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In this paper, we present a study on the sensitivity of ag-
gregation methods with respect to the weights associated
with objective functions of a multiobjective optimization
problem. To do this study, we have developped some
measurements such as the speed metric or the distribution
metric. We have performed this study on a set of biobjec-
tive optimization test problems: a convex, a non-convex,
a continuous and a combinatorial test problems.

We show that some aggregation methods are more
sensitive than others.
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1. Introduction

1.1. Introduction to Multiobjective
Optimization

Themultiobjective optimization has been a grow-
ing domain of interest since approximately 1990
[4]. A lot of methods have been developed so as
to solve a multiobjective optimization problem.
Many of these methods use a genetic algorithm
to solve this problem without transforming it
into an “equivalent” monobjective optimization
problem, but most of the methods use a transfor-
mation to return to a monobjective optimization
problem.

An example of the problem we are dealing with
in multiobjective optimization is the following:

minimize f 1(�x)
minimize f 2(�x)
with �x ∈ S ⊂ Rn

This example is a biobjective optimization prob-
lem.

When we perform an optimization, we must
keep in mind the definition of an optimum solu-
tion. In monobjective optimization, this defini-
tion is easy to understand. But, in multiobjec-
tive optimization,we use a different form of def-
inition for an optimum solution. And such a so-
lution to a multiobjective optimization problem
will be called a Pareto optimum solution. Let’s
consider a multiobjective optimization problem
with m objective functions to be minimized.

A solutionA is optimalwith respect to a solution
B if:

x2 f 2
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Figure 1. The tradeoff surface and the Pareto area.

• the objective function values of the so-
lution A are as good or better than the
objective function values of the solution
B (∀i ∈ {1, · · · , m}f i(A) ≤ f i(B));

• the solution A outperforms the solution B
for at least one objective (∃i ∈ {1, · · · , m}
f i(A) < f i(B)).

As we can notice when trying to solve a mul-
tiobjective optimization problem, such a prob-
lem hasn’t got just one solution. Most of the
time, we can find a huge number of solutions.
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Indeed, all these solutions belong to a hypersur-
face and this locus of optimal solutions is called
the tradeoff surface or the Pareto frontier (see
Figure 1).

Not all these transformationmethods (also called
aggregation methods) are equivalent. Some of
these transformations are sufficiently “efficient”
so as to deal with a non convex multiobjective
optimization problem and some of them aren’t
[3]. But, when one has chosen a method, one
has to overcome the problem of choosing some
weight coefficients so as to underline the trade-
off one is willing to do [1]. As we shall see,
the problem of choosing a set of weights is not
really critical because some methods are not re-
ally sensitive to a weight variation and so, one
can give “raw” weights to the method to model
a tradeoff.

We present a study on the sensitivity of aggre-
gation methods with respect to the weights as-
sociated with objective functions of a multiob-
jective optimization problem. To do this study,
we have developed some measurements such
as the speed metric or the distribution metric.
We have performed this study on a set of biob-
jective optimization test problems: a convex, a
non-convex, a continuous and a combinatorial
test problems. The results make us conclude
that some aggregation methods are more sensi-
tive than others.

In section 2, we present the various apparatus
we used to perform our experiments: the opti-
mization method, the aggregation methods, the
metrics and the test problems. In section 2, we
present the various steps followed during the
experiment. In section 3, we present the re-

sults computed during the experiment and we
conclude in section 4.

2. Description of the Experiment

Our aim is to study the influence of the aggre-
gation method on the locus we reach on the
Pareto surface, with respect to a certain amount
of randomness in the optimization method.

We will try to quantify the amount of stochas-
tic effect in the MOSA method [5]. We will
also try to rank the main aggregation meth-
ods (the weighted sum of objective functions,
the Chebyshev method and the hybrid method)
with respect to their sensibilities to a variation
of weights.

In order to test the random level of an optimiza-
tion method, we have built a new optimization
method: a local search method with a fixed
probability of accepting a bad solution. This
algorithm is described on algorithm 1.

By using this algorithm, we try to model the
behavior of the simulated annealing with a con-
stant temperature. With a real simulated anneal-
ing, the probability of accepting a bad solution
depends on the level of the objective function
associated with the solution. So, when the tem-
perature is constant, the probability of accepting
a bad solution is likely to change.

Nevertheless, the randomized local search in the
main line models the simulated annealing with
a constant temperature.

Algorithm 1 The randomized local search
paccept probability of accepting a bad solution
xcurr the current solution
Neigh(x) returns a neighbor solution of solution x
f () objective function to optimize
Niter number of iterations to perform

for i = 1 to Niter

x = Neigh(xcurr)
if f (x) ≤ f (xcurr) then xcurr = x
if f (x) > f (xcurr) and rand(0, 1) < paccept then xcurr = x
end
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2.1. The Aggregation Methods

2.1.1. The Weighted Sum of Objective
Functions

The first method we used is a classical method
in multiobjective optimization. We calculated
the weighted sum of objective functions so as
to aggregate objectives and have an equivalent
single objective function to be optimized. This
method (see in [4]) is defined as follows:

f eq(�x) =
Nobj∑
i=1

ωi · f i(�x)

where:

• f i is the objective function number i of the
multiobjective optimization problem,

• Nobj is the number of objectives in the
multiobjective optimization problem,

• ωi is the weight associated with the ob-
jective function number i,

• �x is the decision vector,

• f eq is the single objective function.

This method shows poor performances on non-
convex solution sets. It can’t find the solutions
hidden in non-convexities of the Pareto frontier
(see in [3] or in [1]).

2.1.2. The Chebyshev Aggregation of
Objective Functions

Another way to aggregate objective functions
is to use the Chebyshev distance (see in [4]).
This way of aggregating objective functions is
a very efficient one, it can find solutions hidden
in non-convexities of the Pareto frontier. This
distance is defined as follows:

f eq(�x) = max
i=1,···,Nobj

ωi · (f i(�x) − Fi)

For this method, the Fi’s correspond to an ideal
bound for the objective f i. Because sometimes
it’s hard to find good bounds for this method,
we have decided to change the expression of the
Chebyshev method:

f eq(�x) = max
i=1,···,Nobj

(1 − ωi) · (f i(�x) − Fi)

where Fi refers to a limit on the objective f i un-
der which the values of f i are interesting for the
decision maker.

The notations are the same as those defined
above.

2.1.3. The Hybrid Aggregation of Objectives
Functions

Another way to aggregate objective functions
is to use the Hybrid distance (see in [4]). This
way of aggregating objective functions is nearly
as efficient as with the Chebyshev one. It can
find solutions hidden in non convexities of the
Pareto frontier if the K parameter is well tuned.
This distance is defined as follows:

f eq(�x) = max
i=1,···,Nobj

ωi · (f i(�x) − Fi)

+ K ·
n∑

i=1

ωi · f i(�x)

As with the Chebyshev method, we will use a
transformed expression of the hybrid method
which is related to the transformed expression
of the Chebyshev method:

f eq(�x) = max
i=1,···,Nobj

(1 − ωi) · (f i(�x) − Fi)

+ K ·
n∑

i=1

ωi · f i(�x)

For this method, we performed some experi-
ments so as to tune the value of the coefficient
K. We used the non convex TRIGO test prob-
lem. We searched the value of K for which the
distribution of solutions along the Pareto surface
was as near as possible to the distribution of so-
lutions we have obtained with the Chebyshev
method and 100 equally distributed weights.

2.2. The Metrics Used

2.2.1. The Distribution Metric

The goal of the distribution metric is to count
the number of solutions along the tradeoff sur-
face. To do so, one first has to find solutions
equally spaced on the tradeoff surface. This
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first requirement implies knowing the analyti-
cal expression of the tradeoff surface of the test
problem. Having computed this set of solutions,
one has to translate it using two vectors �v and
−�v. Then, one builds cells around an area of the
tradeoff surface by linking 4 neighbor solutions
(see Figure 2).
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Figure 2. The shape of the distribution metric.

This metric is easy to use: one has to put a
threshold frontier so as to stop the optimization
when all the solutions are lying inside the cells,
then one counts the solutions in the cells and
reports these results on a bar chart.

2.2.2. The Speed Metric

One way to compute the speed of an algorithm
in single objective optimization is to set a thresh-
old (over the global optimum value) and wait
for the algorithm to reach this threshold. To be
able to use this kind of “speed measurement”,
we must use a test problem for which the lo-
cal minima are well known. Using such a test
problem, we will be able to size the value of the
threshold correctly.

It is relatively easy to translate this idea for mul-
tiobjective optimization, with the same limita-
tions as with the single objective optimization
test problem: we must work with a biobjective
test problem. To compute the threshold frontier,
we follow the steps illustrated in Figure 3.

Step 1: compute the theoretical Pareto frontier
(see Figure 3a)

Step 2: move the theoretical Pareto frontier us-
ing a threshold vector �v (see Figure 3b). The
amplitude of �v is not really important, but it
must be sufficiently important so as to catch a
set of Pareto efficient solutions. The translation
of the Pareto frontier using vector −�v is per-
formed so as to be sure to surround all the points
in a cell defined by 2 Pareto efficient points (be-
tween these 2 points, we can have some solu-
tions which can be under the line joining these
2 points).

Step 3: remove points above arg max f 2 and be-
low arg min f 2

Step 4: add two points (f 1(A), max f 2) and
(max f 1, f 2(B)) (see Figure 3c)

Step 5: add two points (min f 1, max f 2) and
(max f 1, min f 2) (see Figure 3d)

Step 6: sort points in an increasing order, con-
sidering the first objective f 1 and the threshold
frontier are defined by the path linking all these
points (see Figure 3e)

f2

f1
(a)  Step 1

f1

f2

v

(b) Step 2



On the Sensitivity of Aggregative Multiobjective Optimization Methods 5

f1f1
f1

f2

f2

f2

A

B

max

min

maxmin
(c)  Step 3

f1f1

f2

f2

f2

f1

min

maxmin

max

(e)  Step 5

Figure 3. How to build a treshold frontier in the speed
metric.

Let us use the following notation:

• xTF
i the ith point of the threshold frontier

• xS
j the jth point of the solution set

To perform the test, we follow these steps for
each xS

i ∈ S:

Step 1: find i such as f 1
(
xTF
i

) ≤ f 1(xS
j ) ≤

f 1
(
xTF
i+1

)

Step 2: we denote f 2(x) = A · f 1(x) + B the
line between the points

(
f 1

(
xTF
i

)
, f 2

(
xTF
i

))
and

(
f 1

(
xTF
i+1

)
, f 2

(
xTF
i+1

))
: if(

f 2

(
xS
j

)
− A · f 1

(
xS
j

)
− B ≤ 0

)
then the point(

f 1
(
xS
i

)
, f 2

(
xS
i

))
is under the threshold frontier

To use the threshold frontier as a test to stop
the running of a multiobjective optimization
method, we can count the number of points
that fall under the threshold frontier. If all the
points (or a fraction like 90% for example) are
under the threshold frontier, we stop the opti-
mizationmethod and check howmany iterations
were necessary to move all the points under
the threshold. The theoretical Pareto frontier
doesn’t need to verify any convexity hypothesis.
The speed metric can be applied to any kind of
multiobjective optimization problem since we
are able to compute the theoretical Pareto fron-
tier.

This stopping test for multiobjective optimiza-
tion methods seems a good one to measure the
speed of a method.

2.3. The Test Problems

2.3.1. The Continuous Test Problems

To be able to perform our experiments, we need
a set of test problems so that we can easily move
the starting point of the optimization and start
closer to or farther from the Pareto set. Such a
test problem doesn’t exist in the published set
of multiobjective test problems. So we have de-
veloped a simple set of test problems for which
we can tune easily the position of the starting
point with respect to the Pareto set. This set
of test problems covers the classical difficulties
we meet in multiobjective optimization: non-
convexity, discontinuities, etc.

We will consider the following test problems:

The convex TRIGO1 test problem

minimize f 1(θ, x) = 1 − cos(θ) + x
minimize f 2(θ, x) = 1 − sin(θ) + x
with 0 ≤ θ ≤ π

2 and 0 ≤ x ≤ 1
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The convex TRIGO2 test problem

minimize

⎧⎨
⎩

f 1(θ) = 1 − cos(θ) + x if 0 ≤ x ≤ 0.25
f 1(θ) = 1 − cos(θ) + 0.25 · x + 3

16 if 0.25 ≤ x ≤ 0.75
f 1(θ) = 1 − cos(θ) + 2.5 · x − 1.5 if 0.75 ≤ x ≤ 1

minimize

⎧⎨
⎩

f 2(θ) = 1 − sin(θ) + x if 0 ≤ x ≤ 0.25
f 2(θ) = 1 − sin(θ) + 0.25 · x + 3

16 if 0.25 ≤ x ≤ 0.75
f 2(θ) = 1 − sin(θ) + 2.5 · x − 1.5 if 0.75 ≤ x ≤ 1

with 0 ≤ θ ≤ π
2 and 0 ≤ x ≤ 1

The convex TRIGO3 test problem

minimize

⎧⎨
⎩

f 1(θ) = 1 − cos(1.5 · θ) if 0 ≤ θ ≤ π
8

f 1(θ) = 1 − cos(0.5 · θ + π
8 ) if π

8 ≤ θ ≤ 3·π
8

f 1(θ) = 1 − cos(1.5 · θ − π
4 ) if 3·π

8 ≤ θ ≤ 1

minimize

⎧⎨
⎩

f 2(θ) = 1 − sin(1.5 · θ) if 0 ≤ θ ≤ π
8

f 2(θ) = 1 − sin(0.5 · θ + π
8 ) if π

8 ≤ θ ≤ 3·π
8

f 2(θ) = 1 − sin(1.5 · θ − π
4 ) if 3·π

8 ≤ θ ≤ 1
with 0 ≤ θ ≤ π

2 and 0 ≤ x ≤ 1

We find the analytical expression of the trade-
off surface with x = 0. The expression of this
surface is the following:

f 1(θ) = 1 − cos(θ)
f 2(θ) = 1 − sin(θ)
with 0 ≤ θ ≤ π

2

We have the same expression for the TRIGO3
test problem if we don’t consider the point den-
sity variation with respect to θ .

We will also use a non convex form of the pre-
ceding problem. The analytical expression of
this problem is similar to the convex one. We
just have to change 1− cos() and 1− sin() into
cos() and sin() respectively.

2.3.2. The Combinatorial Test Problems

Wewill apply a continuous to combinatorial (bi-
nary, to be more precise) transformation, so as
to use the same kind of test problem in the con-
tinuous space and in the combinatorial space.

To obtain the combinatorial test problem:

• we define a binary size for the contiuous
variables x and θ (for example 8 bits);

• the variation interval of the binary vari-
able is included between 0 and 2N − 1;

• this variation interval is normalized to the
variation interval [xmin, xmax] and [θmin, θmax].

So, we find the typical behavior of the combina-
torial problems (huge variation of the objective
function when we change the value of one bit
on the combinatorial variable) while keeping
the ability to visualize the behavior of the opti-
mization method. For example, we can:

• visualize the movements of the current
point in two dimensions during the opti-
mization;

• choose accurately the position of the ini-
tial point (we choose the initial value by
using the continuous form of the test prob-
lem, then we convert this value into a bi-
nary one by following the steps we have
described previously);

• build a parallel between the behavior of a
combinatorial optimization method and a
continuous optmization method by com-
paring the trajectories of both methods.

2.4. The Experiment

For each problem, we proceed as follows:

1. We choose an initial point which allows us
to “see” the whole tradeoff surface. This
point has the coordinates (π/4, 1).
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2. We compute the weights so as to find solu-
tions equally spaced along the tradeoff sur-
face. To do so, we take the extreme points of
the tradeoff surface ((1, 0) and (0, 1)), we
draw a line between these two points, then
we divide this line into as many pieces as
we need couples of weights. We then com-
pute the line which goes through the initial
point and through one of the points of the
preceding line, then we identify the lead-
ing coefficient of the line with the desired
couple of weights.

3. We place a threshold frontier close to the
tradeoff surface. So, when the generated
points are sufficiently close to the tradeoff
surface, the optimization stops.

4. We apply the distribution metric which has
the shape described in Figure 2.

The experiment follows these steps:

1. Choice of the initial point (π/4, 1) and ini-
tialization of the couple of weights to
(0.5, 0.5).

2. Initialization of the optimization method.

3. Initialization of the random number genera-
tor with a given random seed.

4. Execution of the optimization method, then
returning to step 3. We reproduce this step
100 times.

5. We apply the distribution metric to the com-
puted solutions to compute the distribution
of solutions along the tradeoff surface.

6. x = x − Δx then returning to step 2. We
reproduce this step until x = 0.

We will execute two kinds of experiments using
this test problem:

• An experiment with the continuous test
problem.

• An experiment with the continuous test
problem converted into a combinatorial
one.

3. Results

3.1. The Graphs

We will present two kinds of graphs:

• graphs related to the distribution of points
along the Pareto surface, with respect to

the probability of accepting a bad solu-
tion and with respect to the position of
the initial point.

• graphs related to the number of iterations
required to reach the Pareto surface, with
respect to the position of the initial point
and to the probability of accepting a bad
solution.

These graphs have special scales:

Graphs showing distribution of the
points

• The dimension entitled “Initial point posi-
tion” has a scale which spreads from 0 to
100 where 0 corresponds to the position
of the initial point on the Pareto surface
and 100 corresponds to the position of the
initial point at a distance 1 from the Pareto
surface.

• The dimension entitled “Surface point po-
sition” has a scale which spreads from 0
to 100, where 0 corresponds to the po-
sition θ = 0, x = 0 on the Pareto sur-
face and 100 corresponds to the position
θ = π/2, x = 0 on the Pareto surface.

• The dimension entitled “Density” has a
scale which spreads from 0 to 100 where
0 corresponds to no points counted at this
position on the Pareto surface and 100
corresponds to all points counted at this
position on the Pareto surface.

Speed graph

• The dimension entitled “Initial position”
has a scale which spreads from 0 to 100.
The meaning of these values is the same
as in the “Initial point position” in the dis-
tribution graph mentioned above.

• The dimension entitled “Probability” has
a scale which spreads from 0 to 10 where
0 corresponds to the probability of accept-
ing a bad solution of 1 and 10 corresponds
to the probability of accepting a bad solu-
tion of 0.

• The dimension entitled “Iterations” has a
scalewhich varies depending on themaxi-
mum number of iterations needed to reach
the Pareto surface. The scale of this di-
mension is represented in the legend on
the left of the Figures.
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3.2. Some Results

The Chebyshev method and the continuous
test problem

First, we tested the Chebyshev method on the
convex and continuous test problems. The re-
sults we have obtained with this test problem
are represented in Figures 4a, 4b, 5a. The speed
diagram is represented in Figure 5b.

Figure 4a. Probability 0.9.

Figure 4b. Probability 0.5.

Figure 4. Results for the continuous test problem: the
Chebyshev method for probabilities 0.9 and 0.5.

The conclusions we can draw about this experi-
ment are the following:

• When the probability of accepting a bad
solution reaches 0, the distribution of points
along the Pareto surface is concentrated
on the locus designated by the direction
given by the couple of weights. This is a

normal behavior of a multiobjective opti-
mization method.

• When considering the speed diagram, the
closer the initial point to the Pareto sur-
face, the less iterations we need to reach
the Pareto surface. The closer to 0 the
probability of accepting a bad solution,
the less iterations we need to reach the
Pareto surface. Again, this is a normal
behavior of a multiobjective optimization
method.

Figure 5a. Probability 0.1.

Figure 5b. The speed diagram 0.5.

Figure 5. Results for the continuous test problem: the
Chebyshev method for probability 0.1 and the speed

diagram.

The Chebyshev method and the
combinatorial test problem

Then, we have tested the Chebyshev method on
the convex and combinatorial test problem with
a 64 bits variable. The results we have obtained
with this test problem are represented in Figures
6a, 6b, 7a. The speed diagram is represented in
Figure 7b.
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Figure 6a. Probability 0.1.

Figure 6b. Probability 0.2.

Figure 6. Results for the combinatorial test problem
with a 64 bits variable: the Chebyshev method for

probabilities 1.0 and 0.2.

The conclusions we can draw are rather inter-
esting:

• We have nearly the same influence of the
probability of accepting a bad solution on
the distribution of points as with the con-
tinuous case. The main difference lies in
the fact that the distribution evolves rather
abruptly with respect to the probability of
accepting a bad solution. Between 1.0 and
0.3, 0.4, the distribution is still the same
as in Figure 6a. Then, between 0.3, 0.4
and 0.0, the distribution evolves quickly
to look like the distribution of the contin-
uous case.

• For the speed diagram, it is completely
different from the continuous case. The
initial position has no influence on the

number of iterations needed to reach the
Pareto surface. This is due to the combi-
natorial aspect of the problem. A small
change in the value of a bit can induce a
huge change in the value of the objective
function. The meaning of “being closer
to the Pareto surface” seems to lose its
meaning.

We can notice a change in the shape of the
speed diagram when we are closer to the Pareto
surface: an overcost in terms of iterations num-
ber appears. This is certainly due to the neigh-
borhood used: we have a mean change of 3 bits
between a point and its neighbor. When we are
really close to the Pareto surface, less than 3
bits need to be changed, so, to reach the Pareto
surface, we first need to go back and then go
forth. This movement induces an overcost in
term of the number of iterations. This behavior
has been observed in [2].

Figure 7a. Probability 0.1.

Figure 7b. The speed diagram.

Figure 7. Results for the combinatorial test problem
with a 64 bits variable: the Chebyshev method for

probability and the speed diagram.
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The weighted sum of objective functions and
the combinatorial test problem

We will now perform the same experiments on
the same combinatorial test problem, but with
the weighted sum of objective functions. The
points distribution obtained are represented in
Figures 8a, 8b and 9a. The speed diagram is
represented in Figure 9b.

Figure 8a. Probability 1.0.

Figure 8b. Probability 0.2.

Figure 8. Results for the combinatorial test problem
with a 64 bits variable: the weighted sum of objective

functions for probabilities 1.0 and 0.2.

The conclusions we can draw are the following:

• The points are distributed on a wider area
than with the Chebyshev method. We still
have the “brutal” change in the shape of
the distribution of points with respect to
the probability of accepting a bad solu-
tion. Between a probability of 1 and 0.3,

Figure 9a. Probability 0.1.

Figure 9b. The speed diagram.

Figure 9. Results for the combinatorial test problem
with a 64 bits variable: the weighted sum of objective
functions for probability 0.1 and the speed diagram.

0.4, the shape of the distribution of points
is still “the same”. But between a proba-
bility of 0.3, 0.4 and 0.0, the shape of the
distribution of points changes quickly.

• We have a smaller overcost in terms of
the number of iterations needed to reach
the Pareto surface. This overcost doesn’t
appear clearly in Figure 9b, but it appears
in other figures not represented here.

• We can also notice that we need less it-
erations to reach the Pareto surface than
with the Chebyshev method. This differ-
ence can be explained theoretically and
is due to the way an aggregation method
“follows” a direction given by a couple of
weights.

• Let us recall that the main theoretical
difference between the weighted sum of
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objective functions and the Chebyshev
method is that the Chebyshev method is
efficient on multiobjective problems with
a Pareto surface with a non convex shape,
whereas the weighted sum of objective
functions isn’t.

The hybrid method and the combinatorial
test problem

Finally, we perform the same experiments on
the hybrid aggregation method. The results are
represented in Figures 10a, 10b and 11a. The
speed diagram is represented in Figure 11b.

Figure 10a. Probability 0.1.

Figure 10b. Probability 0.2.

Figure 10. Results for the combinatorial test problem
with a 64 bits variable: the hybrid method for

probabilities 1.0 and 0.2.

Figure 11a. Probability 0.1.

Figure 11b. The speed diagram.

Figure 11. Results for the combinatorial test problem
with a 64 bits variable: the hybrid method for

probability 0.1 and the speed diagram.

The conclusions we can draw are the following:

• First, let us recall that the hybridmethod is
efficient on multiobjective problem with
Pareto surfaces of a non convex shape (it
depends on the value of the coefficientK).

• All the results are “between” the results
we obtained with the Chebyshev method
and the results we obtained with the wei-
ghted sum of objective functions.

– The width of the distributions of
points is narrower than the width
of the distribution of points we ob-
tained with the weighted sum of
objective functions but it is wider
than the width of the distribution of
points we obtained with the Cheby-
shev method.
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– The number of iterations required
to reach the Pareto surface is more
important than the number of iter-
ations required to reach the Pareto
surface using the weighted sum of
objective functions, but it is less
important than the number of iter-
ations required to reach the Pareto
surfacewith theChebyshevmethod.

The same kind of experiments were performed
on various pairs of weights. The results were
the same as with the pair (0.5, 0.5).

4. Conclusions

These various experiments show a change in
the shape of the distribution of points along the
Pareto surface, with respect to the probability
of accepting a bad solution.

We can observe two types of behavior:

• A behavior insensitive to the value of the
probability of accepting a bad solution.
In that case, the distribution of points is
centered around the direction given by the
couple ofweights (0.5, 0.5), but the distri-
bution is really spread around this point.
This induces that we can’t reach accu-
rately this point on the Pareto surface.

• A behavior sensitive to the value of the
probability of accepting a bad solution.
In that case, for some values of probabil-
ity, we can reach accurately a locus on the
Pareto surface.

We can conclude that, when using the weighted
sum of objective functions with a stochastic op-
timization method, the choice of the weights is
not really important because, due to the stochas-
tic effect, we will not reach accurately a locus
on the Pareto surface, but rather roughly.

We also notice the changes which intervene on
the speed diagram. When no perturbation on
the distribution of points appears, the resulting
speed diagram is independent of the probability
of accepting a bad solution.

On the first speed diagram, we can notice the
relative independence in terms of performances,
with respect to the position of the initial point.
This can be explained by the “complexity” of the

neighborhoodwe have used. When a large num-
ber of bits are modified on the binary variable,
at each iteration the distance we walk is very
important. This implies that the initial point
position is either close or far from the Pareto
surface, after the first iteration the current point
reaches more or less the same position.

We also observe an interesting phenomenon:
the more the initial point is close to the Pareto
surface, the more it appears an overcost in terms
of iterations number. This can be explained by
the complexity of the neighborhood we used.
The more we have bits changing, the more im-
portant is the distance walked in one iteration.
So, when we are close to the Pareto surface (at
a distance of 1 bit to change for example), we
must first go back before being able to reach the
optimal point on the Pareto surface.

Once a certain probability threshold is passed,
the behavior of the distribution of points along
the Pareto surface tends to come close to the be-
havior we found with the continuous problem.

Another phenomenon can be observed when
considering the speed diagram and a neigh-
borhood where 75% of the bits are changed
(experiment not represented here). When the
probability of accepting a bad solution is zero,
we observe a very high overcost in terms of
the number of iterations needed to reach the
Pareto surface. There is a factor 10 between
the part found using a probability of accepting
a bad solution of 0.1 and the part found using
a probability of accepting a bad solution of 0.0.
This phenomenon is highlighted in the thesis
of B. Krishnamachari [2]. We can imagine that
for neighborhoods of high complexity, a min-
imum probability of accepting a bad solution
is needed to allow the optimization method to
adapt its movements to avoid having to go back
too often when the current solution is too close
to the Pareto surface. This tells us that we must
be really careful when choosing the initial so-
lution of an optimization method: this solution
must be sufficiently close to the Pareto surface,
but not too close.

This last phenomenon should be studied thor-
oughly such as the quick change in the shape
of the distribution of solutions along the Pareto
surface with respect to the probability of accept-
ing a bad solution.
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