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The aim of craniofacial reconstruction is to estimate
the shape of a face from the shape of the skull. Few
works in machine-assisted facial reconstruction have
been conducted so far, probably due to technical (poor
machine performance and data availability) and theoret-
ical (complexity) reasons. Therefore, the main works in
the literature consist in manual reconstructions. In this
paper, an original approach is first proposed to build a 3D
statistical model of the skull/face set from 3D CT scans.
Then, a reconstruction method is introduced in order to
estimate, from this statistical model, the 3D facial shape
of one subject from known skull data.

Keywords: facial reconstruction, statistical model, elas-
tic registration, missing data reconstruction.

1. Introduction

Craniofacial reconstruction is usually consid-
ered when confronted with an unrecognisable
corpse and when no other identification evi-
dence is available. In such cases, the skeletal
remains are the only available information for
creating a picture of that person. The aim of
craniofacial reconstruction is then to produce a
likeness of the face using the skeletalized re-
mains. This reconstruction may hopefully pro-
vide a route to a positive identification.

Several 3D manual methods for facial recon-
struction have been developed up to now and
are currently used in practice. They consist of
modeling a face on the remaining skull by use
of clay and plasticine. However, manual re-
construction methods have several fundamen-
tal shortcomings, such as being highly subjec-
tive, time-consuming and requiring artistic tal-
ent. Computer-based methods have been devel-
oped to try to complement or even provide an
answer to these shortcomings.

Some current machine-aided techniques fit a
template skin surface to a set of interactively
placed virtual dowels on a 3D digitised model
of the remaining skull [1] — [5]. Other works
propose to deform a reference skull in order to
match the remaining skull, thanks to crest lines
(lines of maximal local curvature) [6], control
data sets [7] or feature points [8]. Then they
apply an extrapolation of the calculated skull
deformation to the template skin surface asso-
ciated to the reference skull. For both tech-
niques, the template skin or reference skull can
either be a generic surface or a specific best
look-alike according to the skull. However, the
facial reconstruction is biased by the choice of
the reference skull and the template skin. Re-
cent works using multiple reference skulls [9],
or a combined statistical deformable model of
facial surfaces and tissue thickness [10], both
addressed the facial reconstruction problem and
discussed these biases.

Several works have addressed the problem of
construction of statistical models. Input data
are first registrated in a common reference sys-
tem by minimization of a cost function. Then,
the model, often based on PCA, is computed.
The cost function can be modeled on voxel in-
tensities, [11], voxel labels [12], manual land-
marks [13], features [14], or nearest points [15]
in 2D images or 3D density maps. In cranio-
facial reconstruction, two objects, the skull and
the skin, have to be registrated. It is of utmost
importance that the registration method does not
modify the relationship between these objects.
Most methods based on voxel intensities use
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an implicit model of elastic deformation in the
cost function, which can bias the relationship
between skin and skull objects in the registrated
image. Other methods often use meshes to rep-
resent surfaces in 3D. The meshes must have
the same connectivity (same number of vertices
and same relationships among them) to build a
statistical model. This is achieved by a parame-
terisation of the object [16], by an optimisation
of the resulting statistical model [17], or by con-
structing template references [18]. In [12], the
authors decimate the meshes to reduce the in-
fluence of noise and the processing time. Our
model is closely related to these last methods
[17, 18] and also follows tracks from [20] where
the model is built from labelled images.

In this paper, a method to build a joint statisti-
cal 3D model of the skull and face is presented.
This model is then used to reconstruct a face
from available skull data. The idea is similar
to [6-8], but uses a statistical shape model of
both the skull and the face for the reconstruc-
tion task, instead of a sole extrapolation of the
deformation field. A 3D-to-3D matching proce-
dure propagates pseudo-landmarks from refer-
ence surfaces to the various surfaces of the skull
and face of our database. Therefore, when ap-
plied to several individuals, a statistical model
of the cross-variability of the skull and the face
is built. The reconstruction of the face is then
solved using the direct statistical relationship
between skin and skull surface shapes given by
the model. Face reconstruction can therefore be
seen as a missing data problem.

This paper is organized as follows. Section
2 describes the elaboration of the normalized
skull and face geometries obtained by a 3D-
to-3D matching procedure. Section 3 presents
the statistical model built upon the normalized
faces and skulls. Finally, section 4 introduces
the facial reconstruction method and presents
results. Some open research lines for further
improvements are also presented.

2. Skull and Face Database

2.1. Method

Anentry (i.e. a sample) in our database consists
of a skull surface coupled with a skin surface.
For facial reconstruction, only the skull surface

is known. These surfaces are represented by
3D meshes (vertices and triangles). In order
to construct the statistical model, each skull or
skin shape must share the same mesh connec-
tivity. This particular connectivity arises from
a subject-shared reference mesh (also denoted
as generic mesh in the following). For each
individual in our database, original meshes are
reconstructed from CT data of the subject (Fig-
ure 1). Each of these subject meshes has its own
connectivity. The main problem is then to es-
tablish correspondences between the different
meshes of the training set, so as to match the
anatomically equivalent features. Each of these
subject meshes needs to be registrated in the
subject-shared reference system. Like Fleute et
al. [21] correspondence is established by elastic
registration of template shapes (mandible, skull
and face) with all the subject shapes (Figure 2).
Joint propagation of mesh connectivity and ge-
ometry is performed from the generic mesh to
match the subject shapes. The triangles for a
region of the skull or the face are therefore sup-
posed to be the same for all samples, while the
variability of the position of the vertices will re-
flect the anatomical characteristics of each sam-
ple. These vertices can be considered as semi-
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Fig. 1. Generation of the subject meshes.
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Fig. 3. Building the statistical model from the
subject-specific generic meshes.

Fig. 4. (Top) 3D raw scan data (only axial slices were
collected; midsagital and coronal have been
reconstructed here by image processing), (Bottom)
subject-specific mesh reconstrusted using the marching
cube algorithm [23].

landmarks (or pseudo-landmarks), i.e. points
that do not have names, but that match across
all the samples of a data set under a reasonable
model of deformation [22]. As each skull or skin
shape (also denoted as subject-specific generic
meshes) shares the same mesh connectivity, a
statistical model can be built (Figure 3).

2.2. Generation of Subject Meshes

Axial CT slices (see Figure 4) were collected
for the partial skulls and faces of 15 subjects
(helical scan with a 1-mm pitch and slices re-
constructed every 0.31 mm or 0.48 mm). Since
these data were collected during regular medi-
cal exams, excitation of the brain volume was
avoided if not necessary. So nearly all the
skulls are partially scanned, and only two com-
plete skull and face volume data were available.
Bones and skin image volumes are first sepa-
rated using intensity thresholding and morpho-

logical operators. Face volumes are then filled
up, with metal artefacts, if any, being manually
removed. The mandible and the skull have to be
separated during the segmentation process be-
cause the subjects have different mandible aper-
tures. Skull and mandible are semi-manually
separated using seed-growing regions. At the
end of the segmentation process, three binary
volumes are obtained. The subject meshes
are reconstructed for each volume (face, skull,
mandible) using a standard Marching Cube al-
gorithm [23] and a smooth decimation algorithm
is applied to the resulting meshes. Each subject
shapes are now described with a different con-
nectivity. Moreover, undesired holes (such as
the orbita wall, foramina, etc.) are still present
in the subject meshes.

2.3. Subject-specific Generic Meshes
Generation

Subject-specific generic (SSG) meshes are ob-
tained by matching the subject meshes with
generic meshes. Generic meshes (see Figure
5) have been taken from the Visible Woman
Project [24] (skull, 3473 verts, and mandible,
1100 verts) and from [25] (face, 5828 verts).
These meshes have been semi-manually ob-
tained by their respective authors. The vertices
of these meshes are located on crest lines and
in [26] they are regularly distributed following
facial animation needs. Moreover each of these
generic meshes has no undesired holes.

Fig. 5. Skull mesh from [24] (Top) and face mesh from
[25] used as generic meshes (Bottom)
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The matching procedure we use is the same
as described in [26]: the elastic registration of
the generic meshes to the subject meshes uses
the matching algorithm proposed by Lavallée
et al. [27] with a minimisation of the distances
between the two shapes. It basically consists
of the deformation of the initial 3D space by
several trilinear transformations. These trans-
formations are applied to all vertices of ele-
mentary cubes of the generic mesh towards the
subject mesh. The problem of matching sym-
metry [12,19] is encountered, due to the vertices
density dissimilarity between the subject and
generic meshes. Indeed, the number of vertices
is 30 to 70 times larger in the subject meshes
than in the subject-specific meshes. Therefore,
a symmetrized minimization function is used
[28].

The distance computed for the quantitative anal-
ysis of the SSG and subject meshes is a point-to-

surface distance from the subject-specific generic

meshes to the subject meshes.

Maximal matching errors between the SSG
mandible meshes and the subject mandible
meshes are located on the teeth and on the coro-
noid process. The mean distance can be consid-
ered as the registration noise, partly due to the
density dissimilarity (see Table 1.). Teeth will
not be part of our model, due to the frequent
metal artefacts in CT scans.

| Distances (mm) || mean | Max |

Mandible 2 8
Skull 4 36
Face 1 5

Table 1. Distance between the subject (subject CT data
reconstructed through Marching Cube) and SSG
meshes.

Subject skull meshes are registered on the cor-
responding parts of the generic skull mesh, as
most of the skulls were partially scanned. The
maximal matching errors in the resulting SSG
skull meshes are located in the spikes beneath
the skull, where the individual variability and
the surface noise are large due to segmentation
errors. Only the minimum common subset of
shapes will be used to build the statistical model
(Figure 6).

Finally, SSG face meshes are obtained using
the same procedure. In this case, the maxi-
mal matching errors between SSG and subject

Fig. 6. Minimum common subset of shapes used to
build the statistical shape model.
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Fig. 7. Each vertex of the SSG meshes is considered as
being at the same location reflecting thus the
inter-individual variations of shape.

meshes are located around the eyes, that are part
of the original data, but not part of the generic
mesh (see Figure 7 for a distance map between
a SSG mesh and a subject mesh). Again, only
the minimum common subset of shapes will be
used to build the statistical model. Figure 8
shows the 15 normalized shapes of the common
subset of the face database.

The 15 subjects are now registrated in a com-
mon shape space. These subset meshes have
3780 face vertices and 2900 skull vertices.
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Fig. 8. The 15 face subsets forming the database.
3. Statistical Modelling
3.1. Building the Statistical Model

Each vertex of the SSG mesh is supposed to be a
semi-landmark of the 3D surfaces — see Figure
9 — reflecting thus the inter-individual varia-
tions of shape. The statistical model is based
on this assumption and is computed on the min-
imum common subset of the original data. The
15 matched skulls and faces are first fitted on
the mean configuration of the skull using Pro-
crustes normalization [29]. Seven degrees of
freedom due to initial location and scale are re-
trieved by this fit (three due to translation along
the axes, three due to rotations, one for scale
adjustment). As the fitting is based on mean
skull configuration, the relationships between
each face and skull are conserved. A statisti-
cal model of the subset of skulls and faces is
then built using Principal Component Analysis
(PCA). The result of the PCA is a geometri-
cally averaged skull and face template, which
is computed together with a correlation-ranked

Yy |Point 1 point 1 |

Point i

z Subject 1 Subject 2 z

Fig. 9. Each vertex of the SSG meshes is considered as
being at the same location reflecting thus the
inter-individual variations of shape.

set of modes of principal variations based on
inter-subjects variations.

Let{T;;i = 1---I}denote/shapes (I=15). Each
shape T; = (Xi1,  Yil, Zil, - Vintms Zintm)
€R3(n+m)

consists of the 6680 vertices (n=2900 skull
verts., m=3780 face verts.) of the subset of
meshes. Using PCA, we can write :

T=T+®b (1)

where Tis the average shape vector, ® is a ma-
trix whose columns are the eigenvectors of the
covariance matrix S of the centered data and b
is the shape parameter vector of the model. If ®
contains ther < min {/, 3(m + n)} eigenvectors
corresponding to the largest nonzero eigenval-
ues of S, we can approximate any shape of the
training set using (1), where ® = (¢ |...|¢;)and
bis at-dimensional vector given by b = @' (T;—
T). Any points of the training set can be repre-
sented or retrieved with the ¢ values of the vector
bby T ~ T + ®b.

By varying the parameters b, different instances
of the skull and face can be generated. Assum-
ing that the cloud of the meshes vertices follows
a multidimensional Gaussian distribution and
that shape parameters lie within the statistical
boundaries of the model, the skulls and faces
generated by varying the shape parameters are
similar to those contained in the training set, re-
sulting in new synthetic but plausible skulls and
faces.
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3.2. Results

In our case, with 15 subjects, a total of 13 varia-
tions modes can be computed, since a leave-one-
out approach is used to test the generalization
of the modeling procedure. Only the first eight
modes of variations (see Table 2) are significant
in terms of represented variance.

Mode 11213145678
number

Cumulative | 361 51| 64|73 (79|84 |88 |91
variance

Table 2. Percentage of cumulative variance explained for
each part of the model (face, skull) for the first 6 modes.

The accuracy of this model is tested by recon-
struction: for a given mesh, variation modes
(b) are computed by minimization of the dis-
tance between the true real mesh (7)) and the
reconstructed mesh (T + ®b). The mean re-
construction errors (Figure 10) for the last three
modes are below the millimeter for samples of
the learning database. So the reconstruction
is quite accurate with samples in the learning
database. Reconstruction error for a test sam-
ple i.e. a sample which is not in the learning
database, is around 3.85 mm for the skull and
3.25 mm for the face using the first four modes.
The skull reconstruction is mostly determined
by the first variation, as the reconstruction er-
ror is then around 4.2 mm. These two results

RECONSTRUCTION ERRORS
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face test sample
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X '~ '~ skull test sample
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Reconstruction errors - mm
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Number of modes

Fig. 10. Mean reconstruction errors of the skull and face
using an increasing number of modes.

demonstrate that this method seems promising,
but that the number of samples in the learning
database is too small.

Except for the first variation mode, the principal
variations of the shape explained by the model
are a little more descriptive of the variation of
the face shape than those of the skull shape.
This can be linked to the greater number of ver-
tices belonging to the face (3780) than to the
skull (2900) (Table 3).

Mode number/

Cumulative 11213|4]|5|6
variance

face 36 (5064758286
skull 3914859667279

Table 3. Variations of the skull shape according to the
first 3 modes for parameters varying between +3 and
—3 times the standard deviation.

Figures 11 and 12 present the variations of the
skull and face shape according to the first modes
for parameters varying between +3 and —3

Fig. 11. Variations of the face shape according to the
first 5 modes for parameters varying between +3 and
—3 times the standard deviation.
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Fig. 12. Variations of the skull shape according to the
first 3 modes for parameters varying between +3 and
—3 times the standard deviation.
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times the standard deviation. The first param-
eter influences variations of the face and skull
width, while the second parameter models the
face and skull height. The third parameter acts
upon the shape of the nose, as well as the ratio
between the upper and the lower parts of the
face. Parameter four influences the shape of the
nose and parameter five is linked to the shape
of the jaw. The first five modes of variations
represent 73 percent of the cumulative variance
(Table 2). As the mandible position is different
for each subject, each mode of variation models
also the jaw aperture (Figure 12).

4. Statistical Reconstruction
4.1. Missing Data Extension

The linear PCA model can be extended in an
elegant way in order to take into account spatial
relations between landmarks and to estimate an
unknown part of a partially visible or occluded
model [30].

Ci1] [Ci] [ by ]
S @ @ :
Gl_[GC|. | bt g,
X1 X : : ' bny1
. : q)n—l—m,l T ch+m,n+ .

_Xm_ _Ym_ L bt _

Under this hypothesis, if some points (says
n points) are known, the remaining unknown
points (says m points) are determined using
PCA. The shape parameter vector b (of di-
mension ¢ = n + m) will also be determined.
Without any approximations, we can write the
unknown vector (by, ..., by, X1, ..., X)) in the
following system:

o] = [o5 ] [x] orr e
[‘1)1,1 ch,t-I
where ®¢ = : :
L®n,1 (Dn,tJ
D11 D1y
and Oy = :
q)n—l—m,l ch+m,t

(2)
This is a linear system with n 4+ m equations
and n 4 2m unknowns that cannot be resolved.
Since PCA can represent the dataset with ¢ <
n+m values, if we suppose ¢ = n, the system
has a direct solution. Notice that if we choose
t<n, the system becomes overdetermined and a
least square method can be used to resolve the

system:
(6] = a5 ][5 @
The cost function is:
J(b, X) =
[C—®cxb —X+Dx *b] [—C)(_f)qfx**bb]
(4)

In matricial form, J can be rewritten as :
J(Z)=J(b,X) =T - M= 2|
= (T'T-TMZ-ZMY+ZMMZ) (5)
(T'T —2T'MZ + ZM'MZ)

As the matrix [®¢  ®x]|’ is an orthonormal ba-
sis, M'M takes the following form and the cost
function becomes:

ny_ [0 @ [oc 0
MM_{O —id || Dy —1d
7 a—
= |-ox 1

J(b, X)=C'C-2b'"®-C + X'X-2b'D\ X + b'b
(6)
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The derivatives with respect to X and b are null:

%@’X) = —20.C +2b — 204X =0

b = ®pC + PyX

(7)

2J(b, X)
ox
X = dxb

Reporting (6) in (5), the solution is :

b= (Id — Dydy) "' DLC

/ =1 = ©)
X = @y (Id — Dydx)  DC

Note that (Id-®x’ Py ) is always invertible, since
it is a symmetric positive defined matrix.

In this framework, a linear approximation of
spatial relations between known and unknown
points is explicitly determined from the eigen-
vectors of the covariance matrix. The determi-
nation of the unknown points is, in fact, the de-
termination of the shape parameters given the
known points (8). The determination of the
shape parameters can be linked to the influence
of each part on each shape parameter, described
by ®¢ and ®yx. As ®¢ and Py depend only
on the training set, new models must be built
to act upon ®cand ®@x. One way is to build a
new model with a larger (or smaller) training
set. Another way is to change the ratio between
each part.

4.2. Results: Synthetic Data

A synthetic skull and face database is first built
using one of the original individuals and a set
of elastic transformations defined as an octree.
Random transformations of the cube enclosing
the two meshes were provided, thus transform-
ing the two meshes. Five parameters are used
to deform the meshes: three scaling parameters,
and variations of the center of the X face and
of the central axis of the cube (Z direction). Of
course, these variations do not simulate the real-
ity of the skulls and faces variability. However,
it is a way to artificially verify the missing data
formulation and the semi-landmark hypothesis.

Using the extension of the linear PCA defined
above, the face of a synthetic subject can be re-
constructed from his skull and from the statisti-
cal model built using synthetic data. The known

i |
() {
o ‘ ]

Fig. 13. Examples of synthesic meshes.

part (Ci) contains the skull vertices while the
unknown part (Xi) contains the face vertices.

A set of one hundred meshes is generated us-
ing these random transformations (see Figure
13 for examples of generated faces). To further
increase the variability on the face, a Gaussian
noise is added to each point. The level of this
noise (2 mm) is chosen so that we still remain
in the semi-landmark paradigm. Indeed, a large
level of noise could change the relative positions
of the vertexes of the mesh, thus making the
concept of semi-landmark not valid any more.

Figures 14 and 15 plot the reconstruction re-
sults. Test samples are reconstructed with a
mean accuracy of 1 mm. The missing data er-
ror is in the same range. It is important to note

RECONTRUCTION ERRORS

———face database
skull database
""""" face test sample [|
—' =" skull test sample

Reconstruction error - mm

Number of variation modes

Fig. 14. Mean facial reconstruction errors of the scull
and face using an increasing number of modes for the
synthetic database model.
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~ Fig. 15. Mean facial reconstruction errors using an
increasing number of modes for the synthetic database
model.

that the missing data error converges to the re-
construction error for the known part of the test
sample (the skull) as well as for the unknown
part (the face. If the subject-specific meshes are
used as test samples on the synthesis database,
bad reconstructions are obtained for each indi-
vidual as the variations of the shapes used are
too simple

4.3. Statistical Facial Reconstruction

The face of a subject can be reconstructed from
his skull and from the statistical model defined
previously (in 3.2), using the missing data ex-
tension of the model. The known part (Ci)
contains the skull vertices while the unknown
part (Xi) contains the face vertices.
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Fig. 16. Mean facial reconstruction errors using an
increasing number of modes.

Again, a leave-one-out approach is used to test
the accuracy of the facial reconstruction. The
learning database is composed of all subjects
minus one, which is the test sample. Every sub-
ject becomes the test sample in turn. Figure 16
gives the mean reconstruction error of the test
sample. It also gives the reconstruction error
for the samples of the learning database.

In all cases the global reconstruction is correct.
The face and skull are reconstructed with an ac-
curacy of 0.5 mm for the samples in the learning
database. Test face sample is reconstructed with
a mean accuracy of 6 mm. Clearly, these results
show that the method is promising, but suffers
from the size of the learning database. The first
parameter offers a better approximation of the
reconstructed face with a mean reconstruction
error of 5.2 mm. As the skull provides essen-
tially the first mode of variation (see Figure 10)
and the other modes are mostly related to vari-
ations of the face for our test sample, only the
performance for the first parameter should be
considered. For each additional variation mode
the prediction should not be considered as it in-
fers variations of the face from variations not
taken into account for the skull, the values of
the variations modes being not accurate. As
these parameters do not correspond to variation
modes with null eigenvalues, a large error in
their prediction results in a large error in recon-
struction.

The repartition of the missing data errors on
the face is shown Figure 17. Large errors are
located on the cheeks, on the neck and on the
sides of the nose. It is important to note that the
cheeks are not attached to the skull and that the
database provides different mandible positions.
So, itis very difficult to predict correctly the po-
sition of the vertexes of the cheeks. Moreover,
the density of vertexes for the cheeks region is
quite low, which authorizes a possible sliding
of those points on the skin surface. The neck is
unconnected to the skull, so large errors are in-
escapable. Finally, itis known that prediction of
the shape of the nose from the shape of the skull
is very difficult [31, 32]. The links between the
two organs are complex. These errors located
on the sides of the nose are probably due to this
lack of regularity. The good reconstruction of
the tip of the nose can be conversely associated
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Fig. 17. Distance maps and histograms of the facial
reconstruction error for 3 reconstructed faces.

to the template used during the creation of the
database.

When using a smaller bounding box that ex-
cludes the tip of the nose and the neck, we gain
half a millimeter in the accuracy of the predic-
tion (to 4.6 mm). The maximal error is reduced
to 3 mm as seen in Figure 18.

Two limitations of the current database are its
small size, the non homogeneity of the face
mesh (the regions of the nose and the lips are
much more dense than the rest of the mesh) and
the coarseness of the skull mesh. The follow-
ing section presents a way of compensating for
these limitations. Using a decimated mesh of
the face (with a more homogenous distribution
of the vertices), we indirectly give more weight
to the skull vertices in the statistical model. The
skull is then more accurately parameterised by
the model and errors on the estimation of the
skull shape interfere less with the prediction of
the face.

Fig. 18. Distance maps and histograms of the facial
reconstruction error for a reconstructed face using the

enclosed model (no neck or tip of the nose) (left) and
orginal model (right).

4.4. Decimated Facial Reconstruction

A decimated face mesh (929 vertices) is ex-
tracted from the original mesh (3780 vertices)
(Fig. 19). As the decimated mesh is a subpart
of the original mesh, every entry of the database
can be expressed with only the vertices belong-
ing to the decimated mesh. Each vertex of the
decimated mesh represents a larger area of the
face. The skull vertices now represent 75% of
the vertices of the model. They have now more
influence on the eigenvectors emerging from
statistical modelling.

The accuracy of this decimated model is first
tested by global reconstruction. The mean re-
construction errors (Figure 20) for the last three
modes are below the millimeter for samples of
the learning database as with the original mesh.
The reconstruction is quite accurate with sample
in the learning database. Reconstruction error
for a test sample is around 3.6 mm for the last
four modes. These results are similar to those
of the non-decimated mesh. The reconstruction
of the skull test sampled is now determined es-
sentially by the first three modes of variations:
the cumulative explained variance is now more

Fig. 19. Original and decimated face meshes.
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Fig. 20. Mean reconstruction errors of the skull and face
using an increasing number of modes for the decimated

model.
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_ Fig. 21. Mean facial reconstruction errors using an
increasing number of modes for the decimated model.

descriptive of the skull shape variations than the
face shape variations (Table 4).

Mode number/

Cumulative 1123 14]5]|6

variance

Face + skull [[38[55[65[72]78183
face 31{40(50(63|71|76
skull 41159|68|72|78 83

Tab. 4. Percentage of cumulative variance explained for

each part of the model (face, skull) for the first 6
parameters.

Here again, the reconstruction of the face us-
ing the missing data extension of the PCA is
promising (Fig. 21). The face is reconstructed

<1imm >Immto<3mm >3mmto<5mm > 5mm

Fig. 22. Distance maps and histograms of the facial
reconstruction error for 3 reconstructed decimated faces.

with an accuracy of 0.6 mm for the samples
in the learning database. Test samples are re-
constructed with a mean accuracy of 6.0 mm.
As with the original model, the first variation
mode offers a better approximation of the re-
constructed face with an error of 5.1 mm. But
now the second parameter also gives an ade-
quate information for the prediction of the face.
The distribution on the face of the facial recon-
struction error is similar to the original model
(see Figure 22).

In conclusion, the “decimated” model gives
similar results to the “global” model (the gain
is 0.1 mm for the facial reconstruction with 2
valid modes). However these results show that
the more accurately the skull will be parame-
terised by the model (i.e. the greater the number
of valid variation parameters), the more accu-
rately the face will be predicted, as the error in
these parameters determining the skull will not
interfere with the prediction of the face.
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5. Conclusion

In this paper, a face and skull statistical model
is proposed for 3D machine-aided facial re-
construction. To build this statistical model, a
3D-to-3D matching procedure delivers subject-
specific meshes of the skull and face with the
same number of vertices. A shared normalized
space for the faces and skulls is therefore built.
The direct statistical relationships between the
face and the skull included in the statistical
model are used to reconstruct the missing data
of the face when the skull is the only available
information. For this, a missing data extension
of the Principal Component Analysis is used.

Results are visually correct and mean measured
errors show that the method is promising as it
will be probably more efficient for larger learn-
ing database. One way of increasing the effi-
ciency of the model is presented. It consists in
decimating the face mesh in order to adjust its
density to the skull mesh density, thus giving
a higher weight to the known part of the prob-
lem, i.e. skull data. The corresponding results
are similar to the ones provided by the original
model (at least in terms of facial reconstruc-
tion), but a slightly more efficient modeling of
the skull was observed.

We will test this statistical approach using data
acquired with a more adequate experimental
protocol and using data from subjects with var-
ied age and sex. The approach presented here
may be extended towards relevant covariation
between shape and appearance as well as be-
tween shape and range of motion. Aestehetic
and rehabilitation surgery may thus also benefit
from such anatomy-aware and subject-informed
statistical models.
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