Journal of Computing and Information Technology - CIT 12, 2004, 3, 237-250

237

Structural Join Algorithm for
Sequential Regular Path Expressions

Oleksandr Logvynovskiy! and Kevin Lii?

ISCISM, South Bank University, London, UK

2School of Business and Management, Brunel University, Uxbridge, UK

XML queries employ regular path expressions to find
structural patterns within XML documents. The opera-
tion of structural join is a crucial part of XML query
processing. Existing approaches reduce complex join
expressions to several binary structural joins. It implies
generation of superfluous intermediate data. In this
paper, we propose a new structural join algorithm, called
sequence join algorithm, for sequential regular path
expressions. It exploits information about position of
the elements in the document to skip generation of the
redundant intermediate lists. The algorithm performs
merge of several input lists of nodes in one pass. Experi-
mental results prove the algorithm is better than multiple
binary join algorithm for queries of both small and large
cardinality.

Keywords: XML document, regular path expression,
structural join algorithm.

1. Introduction

Extensible Markup Language (XML) is now
used as the de facto means to handle semistruc-
tured data over the Web [1]. Semistructured
data arises when a data source does not im-
pose a rigid structure and/or data is combined
from several heterogeneous sources. The power
of XML is in its ability to describe hierarchical
structures and extend the dictionary of available
data types.

XML documents are described in terms of ele-
ments [8]. The elements are enfolded by rags,
which represent their type names. Each element
is either treated as a container for some other
elements or associated with an atomic value
(such as text, multimedia content, etc.). Struc-
tural relationships among the elements are de-
fined by nesting (containment) of the elements
or by referencing.

A query over the XML data specifies structural
patterns among the elements in the document.
The result of such a query is intended to lo-
cate all occurrences of these patterns within
the XML document or database. Such pat-
terns are also known as regular path expressions
(RPEs) and constitute the basis for the state-
ments of XML query languages, for instance
XQuery [11], Lorel [5], XML-QL [7], XPath [9],
etc. For example, the XQuery path expression
//project/task/resource/name specifies the
retrieval of the names of all resources assigned
to the tasks of the project.

The specified structural patterns are often com-
plex themselves, but can be decomposed into
a set of basic structural relationships between
elements. Finding matches of the query against
the database can then be considered as match-
ing each of the basic structural relationships
against the data and following merging of the
sub-results. This process is performed by means
of a structural join operation [2]. The ope-
ration essentially depends on finding ances-
tor-descendant and parent-child relationships
among nodes of the semistructured database.
The effective implementation of the structural
join operation over ancestor-descendant (parent-
child) pattern is the crucial part of XML query
processing.

The recently proposed join algorithms take ad-
vantage of the element numbering to compute
ancestor-descendant (parent-child) relationship.
The element numbering allows uniquely iden-
tify the element position within the XML data-
base. The position of the element can be de-
scribed by 4-tuple (DocID, StartPos, EndPos,
Level). DocID is the identifier of the XML

238

Structural Join Algorithm for Sequential Regular Path Expressions

document within the XML database; Start-
Pos, EndPos are the text positions of the first
and the last character of the element within the
document respectively, and Level is the nesting
depth of the element within the document [6].
The alternative representations of the element
position preserve the DocID and Level com-
ponents of the tuple, but differ in the way to
define the start and end positions within the
document. For example, there is another repre-
sentation (DocID, PrePos, PostPos, Level),
which uses the position numbers assigned to
the element by pre-order (PrePos) and post-
order (PostPos) traversals of the document tree
accordingly. The other approaches are equiva-
lent to the latter one and can be transformed by
appropriate mapping.

The key idea underlying the implementation
of the existing join algorithms is the decom-
position of the original query path expression
into a set of simple (binary) path expressions.
Each binary expression produces an interme-
diate join result, which is used on the subse-
quent stage. For example, the path expres-
sion //project/task/resource/name can be
decomposed to project/task and resource/
name. Then the intermediate results are joined
together. At each of the stages, the join al-
gorithm uses element numbering to check the
ancestor-descendant or parent-child relation be-
tween the nodes.

The XISS system [3] introduces three join algo-
rithms: element-attribute (EA-join), element-
element (EE-join), and Kleene-closure (KC-
join). The element-attribute algorithm joins
two intermediate results from subexpressions,
which are a list of elements and a list of at-
tributes. The element-element algorithm joins
two lists of elements. The principal differ-
ence between these algorithms is that the lat-
ter one checks ancestor-descendant relation-
ship between each pair of the input lists while
the former one tests parent-child relationship.
The Kleene-closure algorithms iteratively use
element-element algorithm to compute closure
of the expression. It repeatedly applies EE-join
to the result from the previous stage of iteration.
Both EA-join and EE-join algorithms have a
loop over one input list nested into a loop over
another list and, therefore, have time complex-
ity O(|E1| - |E2|), which is quadratic in the size
of the input lists. As KC-join depends upon
EE-join, it also has quadratic time complexity.

Structural join algorithms proposed by Al-Kha-
lifa et al. [2] exploit the advantage of ele-
ment numbering to decrease the time of pro-
cessing. The tree-merge join algorithm is an
extension of relational equality merge join per-
formed on sorted inputs. It was adopted to deal
with ancestor-descendant or parent-child tests.
The time complexity of the tree-merge join is
non-quadratic O(|E;| + |E>|), but may include
multiple passes over the same input set of de-
scendant nodes. To avoid this problem, the sec-
ond of the proposed algorithms, stack-tree join
algorithm, utilises stack of nodes and has time
complexity O(|E|| + |E2|)/B), where B is the
blocking factor.

The main drawback of the considered algo-
rithms is their limitation to merge only two in-
put lists per join. It means that for a sequential
regular path expression there may be generated
several intermediate results. For example, pro-
cessing the path expression //project/task/
resource/name results in two joins (project/
task) and (resource/name). Then, yet an-
other join is performed to merge intermediate
results. This requires additional time to create
and scan intermediate data: two intermediate
tables will be created and scanned. This factor
becomes even more important when processing
big semistructured databases. Our approach al-
lows to reduce intermediate processing by si-
multaneous merging of several inputs. For the
given example, it will require only one join ope-
ration instead of three.

Bruno et al. have extended the structural join al-
gorithm to avoid multiple binary joins and fur-
ther merge of intermediate results [10]. The
introduced twig join algorithm uses stacks to
store elements of the paths successfully tested
against a query. Although this is similar to our
approach, we exploit numbering, not only for
elimination of unnecessary ancestor-descendant
checks within the current element subtree, but
for fast skipping of entire subtrees.

The main goal of the paper is to introduce an ef-
fective structural join algorithm for sequential
regular path expressions, which takes several
sets of single-element subexpressions as an in-
put. It exploits the element numbering and per-
forms merging of all the input sets in one pass.
We present experimental results performed by
our prototype system over several real and syn-
thetic datasets. They show that the proposed
algorithm can process regular path expressions
faster than other algorithms.

Structural Join Algorithm for Sequential Regular Path Expressions

239

The rest of the paper is organised as follows.
Section 2 presents background material (data
model, query expressions, structural relation-
ships and element numbering). In section 3 we
develop the structural join algorithm for regular
path expressions. Section 4 addresses experi-
mental aspect and evaluates the proposed algo-
rithm. Section 5 summarises results of the paper
and discusses future work.

2. Background and Overview

The XML data can be modelled either as a tree
or as a graph. The tree model reflects the logi-
cal structure of an XML document. Nodes of
the tree correspond to the elements of the docu-
ment. Nesting of the elements is reflected by the
parent-child relationships among nodes. Some
of the tree nodes have as their values references
to other elements (usually in form of IDREF
attributes). The graph model extends the tree
by treating such reference nodes as arcs [5]. Al-
though the graph model is more powerful than
the tree, it challenges more problems, like cycle-
references.

As this paper concentrates on handling ancestor-
descendant relationship, we use a tree data mo-
del. The tree model can be used both to store

<project>
<name>XML paper</name>
<task>
<description>
explore an idea
</description>
</task>
<task
name =
<task
name = ‘reviewing’>
<resource>
<name>referee</name>
</resource>
</task>
</task>
<task
name =
</task>
</project>

‘writing’>

‘publishing’>

a)

name

“XML paper’ CT K %

and query semistructured data [2], [3]. Within
the XML database, the order numbers of the
tree node, along with its depth level and doc-
ument number, are used to find the structural
relationships between these nodes. This section
describes the tree data model and introduces
basic structural relationships used for querying
XML documents. Then it explains the node po-
sition notion and its usage for finding structural
relationships between the nodes.

2.1. Data Model

An XML database is a forest of trees corre-
sponding to each document within the database.
An XML document is a rooted, ordered, la-
belled tree. Each element of the document
forms a node of the tree labelled with the ele-
ment type (tag name) and value. The edges
of the tree stand for parent-child (containment)
relationship between the elements. All sub-
elements nested within the element appear in the
tree as the child nodes directly connected with
the edges to a parent node. Attributes of the
element are represented similarly to nested sub-
elements and form additional nodes in the tree,
emanating from their associated parent nodes.

project

task task task

descnptuon name task name
exp ore WH@?Q K ubhshmg”
:dea name resource
rev:ewmg ?
name
‘referee”

Fig. 1. Example XML data (a) and its corresponding tree (b).

240

Structural Join Algorithm for Sequential Regular Path Expressions

An example of the XML data is shown in Fig-
ure 1(a) and its tree representation is shown in
Figure 1(b).

The XML data tree has an implicit order of its
nodes. The total order of all the nodes in the
tree is obtained by a pre-order tree traversal (a
depth-first, left-to-right traversal of the nodes).
The nodes order of our example tree is shown in
Figure 1(b) within the circles of corresponding
nodes.

We exploit the order of the nodes in the data
tree to compute position of the element in the
database. A position of the element is a 4-tuple
(DocID, StartInt, EndInt, Level). DocID
is the identifier of the XML document within
the XML database, StartInt is the tree order
number of the node corresponding to the ele-
ment, EndPos is the tree order number of the
last descendant of the node, and Level is the
nesting depth of the node within the tree. For
the given example in Figure 2, the positions of
the nodes are shown within rectangles. Con-
sider, for instance, the node “resource”. Its first
position number stands for document identifier
and equals to 1. The second and third posi-
tion numbers represent the interval of the node
[9,10]: order number of the node itself (9) and
order number of the last descendant (10), node
“name/"referee"”. The last position number
shows depth of the node within the tree and
equals to 4. The position numbers of all other
nodes are computed in the analogous way.

axis name description

ancestor ancestors of the node
attribute attributes of the node
child children of the node
descendant descendants of the node
following all nodes after the node
parent parent of the node
preceding all nodes before the node
self node itself

project
name task task task
(13412 (115,101, 2
XML paper”
descrlptlon name task name
(144,39 [661,3 (117,10,3 [1012,12],3)
“explore wrftmg “publishing”
an name resource
idea 1,884 (109,10, 4
“reviewing
" name
‘referee”

Fig. 2. Positions of the elements.

The position of the node is used to determine
structural relationships between any two nodes
of the tree.

2.2. Structural Relationships

Relationships between a node and the other
nodes in the tree are not limited by implicit
containment (parent-child) relationship and de-
scribed by axes of the node [11]. An axis is a
relation that parts the set of all the tree nodes
into subsets with respect to the current node.
The most commonly used axes of the node are
summarised in Figure 3 (a).

ancestor

B

descendant

preceding

following

b)

Fig. 3. Axes of the path-expressions.

Structural Join Algorithm for Sequential Regular Path Expressions

241

The ancestor, descendant, following, preceding,
and self axes partition document nodes into non-
overlapped subsets, as it is shown in Figure 3
(b). The child axis is the subset of the descen-
dant axis and the parent axis is the subset of the
ancestor axis.

A regular path expression or location path of
a target node B from source node A (hereafter
referred to as path) is a sequence of nodes in the
tree, from the node A to the node B. Relation-
ships between intermediate nodes in the path
are described by axes. A location path is called
absolute path if its source node is the root of the
tree, otherwise it is called relative path.

Regular path expressions are an essential com-
ponent of semistructured data query languages
(e.g. XQuery [11]), which utilise variety of
structural relationships between the nodes.

2.3. Handling Structural Relationships
by Means of Position

Position is an important characteristic of ele-
ments within XML documents and it is intensely
used for indexing and querying semistructured
data.

The position of the node n; is denoted as (D, [S;,
E;], L;), where D; is the identifier of the XML
document within the XML database; S; is the
tree order number of the node n;, E; is the tree
order number of the last descendant of the node
n;, and L; is the nesting depth of the node n;
within the tree. The pair of the node order §;
and order of its last descendant E; constitutes an

interval of descendant order numbers [S;, E;].
Hereafter, we will refer to the interval [S;, E;] as
the node interval.

Ancestor-descendant relationship. Given a
tree node n; and its position (D;, [S;, E;], L;)and
a tree node nj and its position (D;, [S;, Ej|, L;),
the node »; 1s an ancestor of the node n; (and
node 7; is a descendant of the node n;) iff:

a) D; = Dj, i.e. both nodes belong to the same
document;

b) [S;, Ei| C [S;, Ej], the node interval of the
ancestor includes the interval of the descen-
dant,ie. §; < Sjand E; > E;.

Parent-child relationship. Given a tree node
n; and its position (D;, [S;, E;], L;) and a tree
node n; and its position (Dj, [S;, Ej], L;), the
node n; is a parent of the node n; (and node n;
is a child of the node n;) iff:

a) D; = Dj, i.e. both nodes belong to the same
document;

b) [S;, Ei| C [S;, Ej], the node interval of the
ancestor includes the interval of the descen-
dant,i.e. S; < Sjand E; > Ej;

c¢) L; = L; — 1, the descendant is nested imme-
diately within the ancestor node.

For instance, consider the nodes “project” and
“resource” in Figure 2. Their document ID
numbers coincide and equal to 1. The node
interval of “project” includes the interval of the
“resource”, [1,12] C [9,10], so the “project” is
the ancestor of the “resource”. The difference
between their levels exceeds 1, so they are not
bounded by parent-child relationship.

relation Document Node interval Level
ancestor D; =D S, E)C[S), E] L <L
attribute D; = D; S, E]D[S;, E] Li=L+1
child Di=D; [Sy E]D[S;, E] Li=L+1
descendant D; = D; S, E)D[S), E] Li>L
following D; = D; [Si, Ei]l > [S), Ej|

parent D; = D; S, EJC[S;, E] Li=L—1
preceding Di=D; [Sh E] <5, E]

self Di=D; [S, E|=1S) Ej] L=

Table 1. Summary of position constraints to represent structural relationships.

242

Structural Join Algorithm for Sequential Regular Path Expressions

The other structural relationships between any
two nodes can be verified by analogy. They are
summarised in Table 1.

In Figure 2, the node “description” precedes
the node “resource” as they have the same
document number and the interval of the “de-
scription” occurs before the interval of the “re-
source”, [4,4] < [9,10].

The operational cost to check any of the struc-
tural relationship includes document ID, node
interval, and level comparison. The costs are
equal for any type of relationship, but the an-
cestor-descendant and parent-child are the ones
mostly used.

3. Algorithm

In this section, we develop new structural join
algorithm, in order to efficiently process regular
path expression queries. It exploits the concept
of node position to merge several input lists in
one pass. As it processes several binary struc-
tural relationships that form a sequence, we call
it sequence join algorithm.

At the outset, we consider two ways of result
representation (a tree-like form and tuples) and
show the algorithm in action on a detailed ex-
ample. Then we present algorithm itself and
conclude with analytical estimation of its per-
formance.

3.1. Representation of the Results

The results of the XML query can be repre-
sented either as a tree or as a list of tuples. Con-
sider the following query example //project//
task//name performed over the data shown in
Figure 2. The query retrieves the names of the
elements assigned to all tasks within the project
(including names of the tasks themselves). The
tree and the tuples of the result are shown in
Figure 4 a) and b) respectively.

These two forms are equivalent and can be trans-
formed from one to another. The tree repre-
sentation can be obtained from the tuples by
eliminating duplicates of the nodes.

The tree view is more compact and suitable for
the data that originally has tree-like structure.
Nevertheless, it may fit in applications that need

ot [1,12}—{15,10

projec

1,12 project task name

task [5,10 [8.8]
5,10 .

519 name project task name
([1.12}—{15.10—{10.10]
project task name
[7,10 [8.8]
project task name
[7.10)—(10.10]

.12 hame project task name

112

a) b)

12

=
N
N
=
-y
N
N
=
N
-
N

Fig. 4. Forms of query results: tree and tuple.

results in a table-like form. In such a case, tuple
representation is more appropriate. Final de-
cision on which of the two forms is preferable
should be made for each particular case.

Hereafter, we use tree representation of the re-
sults, adding, if necessary, some comments on
the tuple form.

3.2. Example

For the purpose of clarity, we demonstrate the
algorithm on an example, before introducing it
more formally.

Consider the query expression //project//
task//name applied to the data in Figure 2. The
simplified data tree is presented in Figure 5 a).
The document number and level components
of the node position are omitted. The document
number is equal for all the nodes of the exam-
ple and level is not important as no parent-child
relationship is tested through the query process-
ing. The input lists of the example are shown
in Figure 5 b). The list A; represents the re-
sult of select operation and contains all nodes
“project” selected from the database. Analo-
gously, the lists A; and A3 include nodes “task”
and “name” respectively.

The steps of the algorithm for the chosen ex-
ample are shown in Figure 6. The current node
of each list is marked by arrow. For each input
list, the algorithm keeps value of a current node
range of the list. The range points to candidate
nodes to be added to the result list. It coincides
with the node interval component of the node
position, but covers only the nodes from the

Structural Join Algorithm for Sequential Regular Path Expressions

243

project
[.12) hame
2,2
task

A A; As
project task name
[[1.12] | [3.4] [2,2]
[5,10] [6,6]
[7,10] [8,8]
[11,12] [10,10]
[12,12]
b)

Fig. 5. Example of data tree and input lists.

same list. For example, the interval of the node
“task [5,10]” in Figure 5 a) is equal to [5,10]
and includes six nodes 5 to 10. The range of the
same node is equal to [5,10] too, but includes
only two “task” nodes 5 and 7. In Figure 6,
the range is shown in grey colour. Addition-
ally, each of the lists is visually extended with
empty cells to show precedence of the nodes in
the source tree. For example, the range [2,2] of
the list A3 in Figure 6 a) is preceding the range

[3,4] of the list A and is part of (included into)
the range [1,12] of the list A;.

The basic idea of the algorithm is to synchrono-
usly read input lists to find first match of the
ranges. Once the matching ranges are found,
the current nodes within ranges are put into the
result list. If the ranges in two adjacent lists
do not match, then one of the ranges changes,
based on the result of their comparison. The
propagation of changes goes from the last list

A A A
A A, A; A, Az » [1 121]\/ . .
» [1,12] » [1.12] : 7]
R » [22] 2,2] 4] :
[3.4] » [34 :
[5,10] [{5713] = [5,10]v
[6,6] ®» [6,6] ™| [6,6]v
[7,10] [7,10] [7,10]
[8,8] [8,8] 8.8]
[10,10] [10,10] [10,10]
[11,12] [11,12] [11,12]
[12,12] [12,12] [12,12]
a) c)
A A, A; A As 1 1A21]‘/ As As
[1,12)v [1,12]v ’ 22
2.2] 2.2]] :
3.4] [3.4] (5,101
15,101V [5,101v' ‘ %
16,61V 6,61V’ 07 :
» 7,10 [7.10 [7.10] a7
» [8,8]Y (8,81 01017
[10,10] ® [10,10]v - '
[11,12] » [11,12] [11.12]
[12,12] [12,12] » [12,12]v
» » » »
d) f)

Fig. 6. Step-by-step example.

244

Structural Join Algorithm for Sequential Regular Path Expressions

back to first. The algorithm stops when no more
matches of the ranges can be found.

For the given example, the algorithm starts from
the state in Figure 6 a). The ranges are initially
assigned to the first nodes of the lists. The
comparison of the ranges goes from the list of
ancestors to the list of descendants (left-to-right
in the figure). The range [3,4] of the descendant
list A, satisfies the range [1,12] of the ancestor
list A1, but the range [2,2] of the descendant list
Az is not included into the range [3,4] of the
ancestor list Ay. As the descendant range [2,2]
precedes the ancestor range [3,4], the algorithm
reads a new node from the list A3 and changes
range to [6,0], as it is shown in Figure 6 b).

Now the descendant range [6,6] follows the
ancestor range [3,4]. Therefore, the latter is
changed to [5,10] (Figure 6 c). At this point, all
descendant ranges satisfy the ancestor ranges
and their nodes (up to current) are sent to the
output list. The nodes added to the output are
marked with the tick mark. The algorithm reads
new nodes from the lists and changes ranges
(Figure 6 d). For the list A3, the range is
changed from [6,6] to [8,8]. The range of the
list A, is not changed as the new node [7,10]
is still within the current range. The range of
the list A; is not changed in spite the fact that
it has reached the end of the list. This is due
to the assumption that propagation of changes
goes from the last list to the first. The nodes
[8,8] and [7,10] are sent to the output.

By analogy to the previous step, the algorithm
continues reading the lists (Figure 6 e). For
the list A3, the range is changed from [8,8] to
[10,10]. The range [5,10] of the list A, is not
changed as the range of the list A3 still satisfies
it and no propagation is necessary. The node
[10,10] is added to the result.

The next read operation of the node [12,12] of
the list A3 forces to change the range of the list
A, from [5,10] to [11,12] (Figure 6 f). Nodes
[11,12] and [12,12] are appended to the output
list. Any further reading from the list A3 fails
and the algorithm stops.

3.3. Algorithm of Sequence Join

The text of the algorithm is presented in Figure
7. The steps of finding match of the ranges and

appending result nodes are presented as separate
sub-routines.

The algorithm generates the result list in the
tree representation. To generate tuple represen-
tation the append subroutine should iterate over
the range nodes producing each possible com-
bination.

The algorithm uses recursive subroutines. The
depth of the recursion is equal the number of
input lists which, in its turn, is related the depth
of the input XML data tree. The depth of the
existing XML databases does not exceed 20 and
recursion will not cause consumption of mem-
Ory resources.

3.4. Time Cost Estimation

In this section we estimate the execution time
difference between the proposed join algorithm
and the pair-wise join algorithm. As there are
multiple ways to break and n-way join into n
binary joins, and the decision is chosen at run
time, we assume that it is performed sequen-
tially and all intermediate results are materi-
alised.

Consider regular path expressiona;/ay /. .. /an.
Both approaches require n selection operators
resulting in lists of nodes Ay, Ay, ..., A, re-
spectively. The execution plans for pair-wise
join and sequence join are shown in Figure 8 a)
and b) accordingly. We consider the total time
to perform join operation as the sum of time
needed to read input lists (o) and time neces-
sary to create output list (7): o + 7.

For pair-wise approach, the task of matching
complex query is reduced to performing of one
join operation for each binary structural rela-
tionship in query expression. For n input lists
of nodes, it causes creation of % intermediate
lists of nodes. The next step is to perform bi-
nary join operation over the intermediate lists.
It is applied until it results in the only one, result
list. Thus, the whole number of intermediate list
(including the result list) is 5+ 5 +. . .+ 507 =
(1-w

- W) n = n— 1. In Figure 8 a) these lists
are denoted as A, y1,..., Ay,—1. If 7; is the
time required to create list i, then the total time

necessary for creation of intermediate lists is
2n—1

E T;.

n+1

Structural Join Algorithm for Sequential Regular Path Expressions

245

sequence-join ({4}, R)

Find-range-match (i, R)

Input: A4y,..,Ay are lists of nodes
sorted by order
Output: Az is the result list of
merged nodes
for (i=0; i<N; i++) set-range (A4;);
while (find-range-match (0, {0, «})=0K)
append-nodes (Ay, Ay.node);
change-range (Ay) ;
end while

append-nodes (i, NODE)

if (i20)
while (A;.node « NODE)
or (A;.node «» NODE)
if (A;.node «» NODE)
append-nodes (i-1, A;.node);
append A;.node to Ag;
end
A;.next-node;
if (i = N) break;
lend while

change-range (i)

if (A;.range == A;.node) A;.next-
node;
A;.range = A;.node;

Input: i is the index of current
input list from the set {Apy, .., Ay}.
R is the range of nodes.

Output: returns one of the values:
OK to indicate that the range is
found
OUT if the end of the list is
reached
SKIP to indicate that no match has
been found for the range R

while ()

if (A;.node = NULL) return OUT;

if (R »« A;.node)
A;.next-node;//next child range
change-range (1) ;

Lend

if (R » A;.node)
A;.next-node;//next sibling
change-range (1) ;

Lend

if (R « A;.node) return SKIP;

if (R «» A;.node)
if (i = N) return OK;
case find-range-match (i+1,
A;.range)
OK: return OK;
OUT: return OUT;
SKIP: //next sibling
change-range (1) ;
end
Llend
lend while

A«B
A« B
A»«B
A»B

is-preceding-of
is-ancestor-of
is-descendant-of

is-following-of

Fig. 7. Sequence join algorithm.

The total number of list used as an inputincludes

all the lists except the result one: n + 5 + 7 +

2
. -|-2(10gnﬁ = (2 — W) n = 2(”—1) IfGi
is the time required to read list i, then the time
2n—2
necessary for reading of input listsis > 0.
1

The total time necessary to perform multiple
pair-wise join is

2n—2 2n—1
Z o; + Z Ti (1)
1 n+1

where 7; and o; is the time required to create

246

Structural Join Algorithm for Sequential Regular Path Expressions

Fig. 8. Execution plans of multiple pair-wise join and sequence join.

and read list i respectively.

The sequence join reads input lists Ay, ..., A,
and creates the only one, result list Ay, _1, as
shown in Figure 8 b). The total time necessary
to perform sequence join is

n
> 0i + Tt (2)
1

where o; is the time required to read input lists,
and 71y, is the time needed to create result
table.

The time difference between the two approaches
is
2n—2 2n—1
LTS
1

n+1

n
- E O; + Ton—1
1

(3)
where 7; and o; is the time required to create
and read list i respectively.

The parameters 7; and o; depend on the capacity
of the list i. If the number of nodes in each list

5(g+T) |
4(o+T) |
“g’ 3(0+1) |
2(0+1) |
(o+1) |

is comparable, then we can assume the times to
create and read list are equal: Vi, i =1, ..., n;
7; = 7. The time cost functions of the algo-
rithms (1) and (2), as well as their difference
(3), can be represented in a simpler form:

the time cost of multiple pair-wise join is

(20 + 7)(n—1), (1a)

the time cost of sequence join is

(on+ 1), (2a)

and their difference is

(o +17)(n—2), (3a)
where 7 and o is an average time required to cre-
ate an output and read an input list respectively,
n is the number of original input lists.

The algorithm time cost graphs are presented in
Figure 9.

The graph shows that the sequence join algo-
rithm does better over the queries with 3 and
more basic structural relationships.

20+1)(n—1)
pair-wise join

(on+T1)
sequence join

1 12 '3

|4 \5 16

number of lists

Fig. 9. Time cost difference between the pair-wise join and sequence join.

Structural Join Algorithm for Sequential Regular Path Expressions

247

4. Experimental Evaluation

We have conducted several experiments eva-
luating the proposed algorithm. The tests in-
volve both real-world and synthetic datasets.
This section describes experimental testbed and
presents the results of these experiments.

4.1. Experimental Setup

We implemented a prototype system for stor-
ing, indexing, and querying XML data. The
screenshot of the prototype window is shown in
Figure 10. Source XML files are parsed using
the Xerces-C++ XML parser [17]. The data
is parsed without validation option. The proto-
type exploits Berkeley DB [18] to store parsed
data and index files. The B-tree indexing faci-
lity of the package is used to build index files.
The system provides a simple query interface
for regular path expressions. The interface is
XQuery-compliant [11] and directly performs
query processing. The overall system is imple-
mented in C++.

All experiments were performed under Win-
dows 2000 workstation software running on a

ThingX - [F30000.txdb]
File Edit WYiew Window Help

Dell Dimension 8100 computer. The station
has 256Mb of memory, 20Gb hard disk, and 1.4
GHz Pentium IV processor.

4. 2. Data Sets

We have chosen several data sets, both real-
world (DBLP [12], Shakespeare [13], HAM-
RADIO [14], Mondial [15]), and synthetic
(Xmark [16]). The characteristics of these
sources of data are summarised in Table 2. The
columns Files and Size of the Source data sec-
tion show the number of the source XML doc-
uments within the dataset and disk space occu-
pied by them respectively. The field Size of
the Database section refers to the size of the
database obtained after parsing and storing the
source documents. The Element column rep-
resents the number of different element type
names. It includes all the attribute names. The
Occurrences field indicates the total number of
element occurrences within the document and
includes all attribute occurrences as well. The
column Values show the total number of dif-
ferent values of the elements. The field Depth
show the maximum level of element nesting.

=10l x|
=181 x|

Event log: I 13: DB file opened: "#:\<{ML data’\ThingxhF30000tmp104359-26500. tegry"

Querv

i Text: [FMDataBase/FCCAmRadio | [=47

J

web

|C1ﬂ"\
8]

- Records: 100001
- Time: 14,2405

[| COueryviewer::viewstatus not implemente:

QuUery

IFMDataBase/FCCAmMRadiofLicenseMo

Records: 1259 | Time: 0,050

i

<1=[1:1993703] &
<2=[2:21]6
<4 [4:4] 2
z2»[42:61]8
<4 [44:44] 26
<2= [82:101] 8
<4 [B4:84] 43
<2=[122:141]8
<4z [124:124] 60
<2 [162:181]8

Fig. 10. Prototype system window.

248

Structural Join Algorithm for Sequential Regular Path Expressions

XML Source data Database data
documents Type Files ‘ Size (Mb) || Size (Mb) | Elements | Occurrences | Values | Depth
DBLP books real 1407 0.59 1.27 23 11456 6 846 4
DBLP conf real 150 885 58.93 125.83 29 1321593 567 197 4
DBLP journals real 99 475 37.19 86.76 23 973 602 374 196 5
HAM-RADIO real 882 360.96 730.93 23 14 118079 | 2913795 4
Shakespeare real 37 7.53 21.51 28 179 696 112766 6
Mondial real 1 2.04 5.46 49 85220 36929 6
Xmark (100Mb) | synth. 1 113.79 324.98 77 2048 193 416710 12
Xmark (1Gb) synth. 1 1164.79 2 052.00 77 20532805 | 2043572 12

Table 2. Datasets characteristics.

A brief description of the data sets content is the
following:

DBLP contains computer science bibliogra-
phy information [12]. It consists of many
small files, each representing a single record
about publication (conference or journal pa-
per, book).

Shakespeare dataset is the XML version of
the plays by Shakespeare [13].

HAM-RADIO is the FCC Ham Radio data-
base of the US Government’s Federal Com-
munications Commission [14].

Mondial is freely available geographic data-
base [15].

Xmark datasets are synthetic and were gen-
erated by xmlgen generator [16]. The data

models an auction website with large num-
ber of element and attribute types and high
nesting of elements. We have selected stan-
dard (100Mb) and large (1Gb) documents.

4.3. Queries and Performance Metrics

In order to study the tradeoffs of the join algo-
rithm we carried out a series of comparative ex-
periments. Query processing time was used as
a major performance metric. The experiments
evaluate the effect of several parameters on the
performance of query processing: the size of
the source XML files, number of elements and
values, depth of the parsed tree, as well as the
size of the query answer, number of elements

—— 1 /person/profile/interest/category

Q7

Xmark (.1Gb) 309 588 97 176 31%

| XQuery expression Dataset Records I}gf
Input Output %

QI | /book/isbn DBLP books 705 621 | 88% 2
Q2 | /inproceedings/cite DBLP conf 214837 | 102519 | 48% 2
Q3 | /article/author DBLP journals | 245748 | 245216 | 99% 2
Q4 | /FMDataBase/FCCAmRadio/Address/City | HAM-RADIO | 2115906 | 2115906 | 100% 3
Q5 | /PLAY/ACT/SPEECH/LINE Shakespeare 139 083 138 620 99% 4
Q6 | /country/province/city /name Mondial 26 032 6616 | 25% 4

4

4

Q8

Xmark (1Gb) 1723670 | 977 538 57%

Table 3. Description and parameters of the test queries.

Structural Join Algorithm for Sequential Regular Path Expressions

249

selected. The queries and their characteristics
are given in Table 3.

We chose several test queries based on the
length of the regular path expression and num-
ber of matches. The column Input Records
indicates the total number of processed records.
The Output and “%” columns show the num-
ber of records that match the query expression
and their relative number against the processed
records respectively. The RPE length repre-
sents the length of the query expression path. If
all single element subexpressions of the query
expression are different, then this number coin-
cides with the number of select operations for
the query, i.e. the number of input lists.

4.4. Experimental Results

The elapsed query time for the test datasets
are shown in Figure 11. The cases with the
query path length of more than 2 (queries Q4—
Q8) demonstrate improved performance of the
sequence algorithm against the pair-wise algo-
rithm.

The sequence join performs less effectively than
the pair-wise join for the queries with the path
length of 2 (queries Q1-Q3). This fact is in ac-
cordance with our time cost estimation shown
in Figure 9.

For queries Q5-Q7, results are presented for
different ways to break an n-way join into mul-
tiple binary joins. Sequential join algorithm has

4.0 DOsequence join

— 4.0
E multiple pair-wise join
35 35
3.0 3.0
25 25
z 0
o 20 o
£ ‘g 2.0
15 T s
1.0 1.0
0.5 05
Q1 Q2 Q3 Q5

| -l |

shown good performance against each of them.
All the intermediate results for binary joins are
materialised.

5. Conclusion

The structural join operation is intensely ex-
ploited for finding structural patterns within an
XML database. Thus, an effective implementa-
tion of the structural join operation is essential
for effective XML query processing.

We have developed the sequence join algorithm
for regular path expressions. In contrast to pair-
wise approach, the algorithm takes several lists
of elements as an input. It exploits the posi-
tion of the element within XML document to
compute structural relationships between ele-
ments fast. The algorithm checks structural
pattern matching through all the input lists at
once. Due to this, it does not generate nonex-
istent sub-results and hence eliminates creation
of excessive intermediate data. Experimental
evaluation of the algorithm shows that sequence
join performs better than multiple binary joins
for the queries with the expression length of 3 or
more. It is true for the synthetic and real-world
data queries of both small and large cardinality.

As a direction for future activities, it is worth
to consider sequence joins in context of graph-
based queries. This area poses many interesting

120.0

100.0

O sequence join
E multiple pair-wise join
mn

60.0

time (s)

40.0

20.0

Q6 Q7 Q4 Q8

Fig. 11. Query performance comparison.

250

Structural Join Algorithm for Sequential Regular Path Expressions

problems, like handling graph-cycles (that are
usually represented in the tree model as values
of the link nodes). Another issue is process-
ing the whole variety of XPath axes rather than
ancestor-descendant or parent-child only.

6. Acknowledgements

This project is partly supported by ORS award.
The authors would like to thank Jonathan Smith
for his helpful comments on this paper.

References

[1] D. Suciu, On Database Theory and XML, in SIG-
MOD record, v.30, n.3, September 2001.

[2] S. AL-KHALIFA, H.V. JAGADISH, N. KOUDAS,
J.M. PATEL, D. SRIVASTAVA, AND Y. WU, Struc-
tural Joins: A Primitive for Efficient XML Query
Pattern Matching, Proceedings of the IEEE In-
ternational Conference on Database Engineering
(ICDE), 2002.

[3] Q. L1, B. MOON, INDEXING AND QUERYING XML
DATA FOR REGULAR PATH EXPRESSIONS, Proceed-
ings of the 27th VLDB Conference, Roma, Italy,
2001.

[4] L. KRISHNA, J. HARITSA, SphinX: Schema-
conscious XML Indexing, Technical report TR-
2001-04, DSL/SERC.

[5] S. ABITEBOUL, D. QUASS, J. MCHUGH, J. WIDOM,
AND J. WIENER, The Lorel query language for
semistructured data, International Journal on Digi-
tal Libraries, 1(1), pp. 68—88, April 1997.

[6] C.ZHANG, J. F. NAUGHTON, D. J. DEWITT, Q. LUO,
G. M. LoHMAN, On Supporting Containment
Queries in Relational Database Management Sys-
tems, Proceedings of the ACM SIGMOD Conference
on Management Data, 2001.

[7] A. DEUTSCH, M. FERNANDEZ, D. FLORESCU,
A. LEVY, D. Suciu, A query language for XML,
Computer Networks, 31(11-16), pp. 1155-1169,
Amsterdam, Netherlands, 1999.

[8] T. BrAY, J. PaoLl, C.M. SPERBERG-MCQUEEN,
E. MALER, Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommendation,
Technical report REC-XML-20001006. Available
fromhttp://www.w3.org/TR/REC-xml, October
2000.

[9] J. CLARK, S. DEROSE,
(XPath) 1.0. W3C Recommendation, Tech-
nical report REC-xpath-19991116. Available
from http://www.w3.org/TR/xpath, November
1999.

XML Path Language

[10] N.BRUNO, N.KouDAS, D.SRIVASTAVA, Holistic
Twig Joins: Optimal XML Pattern Matching, Pro-
ceedings of the ACM SIGMOD’02, 2002.

[11] S. BoAG, D. CHAMBERLIN, M.F. FERNANDEZ,
D. FLORESCU, J. ROBIE, J. SIMEON, M. STE-
FANESCU, XQuery 1.0: An XML Query Lan-
guage. W3C working draft, Technical report WD-
xquery-20020430, April 2002. Available from
http://wuw.w3.org/TR/xquery/.

[12] DBLP. Computer Science Bibliography, Available
from http://www.informatik.uni-trier.de
/~ley/db/

[13] J. BOSAK, The Plays of Shakespeare in XML.
Available from http://xml.coverpages.org
/bosakShakespeare200.html.

[14] HAM-RADIO. Available from ftp://ftp.
ictcompress.com/pub/xmltestfiles/.

[15] W. MAY, Information Extraction and Integration
with Florid: The Mondial Case Study, Techni-
cal report 131, Universitidt Freiburg, Institut fiir
Informatik, 1999. Available from http://www.
informatik.uni-freiburg.de/~may/
Mondial/.

[16] A. ScHMIDT, F. WAAS, M. KERSTEN, D. FLO-
RESCU, I. MANOLESCU, M. J. CAREY, R. BUSSE,
The XML benchmark project, Technical Report
INS-RO103, CWI, April 2001. Available from
http://monetdb.cwi.nl/xml/Benchmark/
benchmark.html.

[17] The Apache XML project. Xerces-C++ is a
validating XML parser. Available from http:
//xml.apache.org/xerces-c/.

[18] Berkley BD. Available from
http://www.sleepycat.com/.

Received: January, 2004
Accepted: June, 2004

Contact address:

Oleksandr Logvynovskiy

SCISM

South Bank University

103 Borough Rd.

SE1 0AA London, UK

e-mail: A.Logvynovskiy@sbu.ac.uk

Kevin Lii

School of Business and Management
Brunel University

Uxbridge UB8 3PH, UK

e-mail: Kevin.Lu@brunel.ac.uk

ALEXANDER A. LOGVYNOVSKIY MSc in Computing and BSc in Com-
puting. Currently, he is a PhD research student at London South Bank
University, UK. His project is about semi-structured data management
and mining.

KEVIN J. LU PhD in Computer Science and BSc in Computer Science.
He is a lecturer at Brunel University, UK. His current research areas
of interests are data management, multi-agent system, intelligent data
processing and enterprise information systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

