
Journal of Computing and Information Technology - CIT 13, 2005, 3, 195–210 195

Facilitating Configurability by
Separation of Concerns in the
Source Code

Zoltan Fazekas
Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia

Producing configurations of a software product, e.g.
designed for different operating systems, using different
database technologies or serving different groups of
users is undoubtedly a time-consuming and error-prone
process. In this paper we propose an approach facili-
tating the configurability of software using separation of
concerns, which helps to eliminate unwanted parts of the
source code whenever the corresponding requirements
change without manual intervention and without the
risk of corrupting the program. A prototype imple-
mentation provided with the approach demonstrates its
powerfulness in the practice.

Keywords: concerns, separation of concerns, configura-
tion construction, software configuration management.

1. Introduction

Everybody who has ever dealt with program-
ming has probably faced the following situa-
tion. You implement the code strictly according
to the specification, however, the requirements
change in the meantime, e.g. the customer does
not want some features any more. In addition
to the changed requirements, some features of
the program are not complete yet, i.e. they also
have to be excluded from the configuration to
be delivered. You try to remove the correspond-
ing parts of the program, i.e. components as
well as client code using them, however you
recognize in the middle, that the configuration
does not work properly because parts of the pro-
gram that should remain in place depend on the
parts you removed. In the end, after remov-
ing all unnecessary parts of the program, you
get a working configuration that corresponds to
the current requirements. However, you have

invested plenty of time and energy to accom-
plish this. In this paper we propose an approach
to reconfiguring programs, i.e. eliminating un-
wanted parts from them, whenever the corre-
sponding requirements change, without manual
coding effort and without the risk of corrupting
the program.

A software product can exist in several config-
urations, each having a slightly different source
code. Each of these configurations can sup-
port different operating systems, run on differ-
ent application servers, use different database
or communication technologies, provide differ-
ent user interfaces, support different �human�
languages, have different regional specificities
or different capabilities for different kinds of
users and so on and so forth. Configurations
are assembled from versions of configuration
items, i.e. components, of the software prod-
uct. Each of the configuration items contributes
to some characteristics of the software prod-
uct, e.g. implements some capabilities and runs
on some operating system. The goal of assem-
bling configurations is to select all configuration
items that contribute to the required characteris-
tics, but have nothing to do with the other ones.
Unfortunately, characteristics that a particular
version of a configuration item contributes to
are not always transparent. This makes assem-
bling of configurations a non-trivial task. A
heuristic approach to selecting the right com-
ponents and their versions to be included in the
configuration have been presented in �11�. An-
other popular model had been introduced earlier
in the work on Adele �15�. Furthermore, ver-
sions of configuration items usually correspond

196 Facilitating Configurability by Separation of Concerns in the Source Code

to more than one characteristic, each of which
can be required or just undesired in a config-
uration. On the other hand, several character-
istics are scattered along multiple configuration
items. Consequently, it is not always possible to
combine arbitrary characteristics in a configu-
ration, since there might be configuration items
that contribute to required, as well as undesired
ones.

To come around these shortcomings, we ex-
plored if existing approaches to separation of
concerns could be used to separate different
characteristics of versions of configuration items
from each other on the level of source code. The
principle of separation of concerns is essential
for any scientific discipline �1� since it helps to
manage complexity and handle changes, which
facilitates parallel work. The common basic
concept of these approaches, the concern, refers
to “those interests which pertain to the sys-
tem’s development, its operation or any other
aspects that are critical or otherwise important
to one or more stakeholders.” �3� Indeed, ex-
isting approaches to separation of concerns fa-
cilitate the maintainability of software. Some
of them, like AspectJ �4� or Composition Filters
�9�, let the programmer modularize otherwise
dispersed crosscutting concerns in order to ease
their maintenance and compose them later into
the execution flow of programs. Some of them,
like Hyper�J �5�, even enable the coexistence
of multiple decompositions of a program along
different kinds of concerns. A useful appli-
cation of these approaches in change manage-
ment — representation of changes as aspects —
is discussed in �2�. However, since the use of
these approaches requires a fundamental shift
in the way of designing and implementing sys-
tems and introduces a further level of complex-
ity �see e.g. the notion of scattering in �24��,
they are not always practicable. Another group
of approaches provides dynamic view capabil-
ities similar to those in Desert �17� and Sheets
�16� to visualize concerns in source code �re-
ferred to as visual separation of concerns in
�24�� instead of isolating concerns from each
other. Its representatives, including Stellation
�24� �formerly Coven �6��, Software Plans �14�,
CME �21�, FEAT �19�, SNIAFL �20�, JQuery
�22�, the Aspect Browser �18� and the Aspect
Mining Tool �13� enable the programmer to de-
marcate manually discovered concerns in the
source code, or localize concerns, using static
and dynamic code analysis techniques and not

�least� visualize them, e.g. by highlighting, or
view them as virtual modules to ease their com-
prehension and maintenance. A good overview
of further research results facilitating the loca-
tion of concerns in the source code using dif-
ferent techniques is presented in �13�, �20� and
�22�. The main difference between these ap-
proaches and ours is that while they focus on
facilitating discovery of concerns in the code
�i.e. defining of their scope� with a precision
not enabling their removal from the program in
a non-invasive way, our approach emphasizes
precise �i.e. token-level� concern location en-
abling seamless concern removal for the price
of more manual effort invested into concern lo-
cation. Despite numerous advantages, all ap-
proaches and implementations we investigated
showed to be insufficient for constructing con-
figurations based on concerns. The majority
of them was not able to represent concerns in
the source code with a precision enabling their
non-invasive removal without substantial man-
ual effort necessary for fixing the resulting code.
In addition, all of these approaches considered
units of the program, such as member functions
and methods, as the smallest unit of concerns.
In particular cases, however, concerns mani-
fest themselves only in a few important tokens
such as the name of a class to be instantiated
in order to initialize the corresponding database
driver before its first use. Therefore, we for-
mulated the hypothesis, that it would be neces-
sary for the seamless construction of concern-
based configurations to track concerns in the
source code on the granularity level of single
tokens. So unlike other approaches, ours estab-
lished the association of concerns with elements
of the program on various levels of granularity,
from larger modules through smaller units down
to single tokens. Under some circumstances
the association of concerns to tokens could be
automated using custom search rules and pat-
terns. Additionally, tokens could be associated
to concerns, representing units of the program
they were part of, programmers who worked
on them as well as timestamps of their creation
and removal without manual effort. The rest
of the concerns needed to be associated with
portions of the source code manually. As next,
we defined configuration items as a collection
of tokens contributing to the same set of con-
cerns �except the creation and removal time of
tokens�.

Facilitating Configurability by Separation of Concerns in the Source Code 197

Versions �revisions� of configuration items valid
at a particular point in time could be computed
dynamically, based on the concerns associated
with them, necessarily including their creation
and removal time instead of being stored ex-
plicitly. We hoped to be able to assemble ar-
bitrary configurations, i.e. the ones having ar-
bitrary combinations of characteristics. This
way, however, we soon recognized, that their
syntactical correctness could only be assured if
the source code had been written in a particular
form and had been associated with concerns in
a way fulfilling certain requirements. We also
found out, that for particular combinations of
concerns it did not make sense to be associated
with the same token or to be present in the same
configuration. Such cases required that seman-
tic consistency of configurations be expressed
in form of relationships between concerns. To
use the strengths of other approaches to separa-
tion of concerns too, we designed our approach
in such a way that it could be used on top of
any existing programming paradigm including
e.g. aspect-oriented programming �12�. In or-
der to prove that our theory worked, we cre-
ated a prototype implementation of it integrated
into the Eclipse development environment. To
mention at least one of the shortcomings too,
our approach, just like many other approaches,
still lacks a rational solution to the problem of
logically handling a large amount of concerns
arising already in relatively simple systems.

The rest of this paper is structured as follows.
The second section introduces our approach in
more details and provides some practical ex-
amples. The third section consists of a brief
overview of the prototype implementation. Fi-
nally, in section fourwe draw some conclusions.

2. Concern-Based Configurations

“Reconfiguring the software modules compris-
ing a system to add or to delete a feature typi-
cally requires substantial effort. This lack of
flexibility increases the costs of building vari-
ants of a system, amongst other problems.”
�8� To come around this, we propose a new
approach to configuration management, using
lightweight separation of concerns. Why light-
weight? Our approach relies on conventional
programming paradigms and extends them by

keeping track of concerns in the source code
as it evolves �10� and generating its arbitrary
configurations based on these concerns. Since
portions of the source code contributing to dif-
ferent concerns are not isolated explicitly, we do
not need to bother about their composition. De-
spite all insufficiencies of its implementations in
Hyper�J, CME and Stellation �Coven� with re-
spect to concern-based configuration construc-
tion, the main principle of multidimensional
separation of concerns proved to be helpful to
our problem. Its adaptation enabled us to or-
ganize changes in the program, i.e. insertions
and removals of tokens, into versions along any
concerns even different from the conventional
ones such as the computing unit and the time
of change. Here, changes were performed on
a particular computing unit in a single step, i.e.
between checking out the unit from and check-
ing it in back into the source code management
system, and got bundled in a version. Contrary
to other known approaches to separation of con-
cerns, we assign source code to concerns on the
level of single tokens. Thereby, modifications
performed within the extent of a token such as
the deletion of characters do not affect already
existing assignments of the token to concerns.

There is a variety of concerns appropriate for
characterizing software configurations. Some
of them are generic, i.e. suitable for any kind
of software, others are specific to a particular
domain or technology. Some typical kinds of
concerns that proved to be suitable are:

— structural program elements such as pack-
ages, classes, modules, functions, units etc.,
depending on the programming language be-
ing used

— business-relevant information such as cus-
tomer, address, account, stock, vehicle, gas
pressure etc., depending on the problem do-
main

— business processes, services or functions such
as creation of the balance of an account,
computation of the optimal gas pressure, se-
lection of customers for a marketing cam-
paign, simulation of chemical reactions etc.,
depending on the problem domain

— technical data such as transaction context,
session data, control bit, timestamp, delete
flag, checksum, token, digital signature etc.

198 Facilitating Configurability by Separation of Concerns in the Source Code

— technical computations such as opening a
session, committing a transaction, reading a
database record, cleaning up a buffer, trans-
forming text to a number, sorting records,
authorizing access etc.

— any kinds of requirements such as use cases
and features, e.g. user login, password au-
thentication, 7�24 availability etc.

— decisions concerning programming para-
digms, languages and techniques, design
patterns, architectural metaphors, coding
conventions, communication protocols, com-
putation methods and algorithms and many
more

— compatibility aspects such as operating sys-
tem, software and hardware platforms, tech-
nologies and products being integrated

— owners and authors of the code, such as a
person, group, project team or an organiza-
tion

— customers, user groups and user profiles,
source code licensing policies, etc.

— software delivery items, such as products,
product suites, their versions, major and mi-
nor releases, updates, patches, etc.

— validity and expiration of source code, i.e.
creation and removal time, time of promo-
tion in terms of the development process,e.g.
from the coding stage to the testing stage,
etc.

These are all concerns of especial interest for
configuration construction. A more general
purpose model of concern classification can be
found in Cosmos �23�.

We illustrate the usage of our approach on the
example of the Customer Registration System
�CRS�, a simple Java application used for reg-
istering the contact addresses of customers or-
dering products through a hotline.

Let us assume that CRS is used by several re-
seller companies, so it is delivered in different
configurations. For instance, one configuration
has been designed for companies operating in-
ternationally, but only outside the US �see Fig.
2.�, so customer data incorporate the country,
but not the state. Companies having customers
in the US too required another configuration
considering the state as part of the customer
address �see Fig. 1.�.

Fig. 1. CRS configuration for US companies
operating internationally.

Fig. 2. CRS configuration for non-US companies
operating internationally.

Some other companies operating in one coun-
try outside the US only preferred a configura-
tion of CRS considering neither the country nor
the state as part of the customer address. To
model their needs we first defined the concerns
used for representing different requirements of
these customers. We defined a concern cov-
ering the requirements of companies operating
in US and called it simply “ US-specific” �the
underscore is a naming convention used to dis-
tinguish custom concerns from automatically
recognized ones more easily�, and another one
compromising the requirements resulting from
international operation called “ international”.
By combining only these two concerns it was
possible to generate four meaningful configura-
tions: one for companies operating in the US
only, one for companies operating world-wide,
one for companies having customers in a sin-
gle non-US country only and, last but not least,
companies with customers in multiple coun-
tries except the US. However, as we mentioned

Facilitating Configurability by Separation of Concerns in the Source Code 199

above, concerns like the kind of customers being
considered are only one of the aspects that can
contribute to the variety of configuration. Some
others that we do not address in this example
for the sake of simplicity could be e.g. differ-
ent operating systems or underlying database
technologies.

The architecture of CRS follows the MVC de-
sign pattern. The model.CustomerModel class
implements the model which represents a cus-
tomer contacting the call center. Each cus-
tomer has, besides the attributes name, address,
etc., a unique identifier �id�, which gets gen-
erated when the customer object is created.
The list of already reserved ids is stored in
the static variable reservedIds. The customers’
data are persisted in files using the object se-
rialization mechanism of Java. In order to ac-
celerate searching for them, customers are in-
dexed according to their attributes. The static
variables names, streets, etc. contain index ta-
bles mapping the values of the corresponding
attributes to ids of customers. We will need
these details about the model.CustomerModel
class later, for reasoning about the implementa-
tion of the above introduced concerns. Program
elements such as the address and the state at-
tributes involved in the implementation of those
concerns occur also in many other classes of the
CRS application, e.g. the view.AppletView class
which implements the user interface displaying
a customer in a Java applet and the control-
ler.AbstractController, controller.Registration-
Controller and controller.ViewControllerclasses
coordinating the interaction between the view
and the model. These issues will not be further
discussed in this paper.

2.1. Meaningfulness of Configurations

If we claim to allow for non-invasive elimina-
tion of concerns from the source code, we must
reason about the consequences such operations
could have on the semantics of the program.
Since concerns are usually not completely in-
dependent, i.e. some of them contradict or are
prerequisites of each other, it is not appropriate
to eliminate any of them. Semantic dependen-
cies �also called relationships or predicates� be-
tween concerns have to be taken into account
during the assignment of tokens to concerns, as

well as during the selection of concerns to be in-
cluded in a configuration. Otherwise the result-
ing assignment or configuration could become
inconsistent or produce undesired behaviour at
run-time. For instance, if there is a concern
assigned to portions of the source code imple-
menting trace messages about events occurring
during the execution of the program, and an-
other concern assigned to portions of the source
code dealing with the optimisation of the per-
formance of the application, they should neither
be assigned to the same token nor be included in
the same configuration, since tracking and per-
formance are contradicting requirements. An-
other example could be a concern assigned to
portions of the source code dealing with persis-
tence, and another concern assigned to portions
of the source code producing and handling ex-
ceptions. The persistence concern cannot exist
without exception handling mechanisms, there-
fore each configuration that contains the persis-
tence concern should also include the exception
handling concern. Originally, we introduced
concern relationships to prevent that one of the
concerns requiring each other get excluded from
a configuration and the others not, or that contra-
dicting concerns get assigned to the same token
or get included in the same configuration. How-
ever, concern relationships can also be used to
automate the assignment of concerns to tokens.
For instance, a concern relationship can make
sure that each token belonging to a program
unit �e.g. a method like getName()� gets au-
tomatically �i.e. without manual intervention�
assigned to the concerns related to this program
unit �e.g. the name concern�. In the rest of this
section, we introduce some common types of
concern relationships:

— Assumption is an explicit relationship. It
is set by the programmer between two con-
cerns, if the inclusion of the first concern in
a configuration of the program assumes �re-
quires� the inclusion of the second concern
in the configuration.

— Implication is an explicit relationship. It is
set by the programmer between two con-
cerns, if the assignment of any token to the
first concern implies the assignment of the
same token to the second concern.

— Partition is an explicit relationship. It is set
by the programmer between at least two con-

200 Facilitating Configurability by Separation of Concerns in the Source Code

cerns, if any token can be assigned to at most
one of these concerns.

Some of the concern relationships, such as the
assumption and implication, are transitive and
can be derived automatically, based on already
existing ones.

In this simplemodel we have only included con-
cern relationships that proved to be particularly
useful for our purposes. More general purpose
models of concern relationships are discussed
in �21� and �23�.

2.2. Assignment of Tokens to Concerns

Manual assignment is the most common way
of assigning portions of the source code to con-
cerns. Code segments assigned to a particu-
lar concern are sometimes whole units like the
method shown in Fig. 3., whole statements like
the declarations in Fig. 4. or just a few tokens
like in Fig. 5.

Fig. 3. A whole method assigned to the “ US-specific”
concern.

In the example depicted in Fig. 4., the high-
lighted tokens are assigned to the concern called
“ US-specific”, because both the state attribute
of the customer, as well as the states index table,
are required only in the variant desired for the
US-market.

The assignment of tokens to concerns is best
performed on the fly as tokens are being created;
otherwise the quality of assignments might get
negatively affected.

Manual identification and assignment of con-
cerns to tokens consumes costly time of the
programmer. To come around this, we use au-
tomatic recognition of concerns in the source

Fig. 4. The highlighted variable declarations are assigned to the “ US-specific” concern.

Fig. 5. The highlighted tokens are assigned to the “ US-specific” concern.

Facilitating Configurability by Separation of Concerns in the Source Code 201

code. Unfortunately, this is only partially im-
plemented in the current version of our proto-
type.

The pattern-matching approach is similar to the
mechanism used by other approaches to sep-
aration of concerns for specifying join points.
It matches code segments according to regu-
lar expressions specified by the programmer.
Parts of the regular expressions associated with
some concerns cause the corresponding parts of
the matched code segments to be assigned to
those concerns. For instance, all references to a
particular attribute like state can be found eas-
ily, using a trivial regular expression consisting
of its exact name. Using wildcards, all other
program elements, associated with the state at-
tribute like the states variable, can be found.
The validity of concerns recognized this way is
always temporary: they have to be re-evaluated
each time the source code goes through changes.

The relationship-based approach uses existing
concern relationships for deriving new assign-
ments of tokens to concerns. For instance, if
there is an abstract “ customer management”
concern grouping everything that has to do with
customers and a more concrete “ US-specific”
concern related by an implication relationship,
whenever the programmer assigns a token to
the “ US-specific” concern, it gets automati-
cally assigned to the “ customer management”
concern as well. Concerns derived this way are
only valid as long as the manual assignment of
concerns does not change. Then, however, they
have to be re-evaluated.

Some concerns can get recognized and assigned
to tokens automatically, without the use of rules.
Such concerns are usually derived from facts
and events provided by the development envi-
ronment. For example, they can represent pro-
gram unit�s� the token belongs to, the program-
mer the token was created, modified or removed
by, as well as the token’s creation and removal
time.

2.3. Construction of Configurations

We define configuration items as virtual col-
lections of tokens associated with the same set
of concerns. Configuration items defined this
way are actually completely independent of the
physical storage of the program. The whole

source code can just be stored in the traditional
way, in files representing units or even in one
piece containing all tokens that have ever been
created togetherwith information about their as-
sociation with concerns. The programmer gets
to see only a subset of the source code consist-
ing of tokens not yet removed. Although we
defined the creation and removal time of tokens
as concerns too, they are not used to character-
ize configuration items. Instead, they are used
for the construction of versions �revisions� of
configuration items. The version of a configu-
ration item �which consists of tokens valid at the
given point time�, is computed dynamically by
filtering out tokens from the configuration item
that were created after the given point in time
or were removed before it. Consequently, each
token is by default part of exactly one configura-
tion item, but can possibly belong to its multiple
versions. Using this approach, we overcome re-
dundant storage of source code in versions.

According to the definition above, for each set
of concerns there is exactly one configuration
item containing all tokens that contribute to all
of the concerns contained in that set, but no
others. Given a set of desired concerns, the
corresponding configuration comprises all con-
figuration items characterized by some subset
of this set. This configuration, however, does
not know the versions of the configuration items
it contains. Just after it has been complemented
by a point in time, configuration items contained
in the configuration can be replaced by their
version valid at the given point in time. If no
other point in time is specified, the configura-
tion corresponding to the current point in time
is constructed.

It is important to assign those tokens to a con-
cern, that can be removed later from the source
code in a non-invasive way. Assigning more
or assigning less tokens than necessary would
probably corrupt the syntax of the program. As
you will see later, it is not easy to meet this
requirement. One important element helping
to achieve it is the possibility to specify custom
rules determining which configuration items to-
kens are to be included in. By default tokens
get included only in the configuration item rep-
resenting the combination of concerns assigned
to them. They can, however, be included in any
other configuration item that represents a sub-
set of these concerns instead, or in addition to,

202 Facilitating Configurability by Separation of Concerns in the Source Code

the default one. For each single token the pro-
grammer can define arbitrary number of subsets
of concerns already assigned to it, which de-
termine the configuration items the token gets
included in.

There are some special cases that have to be
treated very carefully by the programmer. A
typical example is presented in Fig. 6. The
first of the last two formal parameters, state, is
assigned to the “ US-specific” concern, the sec-
ond one, country, to the “ international” con-
cern. To assure that the comma between them
gets removed properly, it has to be assigned
to both concerns and it should be included
both in the configuration item characterized by
both concerns as well as in the configuration
item characterized by the “ international” con-
cern only. Let us assume, that there would
be an “ intercity” concern assigned to city, the
third formal parameter from the end. Then the
comma between the city and the state formal
parameters would have to be assigned both to
the ” intercity” concern as well as to the ” US-
specific” concern, but it would only have to be
included in the configuration item characterized
by both concerns.

This problem can be generalized in the fol-
lowing way. Let us consider a list of n ele-
ments E1, E2, � � �, En separated by n � 1 com-
mas, one between each two adjacent elements
Ei and Ei�1. Let us define the function f :
Bn � Bn�1 which computes for each n-tuple
P � �P1� P2� � � �� Pn� where Pi � B and Pi � 1
if and only if Ei is present in a given sublist of
the original list of elements, an �n � 1�-tuple
� f1�P�� f2�P�� � � �� fn�1�P�� where fi�P� � B
and fi�P� � 1 if and only if the i-th sepa-
rator �i.e. the comma between Ei and Ei�1�

Fig. 7. The truth table of the presence function f
for four parameters.

should be present in the concerned sublist. We
call the function f �P� the presence function of
the list of n elements and its i-th component
fi�P� the presence function of the i-th sepa-
rator. A possible truth table of the function
f for a four-element list is shown in Fig. 7.
It is important to notice, that for the 4-tuples
�0� 1� 0� 1�, �1� 0� 0� 1�, �1� 0� 1� 0�, �1� 0� 1� 1�
and �1� 1� 0� 1�we have more alternatives to de-
fine the value of the function f . For instance, for
�1� 0� 0� 1� we could choose between �1� 0� 0�,
�0� 1� 0� and �0� 0� 1�. We decided to follow the
principle that each two elements that were not
adjacent in the original list should be separated
in the sublist by the comma directly preced-

Fig. 6. Tokens assigned to the “ US-specific” �light-colored background� and the “ international” �dark-colored
background� concerns and to both of them �last comma in the parameter list�.

Facilitating Configurability by Separation of Concerns in the Source Code 203

ing the second one, so we chose �0� 0� 1�. We
use Carnaugh maps shown in Fig. 8., Fig. 9.
and Fig. 10. to find the appropriate normal dis-

Fig. 8. The Carnaugh map of the presence function f of
the first separator in a list of four elements.

Fig. 9. The Carnaugh map of the presence function f of
the second separator in a list of four elements.

Fig. 10. The Carnaugh map of the presence function f
of the third separator in a list of four elements.

junctive forms of the components f1�P�, f2�P�
and f3�P�. It is easy to discover that f1�P� �
P1 � P2, f2�P� � �P1 � P3� � �P2 � P3� and
f3�P� � �P1�P4���P2�P4���P3�P4�. Gen-
eralized for n elements this means, that fi�P� �
�P1 � Pi�1� � �P2 � Pi�1� � � � � � �Pi � Pi�1�
for each 1 � i � n� 1.

It is often necessary to revise the assignment
of tokens to concerns if their adjacency goes
through changes. Fig. 6. shows a good ex-
ample for this situation too. If a further formal
parameter were appended to the end of the pa-
rameter list, the concerns assigned to the comma
between the state and the country formal param-
eters would have to be revised.

After this modification to the code, the comma
would only have to be included in the config-
uration item characterized by both the “ US-
specific” concern and the “ international” con-
cern, but not in the configuration item character-
ized by the “ international” concern only any
more.

Our experiments have shown that it is less time-
consuming and error-prone to choose which
concerns should be missing from the config-
uration than to specify all concerns that should
be included in it. Therefore, we propose a con-
figuration specification strategy that by default
includes all concerns into the configuration and
lets the programmer select which ones should
be omitted.

To stay with the example from Fig. 6, the con-
figuration of the source code not including the
“ US-specific” concern, but including all other
concerns would look like as shown in Fig. 11.

The same source code segment of another con-
figuration that contains neither the“ US-specific”
nor the “ international” concern would look
like as shown in Fig. 12.

Fig. 11. The sample code segment without the “ US-specific” concern.

204 Facilitating Configurability by Separation of Concerns in the Source Code

Fig. 12. The sample code segment without the “ US-specific” and “ international” concerns.

2.4. Assuring Removability of Concerns

In order to apply the above described practices
properly, sometimes it is necessary to take some
constraints on writing the source code and as-
signing it to concerns into account. In general,
programs written in almost any high-level pro-
gramming language like C, C�� or Java, con-
sist of some kinds of modules �e.g. functions or
objects and their member functions�, which in
turn consist of declarations and statements com-
plemented by reserved symbols and words for
the sake of syntactical correctness. Although
this intuitive model of programs is quite ab-
stract, it provides a helpful basis for the follow-
ing consideration. Declarations and statements
consist of expressions and reserved symbols and
words like � representing value assignment or
; representing the separator between statements
in the Java language. Expressions consist of
one or more constants and identifiers referenc-
ing declared elements of the program �e.g. vari-
ables, functions� combined by reserved symbols
and words �e.g. operators like �, -, *�. Let us
take a deeper look into what happens when por-
tions of the program get omitted because of the
exclusion of a concern from the configuration.
In general, statements can be removed without
the risk of violating the syntax of the program.
On the other hand, reserved symbols and words
normally cannot be removed safely, unless the
whole statement containing them is removed.
Removal of declarations is possible, but more
difficult than the removal of statements, because
it requires the removal of all references to the de-
clared elements from the program too. The lat-
ter one can actually be classified as removal of
an expression. Removal of an expression from
the program usually results in syntax violation,
because e.g. an argument of an operation will
be missing. However, there is a workaround
for this problem: a special way of construct-
ing expressions. Expressions always belong to

an abstract data type like boolean, integer or
object. For each abstract data type, there is a
constant value, which all variables of the given
type contain right after their creation, before
they are assigned a value. For integers this is
0, for real numbers 0.0 and for objects null.
Let us call this constant value the default ele-
ment of the abstract data type. There are also
operations defined on each abstract data type,
like � for integer and real numbers or & for
booleans representing the logical AND opera-
tor. For the abstract data types and operators
originating from mathematics like integers and
the � operator, there is a neutral value, in this
case 0. In some cases the programmer has even
multiple choices of the operation and the neu-
tral element, e.g. for integers it could be the �
operation with 0 as the neutral element or the *
operation �multiplication� and 1 as the neutral
element. Expressions that are subject to re-
moval, i.e. are assigned to some concern, have
to be extended in the following way. If E is such
an expression and E is of the abstract data type
for which there is an operation, e.g. �, with a
neutral element, e.g. 0, E should be replaced by
E� 0. If E is assigned to some concerns, the �
operator has to be assigned to those concerns as
well. If E belongs to an abstract data type with-
out an operation having a neutral element, the
statement S�E� containing the expression E has
to be modified as follows. If d is the default ele-
ment of the abstract data type of E, the statement
S�d� has to be inserted in front of the statement
S�E� in a syntactically correct way. Instead of
assigning E within the statement S�E� to some
concerns, the whole statement S�E� has to be
assigned to those concerns. The programmer
could, of course, use any other constant value
corresponding to the given abstract data type
instead of the default element d. As a result of
excluding the concerns assigned to the expres-
sion E from a configuration, E will be replaced

Facilitating Configurability by Separation of Concerns in the Source Code 205

by the value 0 or the value d, depending on the
abstract data type of E. Of course, the rest of
the program relying on the value of E has to
be robust enough to be able to process 0 and d
instead of the original value of the expression
of E.

Fig. 13. Return expression gets extended by
a neutral element.

An example illustrating the necessary adaption
of expressions described above is shown in Fig.
13. Let us suppose the �, getName, �and� to-
kens are assigned to some concern. If this con-
cern were not included in the configuration, the
above named tokens would disappear causing
the source code to be syntactically incorrect.
On the other hand, it is not possible to assign
the whole return statement to the concern, be-
cause that would result in syntactically incorrect
source code if the concern were missing from
the configuration. In order to come around this

problem, the returned expression has to be ex-
tended by the neutral element, in this case “ ”,
using the operation �.

3. Prototype Implementation

The described approach will only be accepted
by programmers if it is supported by easy-to-use
tools closely integrated with the programming
environment the programmers are used to. In
order to prove the practical applicability of our
approach, we implemented a prototype exten-
sion of an existing software development envi-
ronment �see Fig. 14.� that supports the most
concepts introduced in the preceding sections.

The software development environment we ex-
tended is Eclipse 3, an open integrated devel-
opment environment. Using the plug-in facility
we added new views for highlighting tokens in
the source code, assigning concerns to them,
selecting concerns to be included into the con-
figuration, generating configuration items cor-
responding to the specified selection of con-
cerns and, last but not least, defining semantic

Fig. 14. The prototype implementation integrated into the Eclipse development environment.

206 Facilitating Configurability by Separation of Concerns in the Source Code

Fig. 15. The Java Source Editor highlighting the token pointed to by the cursor.

dependencies between concerns. In the rest of
this chapter we introduce these and other useful
features in more detail.

3.1. The Java Source Editor

The Java Source Editor �see Fig. 15.� is an
editor for Java source code based on the editor
provided by Eclipse.

It uses the JavaCC 3.2 parser compiler and a
grammar, which currently supports version 1.1
of the Java language specification, for recogniz-
ing tokens in the source code. The positions of
tokens are traced also when the source code be-
comes unparsable. After restoring the parsabil-
ity of the source code, it gets reparsed and the
old tokens get matched against the newly parsed
ones according to their positions.

3.2. The Concern View

The Concern View serves, among the rest, for
displaying concerns �see Fig. 16.�. This view
contains a list of custom concerns defined by
the programmer, as well as of automatically
recognized concerns representing units of the
program, i.e. packages, classes and methods.

When defining new concerns, the programmer
has to give the new concern a name, which has
to be unique among all concerns. The Con-
cern View is also used for assigning concerns
to tokens. If a single token is highlighted in
the Java Source Editor, the concerns assigned
to it will be shown with checked state in the

Fig. 16. The Concern View displaying custom as well as
automatically recognized concerns.

Concern View. The concern representing the
unit of the finest possible granularity, the source
code which includes the token, gets automati-
cally assigned to each token. This assignment
cannot be modified by the programmer. Other
concerns can be assigned to the highlighted to-
ken by the programmer setting them in checked
state. If one or more tokens are selected in the
Java Source Editor, the tokens that are assigned
to all of them are displayed with checked state
in the Concern View. If the user sets some other
concerns’ state to be checked, they get assigned
to all tokens that fall into the selected range.

If no dependency is selected in the Concern
Dependency View �see 3.4. The Concern De-
pendency View� and no combination is selected
in the Concern Combination View �see 3.3. The

Facilitating Configurability by Separation of Concerns in the Source Code 207

Fig. 17. Highlighting portions of the source code corresponding to concerns selected in the Concern View �on the
left� in the Java Source Editor �on the right�.

Concern Combinaton View�, but at least one
concern is selected in the Concern View, the
tokens assigned to the selected concerns are
highlighted in the Java Source Editor using the
colour representing the corresponding concern
�see Fig. 17.�.

The Concern View also shows which concerns
are currently included in the configuration of
the program. If the arrow icon of a concern is
directed to the right, the concern is included in
the configuration, otherwise not. The program-
mer can turn any concern on or off by double-
clicking on it. Then the source code in the Java
Source Editor gets modified automatically to
show only the tokens that are part of the corre-
sponding configuration.

3.3. The Concern Combination View

Tokens become part of the configuration if there
is any combination of concerns they are as-
signed to, that is fully included in the selected
configuration. One combination of concerns

gets defined for each token automatically. This
contains all concerns the token is assigned to.

If there is no other combination defined by the
programmer for this token, it will be included in
the selected configuration only if all concerns
it is assigned to are included in the configura-
tion. However, the programmer can define arbi-
trary combinations of concerns — subsets of the
concerns assigned to the token — additionally
to the default combination. The programmer
has to select some of the concerns in the Con-
cern View, which are assigned to the currently
highlighted token. Then he has to choose to cre-
ate a new concern combination in the Concern
Combination View �see Fig. 18.�. The created
combination will then contain all concerns the
programmer has selected in the Concern View.
If the programmer selects an existing combina-
tion in the Concern Combination View, the con-
cerns it contains will be selected in the Concern
View. The programmer can include or exclude
concerns from this combination by modifying
the selection in theConcern View. Furthermore,
the programmer can choose to create a copy of
the selected combination and modify it after-

208 Facilitating Configurability by Separation of Concerns in the Source Code

Fig. 18. The Concern Combination View shows for each token the combinations of concerns that determine
which configuration items it will be included in.

Fig. 19. The Concern Dependency View shows semantic relationships between concerns.

wards. The programmer can remove concern
combinations, except the automatically defined
one.

3.4. The Concern Dependency View

The Concern Dependency View �see Fig. 19.�
displays concern dependencies, also called se-
mantic concern relationships. Some of these
dependencies such as the orthogonality between
concerns representing units of the program can
be recognized automatically. This is added to
the Concern Dependency View automatically
and updated each time the set of units of the
program change.

The programmer can define further custom de-
pendencies by selecting one or more concerns
in the Concern View and choosing the depen-
dency type from a drop-down list. If the number
of selected concerns is not required by the type
of the dependency, the Concern Dependency
View displays the dependency as invalid. If the
programmer selects a dependency in the Con-
cern Dependency View, the concerns constitut-
ing the dependency get selected in the Concern
View. The programmer can then add or remove
concerns from the selected dependency by mod-
ifying the selection of concerns in the Concern
View. The programmer can remove any depen-
dencies from the Concern Dependency View,
but the automatically generated ones.

4. Conclusion

We have proposed an approach to automated
generation of software configurations based on
separation of concerns. As our experiments
have shown, existing approaches to separation
of concerns are not suitable for generating such
configurations, because they consider concerns
in the source code on a too coarse level of granu-
larity. Our approach associates each token of the
source code to concerns used as the basis for de-
scribing software configurations. Furthermore,
we have proposed to use semantic relationships
between concerns to assure semantic correct-
ness �i.e. meaningfulness� of the generated con-
figurations. We have developed a method for
writing source code in a way that enables us to
re-configure it flexibly without the risk of cor-
rupting its syntax. Our approach has, among
others, the advantage, that it lets the program-
mer work with conventional code �e.g. object-
oriented in Java� and does not introduce any
new paradigm. With appropriate tool support
like the one we developed for demonstration
purposes, the overhead produced by activities
necessary for designing and maintaining con-
cerns is not significantly higher than the time
needed to document the source code. In return,
the time needed to �re�produce an arbitrary con-
figuration of the source code that is compilable,

Facilitating Configurability by Separation of Concerns in the Source Code 209

works correctly and does exactly what is speci-
fied in the means of concerns, takes only a few
seconds.

Acknowledgement

The work reported here was partially supported
by Slovak Scientific Agency, project No. VG
1�0162�03.

References

�1� E.W. DIJKSTRA, A Discipline of Programming,
Prentice-Hall, 1976.

�2� P. DOLOG, V. VRANIC, M. BIELIKOVA, Representing
Change by Aspect, ACM SIGPLAN Notices, 36�1�,
December 2001.

�3� IEEE Std 1471-2000, IEEE Recommended Practice
for Architectural Description of Software-Intensive
Systems. IEEE, 2000.

�4� J. IRWIN, G. KICZALES, J. LAMPING, J.-M. LO-
INGTIER, C.V. LOPES, C. MAEDA, A. MENDHEKAR,
Aspect-Oriented Programming, Published in Pro-
ceedings of the European Conference on Object-
Oriented Programming �ECOOP�, Springer Verlag,
1997.

�5� P. TARR, H. OSSHER, Hyper/JTM User and Installa-
tion Manual, IBM Corporation, 2000.

�6� M.C. CHU-CARROLL, Separation of Concerns in
Software Configuration Management, ICSE 2001
Workshop on Advanced Separation of Concerns,
March 2001.

�7� E.L.A. BANIASSAD, G.C. MURPHY, C. SCHWAN-
NINGER, Determining the “Why” of Concerns, Pub-
lished in Proceedings for Advanced Separation of
Concerns Workshop at the 23rd International Con-
ference on SoftwareEngineering in Toronto, Canada
2001.

�8� A. LAI, G.C. MURPHY, M.P. ROBILLARD, R.J.
WALKER, Separating Features in Source Code: An
Exploratory Study, IEEE 0-7695-1050-7/01, 2001.

�9� M. AKSIT, L. BERGMANS, Solving the Evolution
Problems Using Composition Filters, ECOOP 2001
tutorial, TRESE e-tutorial series 02, TRESE Group,
University of Twente 2001.

�10� Z. FAZEKAS, Concern-Based Software Evolution,
Published in Proceedings of SOFSEM 2005, 31st
AnnualConference onCurrent Trends in Theory and
Practice of Informatics, January 2005, Liptovsky
Jan, Slovak Republic.

�11� M. BIELIKOVA, P. NAVRAT, Approach to improving
software configuration management, In Fifth Euro-
pean Conference on Software Quality, pp. 374–383,
Trinity College, Dublin, Ireland, 1996.

�12� K. CZARNECKI, U.W. EISENECKER, Generative
Programming: Methods, Tools and Applica-
tions, Addison-Wesley, Boston �2000�, Chapter 7:
Aspect-Oriented Decomposition and Composition,
pp. 189–250.

�13� J. HANNEMANN, G. KICZALES, Overcoming the
Prevalent Decomposition in Legacy Code, Work-
shop on Advanced Separation of Concerns (Pro-
ceedings), International Conference on Software
Engineering, May 2001, Toronto, Canada.

�14� D. COPPIT, B. COX, Software Plans for Separa-
tion of Concerns, Proceedings of the Third AOSD
Workshop on Aspects, Components, and Patterns
for Infrastructure Software, March 22, 2004. Held
in conjunction with the Third International Con-
ference on Aspect-Oriented Software Development
�AOSD 2004�, Lancaster, UK.

�15� J. ESTUBLIER, R. CASALLAS, The Adele Configura-
tion Manager, Configuration Management, Edited
by Tichy, John Wiley & Son Ltd, 1994.

�16� R. STOCKTON, N. KRAMER, The Sheets Hypercode
Editor, Tech. Rep. 0820, CMU Department of
Computer Science, 1997.

�17� S.P. REISS, Simplifying Data Integration: The De-
sign of the Desert Software Development Environ-
ment, In the Proceedings of the 18th International
Conference on Software Engineering, Berlin, Ger-
many, 1996.

�18� W.G. GRISWOLD, Y. KATO, J.J. YUAN, Aspect
Browser: Tool Support for Managing Dispersed
Aspects, Technical Report CS99-0640, Department
of Computer Science and Engineering, University
of California, San Diego, December 1999.

�19� M.P. ROBILLARD, G.C. MURPHY, Evolving Descrip-
tions of Scattered Concerns, Technical Report
SOCS-TR-2005.1, School of Computer Science,
McGill University, Canada, January 2005.

�20� W. ZHAO, L. ZHANG, Y. LIU, J. SUN, F. YANG, SNI-
AFL: Towards a Static Non-Interactive Approach
to Feature Location, Proceedings of the 26th In-
ternational Conference on Software Engineering,
Volume 00, pp. 293–303, 2004.

�21� W. HARRISON, H. OSSHER, S.M. SUTTON, P. TARR,
Concern Modeling in the Concern Manipulation
Environment, IBM Research Report RC23344,
IBM Thomas J. Watson Research Center, York-
town Heights, NY, September 2004.

�22� D. JANZEN, K. DE VOLDER, Navigating and Query-
ing Code Without Getting Lost, Proceedings of the
2nd International Conference on Aspect-oriented
Software Development, Boston, Massachusetts, pp.
178–187, 2003.

�23� S.M. SUTTON, I. ROUVELLOU, Modeling of Soft-
ware Concerns in Cosmos, Proceedings of the 1st
International Conference on Aspect-oriented Soft-
ware Development, Enschede, The Netherlands, pp.
127–133, 2002.

210 Facilitating Configurability by Separation of Concerns in the Source Code

�24� M.C. CHU-CARROLL, J. WRIGHT, A.T.T. YING, Vi-
sual separation of concerns through multidimen-
sional program storage, Proceedings of the 2nd In-
ternationalConference on Aspect-oriented Software
Development, Boston, Massachusetts, pp. 188–197,
2003.

Received: August, 2004
Revised: March, 2005
Accepted: May, 2005

Contact address:

Zoltan Fazekas
Faculty of Informatics and Information Technologies

Slovak University of Technology
Ilkovičova 3

842 16 Bratislava
Slovakia

e-mail: fazekas�fiit�stuba�sk

ZOLTAN FAZEKAS received his Mgr. �MSc.� in 2001 and his postgradu-
ate degree RNDr. in 2002, both in information technology and both from
Comenius University in Bratislava. Since 2002 he is a PhD. student
at the Faculty of Informatics and Information Technologies at Slovak
University of Technology in Bratislava. His research interests include
separation of concerns and software configuration management.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

