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In thiswork,we have presented non-blocking checkpoint-
ing and recovery algorithms for bidirectional networks.
We have deviated from the conventional approach of
taking first temporary checkpoints and then converting
them to permanent ones by processes (as followed by any
coordinated checkpointing scheme). Thus, the proposed
coordinated checkpointing algorithm allows processes
to take permanent checkpoints directly, without taking
temporary checkpoints and whenever a process is busy, it
takes a checkpoint after completing its current procedure.
We have shown that the presented algorithms take much
less time for their execution and use much less number
of control messages (and hence much less number of
interrupts to a process) when compared to a noted recent
work [4].

Keywords: ring networks, coordinated checkpointing,
recovery, distributed systems

1. Introduction

Checkpointing / rollback-recovery strategy has
been an attractive approach for providing fault-
tolerance to distributed applications [1] – [9]. A
checkpoint is a snapshot of the local state of a
process, saved on local nonvolatile storage to
survive process failures. A global checkpoint
of an n-process distributed system consists of
n checkpoints (local) such that each of these n
checkpoints corresponds uniquely to one of the
n processes. A global checkpoint M is defined
as a consistent global checkpoint / state (CGS)
if no message is sent after a checkpoint of M
and received before another checkpoint of M
[1]. The checkpoints belonging to a consistent
global checkpoint are called globally consistent
checkpoints (GCCs).

Checkpointing algorithmsmaybe classified into
two main categories: (a) coordinated and (b)
uncoordinated. In uncoordinated check point-
ing, each process takes checkpoint indepen-
dently, without the knowledge of the other pro-
cesses. In case of a failure after recovery, a CGS
is found from the existing checkpoints and the
system restarts from there.

In coordinated checkpointing, all processes syn-
chronize through control messages before tak-
ing checkpoints. These synchronization mes-
sages contribute to extra overhead, but make the
system free from domino effect. There are two
types of coordinated check pointing algorithms:
(a) blocking and (b) non-blocking. Blocking
algorithms force all relevant processes in the
system to block their computation during check-
pointing latency and hence degrade system per-
formance. In non-blocking algorithms, appli-
cation processes are not blocked when check-
points are being taken.

Most of the research in the area of coordinated
checkpointing mainly concentrate on using the
idea of non-blocking [3],[5],[7] – [10]. While
most of the existing works put no restriction on
the topologies of the distributed systems, there
are special topologies for interconnecting the
processing nodes in distributed systems, such as
ring networks [4], [11]. The authors in [4] have
proposed efficient checkpointing and recovery
algorithms for ring networks. They have pro-
posed a coordinated checkpointing algorithm in
which processes take checkpoints independent
of message pattern. It allows any process in



24 Design of High Performance Distributed Snapshot / Recovery Algorithms for Ring Networks

the system to initiate checkpointing. A process
need not consider causal dependency generated
by the application messages. Due to the spe-
cial nature of the ring network, the scheme does
not need to trace dependence at the time of roll
back. Hence the algorithm runs faster than the
algorithm proposed in [10]. The problem with
this algorithm is that the number of control mes-
sages used is large and there is an overhead of
taking a temporary checkpoint and then con-
verting it into a permanent checkpoint.

The present work is aimed at designing high
performance checkpointing and recovery algo-
rithms for ring networks which outperform the
similar algorithms reported recently in [4]. In
[4], the authors have considered both unidirec-
tional and bidirectional ring networks. How-
ever, their proposed checkpointing and recov-
ery algorithms for unidirectional ring networks
are trivial and a modified approach toward the
same is to appear in [12]. Therefore, in thiswork
we focus our attention on the bidirectional ring
networks only. Since our objective is to design
high performance checkpointing and recovery
approaches compared to those in [4], we start
with a brief and clear description of their check-
pointing and recovery approaches. It may help
in understanding clearly our ‘problem formula-
tion’ which is stated later in this section.

In [4], the proposed algorithm for bidirectional
ring networks works in the followingway. Con-
sider a ring network consisting of five processes
P0, P1, P2, P3, and P4 as shown in Figure 1a.
Assume that the network is a bi-directional one
and each process can send messages only to its
predecessor and successor. For example, in this
diagram process P0 can communicate only to
processes P1 and P4, process P1 can communi-
cate only to processes P0 and P2, and so on.

Without any loss of generality, let us assume
that process P2 initiates the checkpointing algo-
rithm. Process P2 first takes a temporary check-
point T2,1, and then sends checkpoint requests
to its predecessor and successor processes P1
and P3 respectively. Each process, on receiving
the first checkpoint request, takes a temporary
checkpoint T1,1 and T3,1 respectively and for-
wards the request to the process from which it
did not receive the request. Hence P1 forwards
the request to P0, and P3 forwards to P4. P0
and P4on receiving the checkpoint request first

take temporary checkpoints T0,1 and T4,1 and
forward the message to P4 and P0 respectively.

P4 receives the checkpoint request from P0 and
P0 receives the checkpoint request form P4.
This checkpoint request message is the second
request to both P0 and P4, hence both P0 and
P4 convert their respective temporary check-
points T0,1 and T4,1 to permanent checkpoints
C0,1 and C4,1 respectively. After converting to
permanent checkpoints, P0 and P4 forward the
checkpoint request to P1 and P3 respectively. P1
and P3 on receiving the second checkpoint re-
quest convert their respective temporary check-
points to permanent checkpoints C1,1 and C3,1
respectively and forward the checkpoint request
to initiator process P2. Suppose that process P2
receives the checkpoint request from P1 first.
This message is the first checkpoint request to
initiator P2. Hence it converts its latest tempo-
rary checkpoint T2,1 to permanent checkpoint
C2,1. Initiator process does not forward the
checkpoint request any further. Eventually, it
also receives the checkpoint request sent from
process P3, which it discards and the check-
pointing algorithm is terminated. In Figure 1a it
is shown that at time t the temporary checkpoint
T0,1 is converted into a permanent checkpoint,
denoted here as C0,1. The same is followed for
all processes in the system.
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Figure 1a. An example of the checkpointing algorithm.

In Figure 1b, we describe the working principle
of the recovery algorithm. Without any loss of
generality, let us suppose that process P4 fails
during the execution of the checkpointing algo-
rithm. Suppose that, by the time failure occurs,
all processes have taken temporary checkpoints
T0,1, T1,2, T2,1, T3,1, and T4,1. After recovering
from the failure P4 starts the recovery algorithm.
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Figure 1b. An example of the recovery algorithm.

Assume that before P4 starts the recovery algo-
rithm, processes P0, P1, and P2 have converted
their respective temporary checkpoints to per-
manent checkpoints C0,1, C1,1 and C2,1. Pro-
cess P3 did not receive yet any message from
P4 and hence it did not convert its temporary
checkpoint to a permanent one.

After process P4 recovers from its failure (say,
at time t as shown in Figure 1b), it initiates
the recovery algorithm. It sets its flag visit flag
to true and sends recovery message to its adja-
cent processes P3 and P0 with its latest check-
point version number. On receiving a recovery
message, each process sets its flag visit flag to
true and forwards the recovery message to the
process from which it did not receive recovery
message. Process P3 forwards the message to
P2 and process P0 to P1. Assume that process P2
receives the recovery message sent by P3 before
the recovery message from process P1. Process
P2 sets its flag to true and forwards the message
to process P1. Process P1, which receives the
recovery message from P0 first, sets its flag visit
flag and forwards the request to process P2.

Later process P1 receives the recovery message
forwarded by process P2, say at time t1. This is
the second such recovery message to process P1.
It observes that its flag visit flag is already set to
true. Therefore it first sets its flag resume flag to
true and then forwards the message to its prede-
cessor process P0and starts computation from
its latest permanent checkpoint C1,1. Eventu-
ally, process P2 receives the recovery message
sent by process P1. This message is the sec-
ond recovery message to P2. It observes that
its flag visit flag is true. Therefore, it sets its
flag resume to true, forwards the message to

P3 and restarts the computation from its latest
permanent checkpoint C2,1.

Process P0 receives the recovery message from
P1, it observes that its flag visit flag is true.
Therefore, it sets its flag resume flag to true,
and then forwards the message to its predeces-
sor process P4 and restarts computation from
C0,1.

Process P3 receives the recovery message sent
from P2. This message is the second recovery
message to process P3. On receiving the recov-
ery message, P3 observes that its flag visit flag
is set to true. Hence it sets its flag resume to
true and then forwards the message to process
P4 and rolls back to its latest checkpoint. Since
its latest checkpoint is a temporary checkpoint
T3,1, it first converts the temporary checkpoint
T3,1 to a permanent checkpoint C3,1and restarts
computation from that checkpoint.

Recovery messages are sent to process P4 from
P0 and P3. Suppose that P4 receives the recov-
erymessage sent by process P3 before it receives
the recovery message from process P0. This is
the first recovery message to the initiator. Its
flag visit flag is already set. Hence, on receiv-
ing the recovery message from process P3, it
sets its flag resume flag to true and forwards the
recovery message to its successor process P0. It
observes that its latest checkpoint T4,1is a tem-
porary checkpoint. Therefore, it first converts
its latest temporary checkpoint to a permanent
checkpoint and then rolls back and restarts nor-
mal computation from that checkpoint. Later,
process P4 receives also the recovery message
sent by process P0. On receiving the recovery
message, it checks its flag resume flag. Since
it is true, it means that process P4 has already
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restarted its computation. Hence, this second
recovery message is discarded. In the mean-
time, process P0 receives the recovery message
sent by process P4. In a similar way it observes
that its flag resume flag is already set to true.
Hence, it discards this recovery message.

In the above example, we note that the recov-
ery message is forwarded by any process if and
only if the flag resume flag of the process is
false. We also observe that during recovery, if
the latest checkpoint of a process is found to be a
temporary checkpoint, it is converted into a per-
manent checkpoint and then the computation is
started from that checkpoint. In this context,
it is worth mentioning that restarting during a
process is delayed until the flag resume flag be-
comes true. Besides, the numbers of control
messages required for the checkpointing and
the recovery algorithms are significantly large.

Problem Formulation

In the checkpointing algorithms proposed in
[4], [5], [7], and [9], processes are supposed to
take temporary checkpoints first, and then these
checkpoints are converted to permanent ones
and only then, these permanent checkpoints are
considered to form a CGS of the system. How-
ever, during the execution of the checkpointing
algorithm, if a process is busy with some high
priority procedure, when a checkpointing re-
quest arrives at it, the process will not take a
checkpoint. In such a situation, every process
that has already taken a temporary checkpoint
must discard it and continue normal execution.
Later, the checkpointing algorithm has to be
restarted again. The same problem may arise
when a process receives a request to convert its
temporary checkpoint to a permanent one while
it is busy executing a high priority procedure. In
this case also, the checkpointing algorithm has
to restart later. Thus, such situations definitely
affect the execution time of the application pro-
grams adversely.

To avoid this problem we have proposed a
checkpointing algorithm which takes perma-
nent checkpoints directly, without taking tem-
porary checkpoints, and whenever a process is
busy, the process takes a checkpoint after com-
pleting the current procedure. The proposed
checkpointing and recovery algorithms are both
single phase and non-blocking ones. We do
not consider concurrent initiations of the algo-
rithms, as it may cause message storm in large

distributed systems. We have shown that the
proposed algorithms take much less time for
their execution and use much less number of
control messages (and hence much less number
of interrupts to a process) when compared to the
algorithms in [4].

This paper is organized as follows. In Section
2 we have stated the system model, the rele-
vant data structures, and a formal description
of the proposed checkpointing algorithm along
with an illustration. In Section 3 we have stated
the recovery algorithm along with an illustra-
tion. Also, in this section we have discussed
the performance of the proposed algorithms. In
Section 4 we have stated how the proposed ba-
sic checkpointing algorithm can be modified so
that only minimum number of processes will
take checkpoints, which has not been addressed
in [4].

2. System Model, Data Structures, and the
Checkpointing Algorithm

2.1. System Model

We consider that the bidirectional ring network
architecture consists of n processes P0, P1, P2,
. . . , Pn−1. These processes do not share mem-
ory and they communicate via messages. We
also assume that the ith process can directly send
a message to jth process if and only if j = (i+1)
mod n or j = (i − 1) mod n. That is jth process
is the immediate successor to ith process if and
only if j = (i + 1) mod n and jth process is
the immediate predecessor to ith process if and
only if j = (i − 1) mod n. The communica-
tion channel is assumed to be first in first out
(FIFO).

2.2. Data Structures

Consider a distributed system of n processes P0,
P1, P2, . . . , Pn−1 involved in the execution of a
distributed algorithm on a bidirectional ring net-
work. In a bidirectional ring network a process
Pi can send an application or control message
only to its adjacent process Pj where j = (i+1)
mod n or (i − 1) mod n.
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Acheckpoint sequence number denotes the num-
ber of times the checkpointing algorithm has
been executed so far. In other words, if the
checkpoint sequence number is k, it means that
the checkpoint is taken on the kth execution of
the checkpointing algorithm. Initially, check-
point sequence number for each process is set
to zero.

In our algorithms, we use two kinds of control
messages. The first one is a checkpoint request
< Cp, i >, which as in [4], is sent by an ini-
tiator process Pi (to initiate the checkpointing
algorithm) to its adjacent processes, where i is
the process id of the initiator process. The sec-
ond control message is the recovery message
< Rc, j > used in the recovery approach. The
recovery algorithm is initiated by the process
which has recovered from a failure. This pro-
cess initiates the recovery algorithm by send-
ing this recovery message to its adjacent pro-
cesses, asking them to restart from their respec-
tive checkpoints taken during the jth execution
of the checkpointing algorithm.

2.3. An Illustration

We now explain with an example how our pro-
posed checkpointing approach works. Consider
a distributed system of five processes P0, P1,
P2, P3, and P4 in a bidirectional ring network
as shown in Figure 2. Assume that process
P2 initializes the checkpointing algorithm. It
takes a permanent checkpoint C2,1, increments
its checkpoint sequence number which is ini-
tially zero, and sends checkpoint requests with

the checkpoint sequence number < CP, 1 > to
its respective predecessor and successor pro-
cesses P1 and P3. Process P2 then continues
normal computation associated with the appli-
cation program. Eventually, the checkpoint re-
quests reach their destinations P1 and P3. When
process P1 receives the checkpoint request, it
first takes a permanent checkpoint C1,1 and then
increments its checkpoint sequence number and
forwards the checkpoint request to its adjacent
process P0 from which it did not yet receive any
control message and continues normal compu-
tation. Similarly, when process P3 receives the
checkpoint request from the initiator process P2,
it first takes a permanent checkpoint C3,1 , then
increments its checkpoint sequence number. It
then forwards the checkpoint request to process
P4 and then continues normal execution. On re-
ceiving the checkpoint request, process P4 first
takes a permanent checkpoint C4,1, increments
its checkpoint sequence number, forwards the
checkpoint request to its adjacent process P0
and then continues normal execution.

Suppose that process P0 receives the checkpoint
request from P1 before the checkpoint request
from P4. Process P0 takes a permanent check-
point C0,1, increments its checkpoint sequence
number and forwards the request to its adjacent
process P4 from which it did not yet receive the
checkpoint request. After forwarding the re-
quest, process P0 continues normal execution.
Eventually, process P4 receives the checkpoint
request sent by process P0. Process P4 checks
its checkpoint sequence number and finds that
it has already taken a checkpoint during the cur-
rent execution of the algorithm and so it discards
the request message. Similarly, when process
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Figure 2. An example of our checkpointing approach.
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P0 receives the checkpoint request sent by pro-
cess P4, it checks its checkpoint sequence num-
ber and concludes that it has already participated
in the current execution of the algorithm and so
it discards the request and continues normal ex-
ecution. It may be observed that in our approach
the number of control messages needed is much
less than the one in [4]. An estimate of this
number is given later.

2.4. Process Behavior

The following discussion is important for de-
signing the checkpointing algorithm for bidi-
rectional ring networks. In any checkpointing
algorithm, when a process receives a checkpoint
request from an initiator, it may take one of the
following two actions:

– either takes a checkpoint by giving the
highest priority to the interrupt caused by
the checkpoint request, or

– does not respond to the initiator’s request
(which means that the process is execut-
ing a procedure of higher priority and does
not take a checkpoint).

In the proposed algorithm, when a process re-
ceives a checkpoint request from the initiator,
it may decide not to take a checkpoint imme-
diately because it is executing a higher priority
procedure. In this case, instead of discarding the
checkpoint request to take the checkpoint, the
process takes the checkpoint after the conclu-
sion of its current procedure. Any application
messages received will be queued up and exe-
cuted in first in first out mannerwhen the current
procedure is completed. Figure 3 illustrates this
approach.

Pi-1 

Pi

Pi+1 

Ci

Ci+1 

mi

Busy

<Cp,i> 

<Cp,i> <Cp,i> <Cp,i> 

Ci-1

Figure 3. Process behavior during the execution of the
checkpointing algorithm.

In Figure 3, assume that it is the kth execution
of the checkpointing algorithm and process Pi
is the initiator. Process Pi takes a checkpoint
Ci, increments its checkpoint sequence number
and then sends checkpoint requests to its ad-
jacent processes Pi−1 and Pi+1. Suppose that
process Pi−1 is executing some high priority
job and decides not to take a checkpoint. So
the checkpoint request is saved in Pi−1’s local
queue. Assume that process Pi sends an appli-
cation message mi after taking the checkpoint
Ci to Pi−1. The message mi is also saved in its
queue as the process Pi−1 is busy. After com-
pletion of the procedure, process Pi−1 checks its
queue and first processes the checkpoint request
and then processes the application message mi
(i.e. following the FIFO order). Therefore, no
such application message can ever be an orphan
and checkpoints taken during the execution of
the algorithm are all mutually consistent. As
a result, all checkpoints taken during any kth

execution of the checkpointing algorithm are
always mutually consistent and, therefore, they
are globally consistent checkpoints.

2.4.1. Assumptions

In this work, we assume that the events of re-
ceiving the first checkpoint request by a process,
taking a checkpoint, incrementing its check-
point sequence number, and then forwarding
request messages to its adjacent processes are
done automatically, if the process is not busy
with a higher priority job when the checkpoint
request arrives. On the other hand, if the pro-
cess is busy with a higher priority job when the
checkpoint request arrives, the events of tak-
ing its checkpoint, incrementing its checkpoint
sequence number and then forwarding request
messages to its adjacent processes are done au-
tomatically. We also assume that if a failure oc-
curs during the current execution of the check-
pointing algorithm, its execution is immediately
aborted and in such a situation, if a process, say
Pi has taken its recent permanent ith checkpoint
during the current execution of the algorithm,
this checkpoint will be discarded and the previ-
ous (i − 1)th checkpoints of all processes will
be considered as the recent GCCs from which
the respective processes will restart their nor-
mal computation after the system has recovered
from the failure.
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2.5. Checkpointing Algorithm for
Bidirectional Ring Network:
Algorithm A

The responsibilities of the initiator process and
of all other processes are stated below.
Initiator process Pi

Step 1: take a checkpoint;

Step 2: increment the checkpoint sequence number;

Step 3: send a checkpoint request < Cp, i > to successor
and predecessor;

Step 4: continue with normal execution;
/*Algorithm is terminated at the initiator
process*/

At process Pj

it receives the checkpoint request < Cp, i >

if checkpoint request< Cp, i > is the second request
received

/*A process may receive at most two reque-
sts from its adjacent processes during an
execution of the algorithm*/

discard the request;

continue normal execution;

else, if serving a higher priority procedure

take a checkpoint after the procedure ends;

increment the checkpoint sequence number;

forward the checkpoint request < Cp, i > to ad-
jacent process from which checkpoint request
was not received;

continue normal execution;

/* The responsibility of Pj associated with
the current execution of the algorithmends*/

else

take a checkpoint;

increment the checkpoint sequence number;

forward the checkpoint request < Cp, i > to ad-
jacent process from which checkpoint request is
not received;

continue normal execution;

/* The responsibility of Pj associated with
the current execution of the algorithmends*/

———————————————————

Correctness Proof: We will prove that there can-
not exist any orphan message between any two
recent checkpoints taken respectively by any
two processes during the execution of the check-
pointing algorithm.

Consider the following two possible situations
that may occur whenever an application mes-
sage mi is sent by process Pi to another process
Pj;

(1) the application message mi is sent before
Pi sends a checkpoint request to Pj;

(2) the application message mi is sent after Pi
has sent a checkpoint request to Pj;

In the first situation, since after sending the
application message mi process Pi has sent a
checkpoint request, it means that process Pi
has either initiated the checkpointing algorithm
or Pi has received a checkpoint request from
another process. According to the algorithm,
if process Pi initiates the checkpointing algo-
rithm, it first takes a permanent checkpoint and
then sends a checkpoint request to its adjacent
processes. On the other hand, if process Pi
has received a checkpoint request from another
process, it first takes a checkpoint and then for-
wards the checkpoint request. Hence, in any
case, process Pi takes a checkpoint first, before
sending a checkpoint request message. There-
fore, the application message mi sent by Pi be-
fore it sends its checkpoint request cannot be an
orphan.

In the second situation, the application message
mi is sent after Pi has sent the checkpoint re-
quest to Pj. Since the communication channel
is first in first out, therefore Pj first takes its
checkpoint on receiving the checkpoint request
and then processes the application message mi.
Therefore, the application message mi cannot
be an orphan.

The above argument is true for all processes in
the system. Therefore, orphan messages do not
exist in the system. So the checkpoints taken
during the execution of Algorithm A are mutu-
ally consistent. Hence, the proof follows.

3. Recovery in Bidirectional Ring Network

The proposed recovery approach in this work is
explained with an example below. Consider a
distributed system of five processes P0, P1, P2,
P3, and P4 as shown in Figure 4.

Suppose that the checkpointing algorithm has
been executed and a set of globally consistent
checkpoints is found. Let {C0,1, C1,1, C2,1, C3,1,
andC4,1} be the set of globally consistent check-
points. Assume that at time t process P2 fails.



30 Design of High Performance Distributed Snapshot / Recovery Algorithms for Ring Networks

P0

P1

P2

P3

P4

C0,1

C1,1

C2,1

C3,1

C4,1

<RC,1>

<RC,1>

<RC,1,>
<RC,1>

m4

m1

m2

m3

m5

<RC,1>< CP, 1> 

< CP, 1> 

< CP, 1> 

< CP, 1> 

< CP, 1> 

< CP, 1> 

Failure f

Time t0

Figure 4. An example of our recovery approach.

After recovering from the failure, P2 starts the
recovery algorithm. Process P2 sends to its ad-
jacent processes P1 and P3 a recovery message
< Rc, 1 >, where 1 is the checkpoint sequence
number to which each receiving process shall
roll back. Process P2then rolls back to its per-
manent checkpoint C2,1 and restarts its normal
execution.

On receiving the recovery message < Rc, 1 >
process P1 forwards the recovery message to its
predecessor process P0 from which it did not re-
ceive the recovery message and then rolls back
to its permanent checkpoint C1,1 as specified in
the recovery message and restarts computation
from that checkpoint. Similarly, process P3, on
receiving the recovery message, forwards the
message to its successor process P4 from which
it did not receive the recovery message and rolls
back to the checkpoint C3,1 and continues nor-
mal execution.

Process P0, on receiving the recovery message
from process P1, forwards the message to P4
and rolls back to C0,1 and continues normal ex-
ecution. Without any loss of generality, sup-
pose that process P4 first receives the recovery
message sent by P3. On receiving the recov-
ery message, it first forwards the recovery mes-
sage to its adjacent process P0, the one from
which it did not yet receive the recovery mes-
sage, and rolls back to its latest checkpoint C4,1
and restarts computation from that checkpoint.
Process P0 discards this recovery message, see-
ing that this message has the same checkpoint
sequence number as the previous one it has re-

ceived. Process P4 does the same when it re-
ceives the recovery message from P0.

Observe that, in our approach, as soon as a
process receives the first recovery message, it
immediately rolls back to its latest consistent
checkpoint and restarts computation. But, in
[4], restarting at a process is delayed until its
flag resume flag becomes true. Also note that
our proposed approach uses much less number
of control messages.

In brief, the presented recovery approach works
as follows. Whenever a failure occurs in a pro-
cess, after recovering from the failure, the failed
process initiates the recovery algorithm. When
a process Pi initiates the recovery algorithm, it
sends recovery messages to its predecessor and
successor processes, say Pk and Pm, with its
checkpoint sequence number, and rolls back to
its checkpoint taken during the last execution
of the checkpointing algorithm and restarts its
normal execution. On receiving the recovery
message, each process Pj forwards the message
to the process other than the one from which
it has received the recovery message and then
rolls back to its checkpoint as specified in the re-
covery message and restarts normal execution.
Whenever a process receives more than one re-
covery message (with the same checkpoint se-
quence number), it discards the later message.
Observe that as soon as a process rolls back,
its responsibility associated with the recovery
algorithm is terminated.
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3.1. Recovery Algorithm for Bidirectional
Ring Network: Algorithm B

The responsibilities of the initiator process and
of all other processes are stated below.
Initiator process Pi

Step 1: send recoverymessage < Rc, i > with the current
checkpoint sequence number j to adjacent processes;

Step 2: rollback to the latest checkpoint;

Step 3: restart from the checkpoint and continue execu-
tion;

/* The Algorithm is terminated at the initia-
tor process */

Any process Pj

it receives the recovery message < Rc, i >

if the recovery message < Rc, i > is the second
recovery message received

/*A process may receive at most two re-
covery messages from its adjacent processes
during an execution of the algorithm*/

discard the request;

continue execution;

else

forward the recovery message < Rc, i > to the
adjacent process from which the recovery mes-
sage was not received;

rollback to the checkpoint as specified in the
recovery message;

restart from the checkpoint and continue execu-
tion;

/* The responsibility of the process asso-
ciated with the execution of the recovery
algorithm is terminated */

3.2. Performance

3.2.1. Comparison of the Number of Control
Messages Used

We start with a comparison of the number of
control messages (i.e. the checkpoint request
and recovery messages) used by our proposed
checkpointing algorithm and the algorithm re-
ported in [4]. We consider single process initia-
tion of the algorithm in [4]. In the bidirectional
ring network, the algorithm proposed in [4] re-
quires two checkpoint requests for a process
to take a permanent checkpoint. For the first
request each process takes a temporary check-
point and after receiving the second request the
process converts the temporary checkpoint to

a permanent checkpoint, and when the initia-
tor receives two requests it terminates the algo-
rithm. Hence, in an n-process system, for the
checkpointing algorithm to complete, 2n num-
ber of control messages are needed. With the
algorithm presented in this paper each process
requires only one checkpoint request to take a
permanent checkpoint. Therefore, the number
of control messages in our proposed approach
for a bidirectional ring network is only n + 1
in the worst case, which is almost half of the
number used in the algorithm proposed in [4].
The recovery algorithm in [4] requires 2n − 1
control messages. In our presented algorithm,
this number is only n + 1. It also shows that
in our work processes are interrupted much less
frequently because of the less number of control
messages used. It definitely contributes to the
speed of execution of the approaches presented
in this work.

3.2.2. Comparison of the Execution Times

The main advantage of our presented check-
pointing algorithm is that it creates a globally
consistent set of checkpoints in much less time,
when compared to the algorithm proposed in
[4]. Suppose that t is the average time a mes-
sage takes to travel from one process to another
in an n process system. The checkpointing algo-
rithm in [4] requires n*t time units to complete,
whereas our presented checkpointing algorithm
requires only (n/2+1)*t time units to complete
in the worst case. A summary of the perfor-
mance comparison is given in Table 1. Observe
that we use the same topology as in [4], and so
it is correct to assume the existence of the same
message passing mechanism in the system, ir-
respective of what checkpointing algorithm is
used. So, we can assume the same value for ‘t’
for both our work and the work in [4].

Algorithm Property Mandal
(4)

Our
Algorithm

Checkpointing
Algorithm

Number of
Control

Messages
2n n+1

Recovery
Algorithm

Number of
Control

Messages
2n − 1 n+1

Checkpointing
Algorithm

Execution
Time n*t (n/2+1)*t

Table 1. Performance Comparison.
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Figure 5a shows the variation of the execution
times in the two checkpointing algorithms with
the number of processes in the system and Fig-
ure 5b shows the variation of the number of
control messages used by the two checkpoint-
ing algorithms with the number of processes
in the system. It is evident that our proposed
checkpointing algorithm outperforms the algo-
rithm proposed in [4].
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Figure 5a. Execution time vs. no. of processes.
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Figure 5b. No. of control messages vs. no. of processes.

In our work, we have not considered concurrent
initiations of either the checkpointing or the re-
covery algorithm. We strongly argue that such
initiations create basicallymessage storm in dis-
tributed systems, particularly when the number
of processes n is large. So this may not be a
good practical approach for large n. It is evi-
dent that in [4] and [10] the respective message
complexities are O(n2) and O(n3) for concur-
rent initiations as opposed to O(n) for single
initiation in our work.

4. Further Modification

Thepresented algorithm can be furthermodified
to allow only minimum number of processes
to take checkpoints. Note that this minimality
consideration has not been addressed in [4]. The
modification can be done in the following way.

It is clear that a process does not need to take
a checkpoint if it has not sent any application
message to its adjacent processes. Suppose that
each process maintains a flag, message sent,
which is initially set to false. The flag is set to
be true the first time a process sends an appli-
cation message to its adjacent process since its
last checkpoint. Every time the process takes
a checkpoint, the flag is reset to false. When-
ever a process receives a checkpoint request, it
checks its message sent flag. If it is true, it
takes a checkpoint, increments its checkpoint
sequence number, and forwards the message to
its adjacent process. If the message sent flag is
false, the process does not take a checkpoint and
forwards the message to its adjacent process. It
can be observed that even if a process does not
take a checkpoint in the current checkpointing
interval, the latest checkpoints of all the pro-
cesses still form a consistent global state (CGS)
of the system.

5. Conclusion

In this work, we have deviated from the con-
ventional approach of taking temporary check-
points in the first step and then converting them
to permanent ones by processes (as followed by
any coordinated checkpointing scheme). The
logic for such a deviation has been clearly
stated in the problem formulation. It has helped
in designing the proposed high performance
non-blocking checkpointing and recovery algo-
rithms for bidirectional ring networks. Both
our proposed algorithms offer much better per-
formance than the corresponding algorithms re-
ported recently in [4] in terms of the number
of control messages used and the execution
times of the algorithms. Besides, our check-
pointing algorithm can easily be enhanced to
allow only the minimum number of processes to
take checkpoints, which effectively contributes
to the speed of execution of the algorithm, and
hence the application program as well. Observe
that such minimality consideration has not been
addressed in [4]. It may be noted that the check-
pointing algorithm in its proposed form cannot



Design of High Performance Distributed Snapshot / Recovery Algorithms for Ring Networks 33

be applied to a generic network. It needs major
modification for that purpose, which may re-
sult in the loss of its efficiency. The reason for
this is as follows: in bidirectional networks, a
process may receive orphan messages from its
predecessor and its successor only; whereas in
a generic network, a process may receive or-
phan messages from any number of the other
processes based on the topology. So making
checkpoints mutually consistent is a lot more
complex problem than the one in ring networks
and, therefore, it needs major modification of
the proposed checkpointing algorithm to be-
come suitable for arbitrary topology.
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