrcntF loor()

i
(Step 5)
entry: S.checkIfShouldStop()

S.stopElevator()
S.updateStatus(stop)

A

(Step 6)
entry: S.openDoor(}
v
Step 7 \

entry: S.checkNoOtherRequest()
E.updateStatus(idle)

-

[otherRequest]

l [noOther request]

@

Fig. 6. Statechart after iteration 2.

230

An Approach to Building Object Models with UML in Embedded Systems

edges become transitions. In the entry of each
state, we specify corresponding actor’s actions
or system’s responses, according to the general
format: “sAct.id.Oper”, with sAct_id an actor
identifier to distinguish between actor’s action
(U) and system’s response (S), and Oper the op-
eration name. In Iteration 3, we restructure the
statechart in order to raise possible concurrency
and hierarchy. Finally, in Iteration 4, we check
the statechart for consistency and completeness.

In the following section, we discuss how op-
erations are determined from each use case’s
step and show how to attain final version of the
statechart.

Step 1: Two operations are specified: 1) user
presses an up floor button, and 2) system se-
lects an elevator. This last operation specifies
that the system should select an elevator to visit
the source floor. This description is ambigu-
ous, in the sense that it isn’t precisely defined.
Should the system determine any elevator, or
should it determine the most suitable one?

To determine the most suitable elevator in a
multiple-elevators control system while taking
into account the specified quality of service
“minimize the elevator movement”, the system
must have, not only the source floor number
(sfl) and the desired direction (dd) to be sup-
plied by the user, but also some state informa-
tion about each elevator (idle, moving up, mov-
ing down, last visited floor).

Therefore, the first two data items should be as-
sociated with the event “button pressed”. Dur-
ing the statechart elaboration we uncover the
ambiguity related to the described operation of
“selecting an elevator” and provide the neces-
sary precision by determining events and data
items.

Step 2: In the entry of the corresponding state,
we specify the operation “S.determineDirec-
tion”.

Step 3: Two operations are explicitly specified
in this step: “closeDoor” and ‘“‘startMoving”.
They correspond to the system commands of
closing the door and starting to move eleva-
tor. However, commanding the elevator to start
moving should be followed by updating its sta-
tus. Therefore, the missing operation “update-
Status()” should be added to the corresponding
state of this step. In doing so, we uncover an
omission in the use case. In addition, for the
sake of security, the elevator must start mov-
ing not earlier than at certain time units after

the door has been closed. This important tim-
ing constraint is not explicitly specified in this
use case. In doing so, we uncover a possible
temporal inconsistency.

Step 4: the secondary actor “floor sensor” de-
tects the fact that the elevator is approaching
a floor that becomes current, and notifies the

A\

[elevRequest]
lentry: U.pressButton() J
buttonPressed

v
(suitableElevatorDetermining)

entry: S.getRequest(sfl, dd)
S.determineElevator()
S.addRequest(sfl)
S.checkElevatorStatus()

[elevator Idle] \l,
(directionDetermining W

“| entry: S.determineDirection()J

S

directionDetermmed ‘l,

doorClosing
[entry: S.closeDoor()

[5,10] J,

startElevatorMoving)

entry: S.startMoving()
S.updateStatus(moving)

J
\L \» [elevatorMoved]
(floorSensing)

entry: S.getFloorSensor(currentFloor) |
S.updateCurrentFloor() -
S.checkIfCurrentFloorInList()

I

[elevator Moving]

J

[floorNotInList]

/
\I, [currentFloorInList]

(elevatorStopping 1
tntry: S.stopElevator() J

S.updateStatus(stop)
S.updateListOfFloorToVisit()

v [15.20]
doorOpenning w
entry: S.openDoor J

[Other request] and [30, 50]

-~

S.checkIfNoOtherRequest()
.

\l([No other request]
elevatorldle w
tantry: S.updateStatus(idle) J

v
®

Fig. 7. Statechart after iteration 4.

An Approach to Building Object Models with UML in Embedded Systems

231

system. The system updates the current floor
information of the appropriate elevator.

Step 5: The system checks if the current floor
is in the list of the floors to visit by the elevator
concerned. However, this operation needs ac-
cess to all the pending requests, including the
one that is submitted by the user at the first step.
When examining the previous steps, we do not
find any reference to adding this request. To un-
cover this omission in the use case, we add the
operation “addRequest” in the first state, after
the operation “determineElevator”. This state
will then comprise three operations rather than
two.

Step 6: The system commands the door to open.
We therefore place the operation “openDoor” in
the corresponding state entry.

Step 7: The system checks if there are other
requests. If so, the door must wait for a certain
time before closing. This temporal requirement
is not explicitly defined in the use case.

Therefore, we explicitly specify this timing con-
straint as a label on the transition that starts
from the door opening state and ends at the di-
rection determining state. If there are no other
requests, the elevator stays at the current floor
with the door open. However, the information
status of this elevator that becomes idle must be
updated. We therefore specify the action “up-
dateStatus(idle)”. Figure 7 illustrates the final
version of the statechart obtained after applying
iterations 3 and 4.

3.2. From Statechart to Objects

The derived statechart modeling states of the
system’s controlled units, incorporates the nec-
essary elements to define objects, namely, ac-
tions and data items. First, for each controlled
unit, we determine the necessary objects accord-
ing to the procedure defined in Table 2.

Let’s apply this procedure to our resulting state-
chart (Figure 7) in order to determine objects
and distribute responsibilities amongst them.
The controlled units identified from the state-
chart are a set of elevators, a set of elevator
doors, and floor sensors. For the sake of brevity,
we do not consider other units such as buttons
and lamps. In the following, we discuss the
objects identification from the statechart:

1) We define for the whole use case, a coordi-
nation object (named elevRequestCoordinator).

1. For the whole use case, define a coordinator
object.

2. Define an interface object for each actor or
controlled unit.

3. Define an entity object for each controlled
unit that is referred to by at least one action
or guard. Every action that refers to only this
controlled unit should be assigned to its de-
fined entity object.

4. When an action involves a group of controlled
units, define a control object. Every action
that involves this controlled unit set should be
assigned to its defined control object.

5. Define a timer object for the action set that
is triggered in specific time intervals or at a
specified time point.

6. Define an application logic object to incor-
porate actions that cannot be handled by any
other object category.

7. Check the statechart to verify if all specified
actions have been distributed to objects.

Table 2. Object identification procedure.

This object does not encapsulate any functional
action. It only triggers actions encapsulated in
other objects or receives signals from them.

2) For each controlled unit and actor that re-
ceives and/or sends events from/to the system,
we define an interface object to receive inputs
from these units or actor, and/or to send out-
puts or commands to them. In our example,
we define interface objects for the identified
controlled units (elevators, doors, and the floor
sensors).

For instance, for every elevator, we define, an
interface object “elevatorInterface” to receive
commands (startMoving(), stopElevator())
from the system. Also, for every elevator door,
we define an interface object “doorInterface”
to receive commands (openDoor, closeDoor),
and for the floor sensor, we define the interface
object “floorSensorInterface”, to handle inter-
action at every elevator approaching a floor.

3) The actions such as addRequest(), and up-
dateStatus() refer to an elevator. We therefore
define an entity object, named “elevStatusPlan”,
for each elevator.

232

An Approach to Building Object Models with UML in Embedded Systems

Moreover, the guard condition “elevator idle”
invokes an action that checks if the elevator is
idle. From this guard condition, we identify
the attribute “elevator status, which may have
the value “idle”. This attribute should also be
encapsulated by the entity object “elevStatus-
Plan”.

This entity object should provide information
on whether the elevator is moving or idle, as
well as on the current floor if it is at a floor
or the last floor, if it is moving between floors.
Furthermore, the action “addRequest()” should
also be assigned to this entity object. The latter
should therefore encapsulate the list of floors to
visit.

As there are no computation actions, nor guards
referring to the controlled units “door” and
“floor Sensor”, we do not specify any entity
object to these controlled units.

4) The action “determineElevator()” that selects
the most suitable elevator to service the user re-
quest, needs access to all elevator entity objects
to use the current status of the elevators. It,
therefore, corresponds to a control object named
“Scheduler”.

5) Timing constraints related to door events will
be handled by the timer object “doorTimer”.
This object sends a timeout signals to the use
case coordinator object according to the speci-
fied timing constraint.

6) Finally, qualities of service mentioned in the
use case text are mainly related to the opti-
mization of the elevator movement. Usually,
to deal with some of these non-functional re-
quirements, we need an object that periodically
calculates statistical parameters such as: ave-
rage busy time and idle time of each eleva-
tor, floor(s) where elevator(s) are very often
requested. To this end, we define an application
logic object “statisticalMeasure” that encapsu-
lates such computations.

Figure 8 depicts the object model obtained from
the statechart by applying the procedure de-
scribed in Table 2. As previously noted, the
coordinator object “elevRequestCoordinator” is
an overall decision-making object that deter-
mines overall sequencing for all the objects re-
lated to the use case. All these objects are there-
fore linked to it. Moreover, the control object
“Scheduler” has links to the objects “elevSta-
tusPlan”, since it accesses each elevator entity
object in order to use its state information, to

<<fimer>>
:doorTimer

<<application logic>>
statisticalMeasure

<<entity>>
:elevStatusPlan

<<interface>>

<<coordination>> :
floorSensorInterface ||

elevRequestCoordinator

I
<<control>> }—
:scheduler I

<<jnterface>>
:doorInterface

<<interface>>
:elevatorInterface

Fig. 8. The object model for the elevator request use
case.

select the most suitable elevator to the user re-
quest. The object “statisticalMeasure” has links
to the “elevRequestCoordinator” and “elevSta-
tusPlan” objects.

4. Related Works

In recent years, object-oriented techniques have
been employed in the development of embed-
ded systems, e.g. RT-UML [5], UML-RT [3],
OCTOPUS [25], Artisan Real-Time Perspective
[26], etc. There are also several papers in the
literature that discuss the process of building
object model, e.g. [8,9, 11, 12, 22, 27].

In UML-RT (UML for Real-Time), which has
been included in UML 2.0 [28], the construc-
tion of object and class diagrams is performed
by the derivation of scenario diagrams and cap-
sule collaboration from use case scenarios, and
by the synthesis of object and class diagrams
from initial sequence diagrams that only depict
interaction between control software and sys-
tem devices. Software objects are determined
using CRC technique [2] or Jacobson’s object
categories (interface, control, and entity) [22].

In RT-UML and Artisan Real-Time perspective,
objects are identified by the textual analysis of
problem statements or use case descriptions. In
Octopus, The system under study is partitioned
into subsystems. An analysis phase is per-
formed for each subsystem whose object/class
model is built from the problem description,
by underlying nouns to determine candidate

An Approach to Building Object Models with UML in Embedded Systems

233

classes. Usually, too many objects/classes are
obtained in that manner. This technique is also
applied in [3, 9, 12], but with the use of auto-
matic tools for natural language analysis of the
use case text and the problem statements.

In [27], Rosenberg and Scott extend the ap-
proach of Jacobson et al. [22] for identifying
objects, using robustness analysis. However,
their steps describe, in a very brief form, what
needs to be done to put together the main parts
of the object diagram. These describing steps
do not give any type of detailed instruction on
“how”.

In [8], an approach to identify objects from use
cases is presented. It consists of a 4-step rule
set. The approach defines the steps to obtain a
holistic set of objects. Each use case is trans-
formed in three objects (one interface, one data,
and one control). Besides the restricted types of
objects, this approach presents some limitations
in a sense that it concentrates on what needs to
be done rather than addressing “how” it can be
done.

In [11], an approach that identifies classes is
presented. It is based on goals of use cases,
without descriptions. The approach produces
use case entity diagrams as a vehicle for de-
riving classes from use cases. However, only
domain classes are identified and there is no
more global technique that would allow mak-
ing the transition between the two models in a
systematic manner.

Most of the above mentioned tools and meth-
ods begin with building classes rather than ob-
jects. Our approach focuses on objects and
communication between them rather than on the
classes and associations between them. Since
most real-time and embedded applications have
a static structure, it is convenient to see the sys-
tem under development as a set of communi-
cating objects rather than as a set of classes
with associations. To some extent, our approach
complements the existing ones in the sense that,
at the analysis stage, it begins with the dynamic
model instead of the structural one. We be-
lieve that it is better to build the dynamic model
before the static one. If one begins with the dy-
namic model, it is easier to identify operations,
events and also attributes, which will be needed
in the static model, and to obtain no more than
what is needed.

5. Conclusion

In this paper we have presented a systematic ap-
proach to transition from the use cases to the ob-
ject model in the embedded systems area. Our
approach presents a technique for converting
use cases into statecharts and uses the latter as
a means to identify objects. The semi-formal
nature of statecharts allows for discovering the
necessary objects and their properties (opera-
tions and attributes), which are needed for reali-
zing the use case.

The derived statecharts help the developers in
uncovering ambiguities, omissions, imprecise-
ness, and inconsistency that may be present in
the natural language description of the use case.
In this way, while preserving the advantages of
the use cases’ natural language description (ex-
pressiveness and ease to use), we also allow for
using existing tools to verify and prove some
properties of embedded systems.

We are currently in the process of developing
a semi-automatic and interactive system that
helps synthesizing statechart diagrams from use
cases and building the object model. In addi-
tion, we are investigating the subject of modify-
ing the XMIDTD to represent our extended stat-
echart by means of XML documents, in order to
automatically generate the interaction models.

6. Acknowledgment

We would like to thank Professor Zoubir Mam-
meri from Paul Sabatier University in Toulouse
(France) whose suggestions on the first draft of
this document were very helpful. Furthermore,
we would like to thank the anonymous referees
whose comments were useful in improving this

paper.

References

[1] A.G. SUTCLIFFE, N.A.M. MAIDEN, S. MINOCHA, D.
MANUAEL, Supporting scenario-based requirements
engineering, IEEE Transaction on Software Engi-
neering, 12 (1998), pp. 1072-1088.

[2] 1. SOMMERVILLE, Software engineering, 6th edition,
Addison-Wesley, 2001.

[3] B. SELIC, Using UML for modeling complex real-
time systems, LNCS, 1474 (1998), pp. 250-262.

234

An Approach to Building Object Models with UML in Embedded Systems

[4] 1. JACOBSON, G. BOOCH, J. RUMBAUGH, The unified

software development process, Addison-Wesley,
1999.

[5] B.P. DOUGLASS, Real-time UML: Developing effi-
cient objects for embedded systems, 2nd edition,
Addison-Wesley, 2000.

[6] H. GOMAA, Designing concurrent, distributed, and
real-time applications with UML, Addison-Wesley,
2000.

[7] G. BOOCH, J. RUMBAUGH, 1. JACOBSON, The unified
modeling language user’s guide, Addison Wesley,
1999.

[8] J.M. FERNANDES, R.J. MACHADO, From use cases
to objects: An industrial information systems case
study analysis, Proceedings of the 7th Int’l Con-
ference on Object-oriented Information Systems,
(2001), Calgary, Canada, pp. 319-328.

[9] R.S. WAHANO, B.H. FAR, A framework for object
identification and refinement process in object-
oriented analysis and design, Proceedings of the 1st
Int’l Conference on Cognitive Informatics, (2002),
Calgary, Canada.

[10] M.T. KIMOUR, Generative sequence diagrams for
requirements specification in real-time systems,
Proceedings of the 2nd ACS/IEEE Int’l Conference
on Computer Systems and Applications, (2003),
Tunis, Tunisia.

[11] Y. LIANG, From use cases to classes: a way of build-
ing object model with UML, International Journal
of Information Software and Technology, 2 (2003),
pp. 163-180.

[12] D.Liu, K. SUBRAMANIAM, B.H. FAR, A. EBERLEIN,
Automatic transition from use cases to class model,
Proceedings of the IEEE Canadian Conference
on Electrical and Computer Engineering, (2003),
Montréal, Canada, pp. 831-834.

[13] M. GLINZ, S. BERNER, S. JOOSs, J. RYSER, The
ADORA approach to object-oriented modeling of
software, Proceedings of the 13th Int’l Confer-
ence on Advanced Information Systems Engineering
LNCS, 2068 (2001), Inderlaken, Switzerland, pp.
76-92.

[14] G. KICZALES, J. LAMPING, A. MENDHEKAR, C.
MAEDA, C.V. LOPES, J.-M. LOINGTIER, J. IRWIN,
Aspect-oriented programming, Proceedings of the
11th Int’l European Conference on Object-oriented
Programming, (1997), Finland, LNCS 1241, pp.
140-149.

[15] H. OSSHER, P. TARR, Using multidimensional sep-

aration of concerns to (re)shape evolving software,
Communications of the ACM, 10 (2001), pp. 43-50.

[16] J. RUMBAUGH, M. BLAHA, W. PREMERLANI, F.
EDDY, W. LARENSON, Object-oriented modeling and
design, Prentice Hall, 1991.

[17] T.M. CHUNG, H.G. DIETZ, Language constructs and
transformation for hard real-time systems, ACM
SIGPLAN Notices, 11 (1995), pp. 41-49.

[18] M.T. KIMOUR, Real-time object-oriented program
restructuring for improved schedulability, Proceed-
ings of the 8th Int’l Conference on Real-Time
Systems, (2000), Paris, France.

[19] A.COCKBURN, Writing effective use cases, Addison
Wesley, 2001.

[20] D. HAREL, Statecharts: a visual formalism for com-
plex systems, Science of Computer Programming, 8
(1987), pp- 231-274.

[21] V.D. BIANCO, L. LAVAZZA, M. MAURY, A formal-
ization of UML statecharts for real-time software
modeling, Proceedings of the Int’l Workshop on
Integrated Design and Process Technology, (2002),
Pasadena, CA, USA.

[22] I. JACOBSON, M. CHRISTERSON, P. JONSSON, G.

OVERGAARD, Object-oriented software engineer-
ing: A use case driven approach, Addison-Wesley,
1992.

[23] H. BEHRENS, Requirements analysis and prototyp-
ing using scenarios and statecharts, Proceedings
of the Int’l Workshop on Scenarios and State Ma-
chines: Models, Algorithms and Tools, (2002),
Orlando, Florida, USA.

[24] S.S. SOME, Beyond scenarios: Generating state
models from use cases, Proceedings of the Int’l
Workshop on Scenarios and State Machines: Mod-
els, Algorithms and Tools, (2002), Orlando, Florida,
USA.

[25] M. AWAD, J. KUUSELA, J. ZIEGLER, Object-oriented
technology for real-time systems: A practical ap-
proach using OMT and Fusion, Prentice Hall, 1996.

[26] ARTiSAN Software Tools — Modeling Solutions
for Real-Time Software and Embedded Systems
Development. http://www.artisansw.com, last
visited July 2004.

[27] D. ROSENBERG, K. SCOTT, Use case driven ob-
ject modeling with UML: A practical approach,
Addison-Wesley, 1999.

28] Object Management Group. Unified modeling lan-
] g P g
guage: superstructure. Version 2.0. OMG Adopted
Specification ptc/03-08-02. www .uml . org, 2004.

Received: January, 2004
Revised: July, 2004
Accepted: July, 2004

Contact address:

Mohamed T. Kimour

Laboratoire de Recherche en Informatique
Université de Annaba

BP 12

23000, Annaba

Algérie

e-mail: kimour@yahoo.com

Djamel Meslati

Laboratoire de Recherche en Informatique
Université de Annaba

BP 12

23000, Annaba

Algérie

e-mail: meslati_djamel@yahoo.com

An Approach to Building Object Models with UML in Embedded Systems 235

MOHAMED T. KIMOUR is an assistant professor at the Department of
Computer Science at the University of Annaba. His research inter-
ests include requirements engineering and model-based development
of embedded real-time systems.

DJAMEL MESLATI is the head of the research group on evolution and
reuse of software systems. His research interests include software de-
velopment and evolution methodologies, and separation of concerns
models.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

