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In this paper we present a method for search and
localization of objects with a mobile robot using a
monocular camera with zoom capabilities. We show how
to overcome the limitations of low resolution images
in object recognition by utilizing a combination of an
attention mechanism and zooming as the first steps in the
recognition process. The attention mechanism is based
on receptive field cooccurrence histograms and the object
recognition on SIFT feature matching. We present two
methods for estimating the distance to the objects which
serve both as the input to the control of the zoom and the
final object localization. Through extensive experiments
in a realistic environment, we highlight the strengths and
weaknesses of both methods. To evaluate the usefulness
of the method we also present results from experiments
with an integrated system where a global sensing plan is
generated based on view planning to let the camera cover
the space on a per room basis.
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1. Introduction

The field of mobile robotics is continuously ex-
panding. The question is no longer if robots
will take the leap out of the factories and into
our homes, but when. The future applications
of autonomous agents require not only the abil-
ity to move about in the environment and avoid
obstacles, but also the ability to detect and rec-
ognize objects and interact with them. Yet most
robotic applications tend to be one of the two:
Either entirely blind to everything in their sur-
roundings except what is required merely for
navigating through the environment, or else de-
signed to function in a fixed setting, where they
have a well-known and unchanging frame of
reference that they can relate objects to. Never-
theless, there are some recent attempts to over-

come these limitations. For example, the robot
league of the Semantic Robot Vision Challenge
(SRVC) [12] is a promising attempt to advance
understanding and development in this area.
The topic in this paper contributes to the field
in that it deals with object search and detection
in realistic indoor environments and thus aims
at reducing the aforementioned limitations.

For mobile robots operating in domestic en-
vironments, the distance to the objects varies
significantly: often it is too large to perform
reliable detection /recognition, especially when
using low resolution images. Successfully rec-
ognizing an object requires that the robot moves
closer to it or zooms in on it, which in turn as-
sumes that the object has already been detected
in the field of view. Different methods have
been proposed to determine the area of inter-
est of an image, so that the robot knows what
to zoom at. In [14] a foveated dynamic atten-
tion system is demonstrated. The system uses
edges and circular features to direct attention,
though it is done in a non-specific fashion; this
is also the case in [6], where a measure of fea-
ture saliency inspired by human cognition is
used in order to provide a sequence of atten-
tional saccades to potential interest areas in the
image. The VOCUS system [4] is another exam-
ple of a biologically inspired attention system.
The top-placing entrants in [12] similarly use
non-specific saliency to direct attention for ob-
ject detection. An attention control method that
uses contextual information is described in [10],
although its specificity applies to the area sur-
rounding objects rather than objects themselves.
In [2] an object-specific attentional mechanism
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is described. It utilizes receptive field cooccur-
rence histograms (RFCH), which provide dif-
ferent hypotheses for any occurrence of each
object in the image. Zooming in combination
with controlling the pan/tilt-angles is used to
provide a closer view of the objects for the later
recognition step which is performed using SIFT
feature matching.

To perform an efficient object search and de-
tection in a realistically-sized environment, the
robot needs the ability to plan when and from
where to acquire images of the environment, as
exhaustive search is unfeasible. View planning
is a comparatively old, but still thriving research
area. Early work on view planning was of a
mostly theoretical nature, but as the field has
matured more implementation-oriented results
are emerging. [15] examines the problem of
optimally covering the “view sphere”, i.e. all
angles that can be seen from a fixed point in
space, given a probability distribution for the
presence of the object. In [16], the approach is
augmented with multiple viewpoints, each next
point selected by a greedy policy. The gen-
eral problem of finding a minimal set of view-
points from which to observe all parts of the
environment is called the art gallery problem.
[8] proves that this problem is NP-hard, and
thus approximate solutions are required. Us-
ing a polygonal map of the robot’s surrounding,
[5] uses a sampling scheme to find an approx-
imate solution to the art gallery problem while
additionally taking into account the practical
limitations of sensors by postulating maximum
and minimum distance and maximum viewing
angle. However, parameters for only a single
object are considered.

Another related view planning problem is the
watchman problem, which entails computing a
minimal continuous path through space from
which all of the environment can be seen; here,
the length of the path is what is crucial - in con-
trast to the art gallery problem, where the dis-
tance between viewpoints is immaterial. The
watchman problem, too, is NP-hard when there
are “holes” in the free space (as shown in [1]).
Many different approaches exist to solving both
the art gallery and watchman problems; [11]
provides an extensive survey. In [13], the cost
of moving and processing views is combined in
a single planning task, approximated as an in-
teger linear problem (ILP). A set of candidate
view points is assumed to be provided.

1.1. Contributions

Using a combination of view planning and vi-
sual search, we show how existing computer
vision methods can be used on a mobile robot
platform to produce an autonomous system that
is able to efficiently detect and localize differ-
ent objects in a realistic indoor setting. The
proposed system is implemented on a mobile
robot and its practicability is demonstrated in
experiments.

We build further on the ideas presented in [2].
For the local visual search we add a vision-
based object distance estimate that facilitates
better zooming capabilities. In [2] distances
to objects were estimated using a laser scan-
ner. We also improve the way multiple objects
can be searched for at the same time through
better utilization of shared zooming. We also
add a more efficient view planning strategy that
takes into account the layout of the environment
and the specific constraint of the individual ob-
jects. Finally, we present results from an exten-
sive experimental evaluation of the vision based
distance estimation and show examples of runs
with the entire integrated system.

1.2. Hardware

The robotic platform used is a Performance
PeopleBot. It is equipped with a SICK laser
rangefinder with a 180 degree field, positioned
near the floor (at about 30 cm), and with a
Canon VC-C4R video camera, able to acquire
low resolution images (320 x 240 pixels) with
pan/tilt functionality and up to 13 x magnifica-
tion. The camera is mounted about 1m above
the floor. The robot has a differential drive and
a wireless LAN connection.

2. Navigation

The robot is provided with a metric 2D-map,
consisting of line features representing struc-
tures in the environment such as walls as well
as with its own location in this map. The map
is generated in advance by the robot using laser
data and standard SLAM methods as presented
in, for example, [3]. The robot is also given a
set of nodes in 2D-space with edges between
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them, constituting a navigation graph which
represents known robot-navigable space. Sim-
ilar ideas have been presented in [7]. This is
performed in the mapping step; as the robot
moves into unexplored areas, it drops nodes at
regular intervals, and when it moves between
existing nodes it connects them in the map.

For example, consider the situation in Figure 1.
It represents the map of a room built by means
of laser data, where stars and lines represent
the navigation graph created during exploration.
The figure also shows some objects placed at
different positions in the room. The objective
of the object search algorithm presented further
on in the paper is to detect all the objects, with-
out prior information about their location, while
keeping the trajectory traveled during the search
short.

Figure 1. Example of distribution of objects in a room.
Stars represent nodes, and circles, the actual positions of
objects.

The object search begins with a planning step
used to determine an efficient movement policy
for exploring the map. In the current system,
only the navigation nodes are considered dur-
ing planning, as they are the only parts of the
map guaranteed to be reachable. This way, the
process is also computationally cheaper.

The map used in the search procedure repre-
sents a room, i.e. a more or less convex space,
that consists of different types of geometrical
structures such as walls, furniture, etc. Starting

originally with a more complex map of the envi-
ronment, the maps of single rooms are obtained
by dividing the navigation graph into subgraphs
by cutting out all the door nodes [7]. All fea-
tures of the map are assigned to the room which
has the nearest navigation node. Planning ef-
ficient movement between rooms is currently
performed using a next-closest-room-first strat-
egy.

The resulting navigation plan provides the robot
with a list of nodes it needs to visit. For each
node, there is also a list of viewing directions
or views that it needs to process as well as
the list of objects it has to look for in each
view. The navigation plan is defined so that
all parts of the room are searched for all the
objects, while keeping the number of visited
nodes and visual searches as low as possible.
Additional object constraints must also be ful-
filled as, for example, a small object can only
be detected /recognized from a short distance.
Finally, uniqueness must be taken into account:
objects should be discarded once they are found,
which means the exploration plan will need to
be updated.

2.1. Grid-based View Planning
2.1.1. Occupancy Grid

The metric map built using SLAM is not ge-
ometrically perfect. Features extracted from
laser data do not form a clean, continuous out-
line. Typically, different and commonly over-
lapping line features explain the same sensor
data thus making the resulting clutter to increase
planning complexity. For this reason, a simpler
occupancy grid-based representation is used as
the base for the view planning. The occupancy
grid can be acquired either directly from laser
data or by rasterizing an existing feature map by
simply marking a cell as occupied if it contains
a feature.

Note that the occupied cells are not assumed by
the algorithm to obstruct field of view of the
camera in any way. As the data originates from
the laser, which is placed low on the robot, an
occupied cell may not correspond to occluded
field of view for the more highly placed camera.

Grid cell size is a tuning parameter; a small
cell size will result in a lot of points to cover,
which means higher accuracy, but also higher
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computational cost. Small cells will be very
closely packed and thus grouped into the same
viewing directions for the robot to process. On
the other hand, a too-large cell size will lead to
insufficient detail in the plan and the robot may
miss parts of the map to explore. In the current
system, a fixed cell size of 0.5m is used.

2.1.2. Views

Using the grid, views can be calculated. A view
is a triplet consisting of the map node to which
the robot has to travel, the direction it should
point its camera to and the list of objects to be
searched for in the resulting image. In order
to simplify the calculations, grid cells are con-
sidered visible in a view if their center point is
inside the field of view of the robot.

2.1.3. Object Constraints

There are various objects the robot has to look
for and their attributes must be taken into ac-
count; specifically, their size, since it affects
the distance from which an object can be de-
tected /recognized. Hence, for each object a
minimum and a maximum distance value is de-
fined; the robot should attempt to find it only at
distances in this interval.

There are separate distance constraints for ob-
jectrecognition and object detection. For recog-
nition, the minimum distance is simply defined
as the range at which the object would fill an
entire image with a default zoom. The maxi-
mum distance is defined as the range at which
the object would occupy an entire image if max-
imum zoom was used. The minimum distance
for purposes of detection is given by the param-
eters of the detection algorithm, explained in
more detail in Section 3.2.

Figure 2 shows an example of two potential
views of a set of cells that, in this case, originate
from a wall. Large circles represent nodes; dots,
grid cell centers; the numbers close to them, the
nodes they are associated with; and the shaded
area, the views (along with objects planned for
in each view). Note how views from both the
nodes 15 and 18 are needed in order to cover
the right-hand wall due to the different sizes of
the objects. Other parts of the map are covered
by different sets of nodes.
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Figure 2. Example of the effect of distance constraints
on view planning.

2.1.4. Planning Strategy

The objective of the algorithm is to ensure that
any of the sought objects would be seen in at
least one of the planned views regardless of
which cell it was in — in other words, each pos-
sible object-cell combination must be covered
by some view.

After generating the grid, the view covering the
most object-cell pairs is chosen iteratively until
no pair remains that is not covered by any view,
or no view remains that covers further pairs. In
the latter case, the pairs are impossible to cover
given the provided set of nodes. The object-cell
pairs covered by each view chosen are removed
from subsequent iterations when they are cov-
ered by the desired number of views, which is
1 in the simplest case.

The plan is executed by visiting the closest nav-
igation graph node that has a view being part
of the list, performing object search for all its
views, then moving on to the next closest node
and so on. If an object known to be unique
is found during search, it is eliminated from the
plan; if any views in the plan are rendered empty
by this, they can be removed as well. Remov-
ing an object involves simply checking which
views contain it — without performing any new
geometrical calculations — which operation has
linear time complexity. As it is evident from
the above, the algorithm proposed is greedy in
terms of nodes and map cells. Although it does
not ensure an optimal solution, it allows for ob-
taining a low number of views in polynomial
time.
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2.1.5. Tilt Angle Selection

Since a 2D map of the environment is used,
there is no direct information that could help in
deciding how to use the tilt angle of the camera.
Yet, the objects being sought for might be at any
height, and thus some thought must be given to
covering the vertical dimension as well as the
horizontal ones.

Those grid cells which are closer to a given
view’s associated node than a set threshold (here
set to 2 meters) generate new views that cover
the vertical extent of the objects’ possible lo-
cations. Using the average distance for those
grid cells, together with an upper and a lower
boundary for objects’ positions, one or more tilt
angles are selected (with as little overlap as pos-
sible) and the resulting views are added to the
plan.

3. Vision

To detect objects, the system uses receptive field
cooccurrence histograms (RFCH) as described
in [2]. As potential objects are detected, the sys-
tem calculates suitable interest regions for the
camera to zoom on. Here, the system needs an
estimate of the distance to the object in order
to decide whether to proceed with recognition
given the current camera parameters or if zoom-
ing is needed. In [2] this estimate was taken
from the laser scanner; we, instead, obtain an
estimate through the RFCH procedure itself.

If the distance allows for reliable recognition
immediately, the system uses SIFT feature ma-
tching in order to recognize the object [9]. Oth-
erwise, the interest regions for the different ob-
jects are merged as far as possible and the cam-
era zooms in on each region in turn, repeating
the procedure until all objects have either been
found or eliminated. A detailed description of
the above procedure is presented in the follow-
ing sections.

3.1. Object Search Algorithm

Figure 3 presents the object search procedure
as a whole. Starting with an image at 1x
magnification, each object is processed inde-
pendently, whereupon the resulting zoom win-
dows are merged and each gives rise to a new,

RFCH
vote matrix

|

Distance
estimation

For each object

Getimage
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Figure 3. Object search algorithm.

zoomed image and the procedure repeats for
each of them.

The algorithm has three steps: initial, middle
and final. It progresses through them according
to the following:

e [Initial: No magnification used. After dis-
tance estimation and zooming, it proceeds
to the middle step.

e Middle: Magnification given by output from
zoom window sharing (Subsection 3.4.2). If
new distance estimate indicates current mag-
nification is too small (not within 1.8x of
new desired middle magnification), this step
is repeated. If, on the other hand, it is within
1.2x of the desired final magnification, it
skips straight to recognition. Otherwise, it
moves to final step without further zooming.

e Final: Magnification in accordance with Eq.
1. Recognition performed.

Typically, each step will run once only.

In the first two steps, an RFCH vote cell grid is
created and used to extract a set of hypothe-
ses. Then, distance is estimated using the
strongest hypothesis. If the distance found is
small enough (here, such that it would require
less than 3% the current magnification), SIFT
matching is performed for a more accurate dis-
tance measure. If this estimate in turn says that
the object is sufficiently magnified, the algo-
rithm jumps to recognition; otherwise, the most
reliable distance is used to produce a zoom win-
dow for the next step. Hypothesis grouping and
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reduction (Subsection 3.4.1) prunes the result
for each object; then, hypothesis sets for the
different objects are merged.

The magnification required for the algorithm to
jump to the recognition stage is a tuning param-
eter; in the current system, it is set to 1.2x of
the final. There is also a “short-cut” that lets
the object go straight from step 1 to step 3 if
the current magnification is found to be essen-

tially equal to the middle magnification (within
1.8%).

The last step in the object search consists sim-
ply of recognition, wherein SIFT matching is
preceded by a “sanity check” RFCH match on
the entire image (see Subsection 3.5). If the ob-
ject is found, its location in space is computed
from its position in the image and the distance
estimate. The output of the algorithm is a list of
objects that were found in the current view and
their calculated locations and distances.

3.2. Object Detection

The detection process works on a per-object ba-
sis and consists of several steps: an image is first
taken by the camera and divided into cells. For
each cell, RFCHs are computed using clusters
learned from each respective object in a train-
ing phase. These are then matched against the
training images’ histograms, resulting in a sim-
ilarity value for each cell and object. This set of
cell values is called the object’s vote matrix. An
example is shown in Figure 4. Higher value of
cells (represented by a lighter shade in the im-
age) denotes a greater degree of correspondence
between test image and training image.

Next, object hypotheses are generated. A cell
is a hypothesis if its value is higher than those
of its 8-connected neighbors, as well as higher
than an object-dependent threshold. The size of
the vote cells in the above algorithm is a tuning
parameter. Large cells mean faster histogram
matching; however, they decrease the detection
rate when they are larger than the objects in the
initial image. Also, maximum distance allowed
for object detection during the planning step is
set to the distance at which an object would oc-
cupy a single cell at no zoom, which decreases
as cell size grows. The value used in our work,
15 x 15 pixels, is a compromise between these
considerations.

a) The book is the object the robot searches for.

-
i
1
= |
=
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b) Th

e vote matrix for the book in the above image.

Figure 4. Vote matrix (b) generated from image (a)
where the object occupies large portion of the image.
The lighter a cell, the higher probability of the object.

3.3. Distance Estimation

In [2], the distance estimate used to determine
zoom levels was based directly on the robot’s
laser sensor. However, the distance provided by
the laser is often misleading, as Figure 5 shows:
the laser sensor is placed about 30 cm above the
floor and if an object is not at that height, the
estimate may be wrong. The approach works
only for objects that are placed on the floor or
are located close to walls (for example, in a
bookshelf). If the distance estimate is wrong,
the final zoom may either not be sufficient to
make the object occupy enough of the image, or
otherwise may be too large causing only a small
part of the object to be seen. Furthermore, even
if the object is recognized, its estimated position
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might be inaccurate. To address these issues, in
this work we use two alternative ways for dis-
tance estimation.

Figure 5. Distance estimation provided by the laser may
not be reliable: instead of the distance to the object on
the table, the distance to the shelf is measured.

3.3.1. Using the Vote Matrix

Using the RFCH vote matrix for distance esti-
mation consists of measuring how many cells
are part of the object and treating the area they
occupy in the image as an approximation of
the object’s size. Here, cells are considered to
be associated with a hypothesis if their degree
of match is above the threshold and if there
is an 8-connected path to the hypothesis with
cells of monotonically increasing value. Only
the strongest hypothesis and its associated 8-
connected cells are taken into account, because
it is likely to be the most reliable.

Given the object’s actual size stored in the train-
ing database, the distance is then computed as:

Wi
W -
real 2 Dvote

where D stands for the estimated distance (me-
ters); Wyeq, for the real width of the object
(meters); Wi, for the width in pixels of the
camera image; D)., for the width in pixels of
the bounding box of the cells associated with
a hypothesis and o, the horizontal viewing an-
gle. This procedure is fast and approximate, but
sufficiently accurate to allow the object search
algorithm to assign a valid zoom.

D=

3.3.2. Using SIFT

SIFT produces a scale parameter for each key
point extracted. For each matched pair of key
points in the training and recognition image, the
quotient of the keys’ scale parameter gives an
estimate of their relative apparent size and hence
their distance, according to:

lWim Sir
° 2Wir Sreal

o ()

where S, denotes the scale of the point extracted
from the training image; S,..;, the scale of the
point extracted from the recognition image, and
W;,, the width of the object in the training image
in pixels.

W,
D=

As mis-matched key point pairs can produce in-
correct scale parameters, the final estimate of
the object distance is taken as the median of
the distance estimates from all matches. Ex-
periments indicate that an adequate estimate is
obtained given 10 or more SIFT matches. With
4 matches or more, a passable rough estimate is
typically obtained (within about 30%). If there
are fewer than 4 matches, the result is likely to
be very poor (most likely based on some other
structure than the object) and is not used.

The drawback of the above method is that ex-
tracting SIFT features from an image is compu-
tationally expensive, and using it to guide the
zoom process may take too long to be feasible.
Another problem is the number of SIFT features
required to obtain a robust estimation; when the
object is small in the image (i.e. resolved by
few pixels), it is unlikely that enough matches
will be available.

3.4. Calculation of Zoom

Given a training image of an object, its size,
the distance to the object and the camera field
of view, we want to calculate the magnification
needed to make it fill the image as much as pos-
sible. The size of the object is approximated by
the size of its bounding box. In order to make
the object fill the image, the desired horizontal
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angle of view (), as well as the vertical (f3),
are calculated as:

o = 2 arctan Wrea
2D
g (1)
— 2 t rea
B arc an( 5D )

where W, and H ., represent the known width
and height of the object.

Since the object will typically not have the same
aspect ratio as the image, only one of the angles
o and P can be used to select the magnifica-
tion parameter. Therefore, of the two levels of
magnification suggested by the height and the
width respectively, the lower level is selected,
as given by the following rule:

If Wu//—l,r,” < sz,'," (Him and H, being the heights
analogous to the widths W, and W), o is
used; otherwise, 3.

3.4.1. Hypothesis Grouping and Reduction

Even with the threshold, there are typically too
many hypotheses to evaluate one-by-one. In
order to avoid excessive zooming and process-
ing, hypotheses are grouped together into zoom
windows, which are regions of the image to be
magnified and processed. The size of these win-
dows is determined by the magnification recom-
mended by the distance estimate of the strongest
hypothesis. The position of the window is cho-
sen to cover the maximum number of hypothe-
ses, and this is repeated until all hypotheses are
covered.

In cases when the distance parameter is not very
accurate, an error propagates into the calcula-
tion of the magnification parameter and into
the size of the zoom windows. This may
lead to generating more zoom windows than
is warranted and, consequently, lengthening the
search process. Thus, as a second step it is de-
sirable to remove those windows which do not
contribute information to the search, as they ei-
ther contain too few hypotheses or are located
close to “richer” zoom windows. Therefore,
zoom windows which overlap more than 20%
with another containing at least 3 times its num-
ber of hypotheses are removed. These condi-
tions are quite conservative in order to ensure
that no potentially important zoom windows are
removed.

3.4.2. Zoom Window Sharing

When searching for several objects, the set of
zoom windows obtained for each object is com-
puted separately. After this is done, the com-
bined set of windows needs to be merged to
reduce redundant steps. Here, we look for in-
stances of a zoom window encompassing that
of another object, in which case we can remove
the latter.

Not all the zoom windows that overlap can be
merged, as straying too far from each object’s
target magnification may cause object detec-
tion to fail. The object search process has three
steps: the first step without zooming, the second
step with a middle-level zoom and the third step
with large zoom; see Subsection 3.1. Itis not as
important that the middle-level zoom is exact,
since it is only used for hypothesis finding with
RFCH. Thus, a maximum and a minimum mag-
nification is defined for the middle-level detec-
tion step, allowing some flexibility in selecting
the windows to be used in this step. It is most
important to get the minimum zoom right: the
lower it is, the more objects we can look for
at one time, but the higher the risk that objects
are missed because they appear too small in the
image.

The algorithm works as follows: first all zoom
windows are shrunk to their minimum size.
Then, each zoom window associated with an
object A is compared with those of an object
B. If the hypotheses contained by one of B’s
windows can be made to be contained by one of
A’s — expanding the latter if needed, while con-
forming its maximum allowed size — then the
B window is removed and object B is added to
the A window’s list of candidate objects to look
for in the next step. This procedure is repeated
for each pair of objects. Tests have shown that
too flexible a window size tends to be harmful
to detection; in this work the maximum middle-
level magnification is set to 0.75 of the final
zoom level, and the minimum to 0.7 of the final
zoom level.

Given the object distribution shown in Fig-
ure 6.a), Figure 6.b) shows an example of this
process. Small squares represent hypotheses,
whereas big rectangles are the zoom windows
they are grouped into. The brightest hypotheses
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a) An example scene where the rice carton, the book and
the mouse pad are searched for.

b) Shared zoom windows.

Figure 6. Shared zoom windows of three objects placed
at different distances.

arise from the rice carton; the dark ones, from
the book, and the striped ones from the mouse
pad. Note that three of the windows contain
hypotheses for more than one object.

3.5. Object Recognition

The final object recognition is done once the
object occupies either the whole image or a
large portion of it. It consists of extracting SIFT
features from the current image and matching
them with the SIFT features in the training im-
age. SIFT features are scale-, position- and
rotation invariant up to a certain level, mean-
ing that many of the features will match even if
the object is seen from a different angle or under
different lighting conditions. However, it is usu-

ally the case that the number of SIFT matches
during the search is much lower than the num-
ber extracted from the training image, due to
changes of viewing angle and background. Be-
cause of this, we consider an object to have been
found if at least a 5% of the SIFT features match.
This value has previously been demonstrated to
result in few false positives in [2].

Once an object is recognized, its position in
the environment is calculated from the pan and
tilt angles of the camera, the estimated position
of the object inside the image and the distance
calculated by the system; see Subsection 3.3.
Because of the large variation present in the
images, it is very probable that false positives
reach the last step of the visual search. In order
to reduce the amount of unnecessary extraction
of SIFT features, the same RFCH algorithm that
is used for detection is used one last time on the
fully zoomed image before running the recog-
nition algorithm. The SIFT-based recognition
is performed only if this match is successful.

4. Experimental Evaluation

Several experiments were performed to evalu-
ate the proposed algorithms. Test objects used
in the experiments are: a book, a rice carton,
a printed mouse pad, a printed cup, a box for
a trackball, and a large robot. The size of the
forward face of the objects varied, from the cup
at 14 x 10 cm to the robot at 63 x 55 cm. Color
and shape were likewise diverse, providing a
highly heterogeneous sample.

4.1. Object Detection Using RFCH

The robustness of RFCH object detection was
evaluated in the following way:

Five test objects1 (cup, trackball box, rice car-
ton, book, mousepad) were placed at eight dif-
ferent distances, between 0.5 m and 4 m, from
the robot’s camera, using two different back-
grounds (a plain white wall and a typical office
scene). The robot was excluded in this evalua-
tion, as the ranges where it is detected differed
too much from the other objects. Five images
per position were obtained, introducing some
perturbation in the object between each.

1
The robot was excluded in this evaluation, as the ranges where it is detected differ too much from the other object.
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As described previously, for each image, RFCH
was used to calculate the similarity value for
each vote cell, and this was thresholded accord-
ing to an object dependent threshold. The vote
cells whose values were above the threshold
were segmented into 8-connected regions and
the local maxima of these regions were extracted
as hypotheses. The hypotheses were manually
labeled as true if they overlapped with a part
of the object in the test image, otherwise they
were considered false. Figure 7 shows the ratio
of false hypotheses generated in the set of test
images as a function of distance.

62.57
60
57.5
55
52.5-
50|
47.5
45
42.5-
40
37.5
35
325 : . r T T T T
05 1 1.5 2 25 3 35 4
Distance (m)

% of hypotheses

Figure 7. Percentage of false hypotheses generated by
the RFCH attention mechanism.

Generally, at larger distances less pixels of the
object are visible and it is less distinct from
the background. Thus, it can be seen that a
larger number of false hypotheses are generated
at larger distances. The rate of detection for
the objects selected ranges from approximately
65% at close distances, to 35% at longer dis-
tances. This sensitivity affects the efficiency of
the visual search, as false hypotheses can give
rise to unproductive zoom positions, but it also
ensures that true hypotheses are very rarely ne-
glected.

4.2. Initial Distance Estimation

As mentioned in Subsection 3.3, initially in the
visual search an approximate distance estimate
is required in order to direct zooming actions
and determine when SIFT extraction may be
performed. Below are the results highlighting
the properties of RFCH and SIFT, respectively,
when used for this purpose.

The same set of images was used as in Subsec-
tion 4.1, and the distance was computed using
both RFCH and SIFT separately for every im-
age. The distance estimate from RFCH is based
on the strongest hypothesis. The performance
of distance estimation is thus affected by how
often a correct hypothesis is selected for dis-
tance estimation. Figure 8 presents statistics
on the likelihood of selecting the correct hy-
pothesis for distance estimation as a function of
distance.
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Figure 8. Percent%ge of correctly chosen hypotheses for
istance estimation.

It is evident that reliability decreases with dis-
tance as the signal-to-noise ratio of the image
drops. At 2.5 m and above, less than half of
the distance estimates are based on the actual
object in the image, and performance continues
to drop until, at 4 meters, the area used becomes
nearly random.

Figure 9 presents the results of distance esti-
mation using RFCH and SIFT without magnifi-
cation, performed on five different test objects.
As expected, performance deteriorates for both
methods at long range, due to the decreased size
of the object in the image, and for RFCH also
partly to the discretization of the vote cells.

It is notable that the values obtained through
both methods tend towards the low end. The
reason for this are mainly outliers, erroneously
assigned values of 0.5-1 m, caused by large
background structures being mistaken for a close-
up object. Compared to RFCH, SIFT exhibits
a far more accurate and dependable estimate at
short range. However, its quality rapidly dete-
riorates at longer distances, as can be seen by
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Figure 9. Distance estimation results; all objects. Top
image RFCH, bottom SIFT. Boxes signify one standard
deviation about the average for each distance; lines
signify the most extreme values.

inspecting the average value of the estimates be-
yond 2.5 m in Figure 9.b). This is because a
certain level of detail is needed to extract SIFT
keys. In contrast, RFCH, though most reliable
at medium ranges (as demonstrated by the stan-
dard deviations in Figure 9. a), retains the ability
at long range to provide very rough approxima-
tions, generally adequate for the purpose of se-
lecting a zoom level for the next step. For the
final distance estimate, it should be pointed out
that SIFT is used — but the magnification of the
image will correspond to shifting the diagram
in Figure 9.b) into the 0.5 m—1 m region where
the method is most effective.

Figure 10 highlights the differences between
RFCH and SIFT in distance estimation. Here,
for each test image, the absolute error of the
distance estimate is compared between the two
methods and the percentage plotted of cases
where RFCH gives the better estimate and vice
versa. The graph shows that RFCH becomes
more reliable at 2 m range or above.
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Figure 10. Proportion of instances in which RFCH and
SIFT, respectively, provide the best estimate.

4.3. View Planning

The view planning algorithm was tested in three
rooms with a different metric map in each ex-
periment.

Some of the results of these experiments can be
seen in Table 1, where object B stands for the
book; C, for the cup; D for the robot; M, for
the mouse pad, and R for the rice. The table
shows how the number of objects involved in
the exploration varies the amount of required
searches. Note that the first case requires many
more searches; this is because both the cup and
the robot are regarded and their sizes do not
allow them to be looked for in the same views.
This effect is also visible when only one of them
is included.

Objects érll.g ;l Nodes 1:]1(5)338 Searches
BCDMR || 31.6 8 7 18
BDMR || 31.6 9 5 8
31.6 8 4 8
BCMR | 40.9 9 3 8
17.2 4 2 6
40.9 9 2 5
BM 1F72T 4 2 3
B 31.6 7 2 5
18.9 4 2 5

Table 1. View planning results.
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4.4. Object Search

The book, the rice carton, the mouse pad and the
robot were placed at different positions inside a
room, as previously seen in Figure 1. Searching
the room using estimations based on visual data
produces the results shown in Figure 11. Note
that all the objects are found and are accurately
localized.

Figure 11. Object position estimation searching the
room using image-based distance estimates.

4.5. Performance

Detailed timing of the performance of algo-
rithms is not the aim of this paper, yet some
qualitative evaluation has been performed. Of
the various sub-tasks involved in performing the
experiments described in Subsection 4.4, dis-
tance estimation takes the longest. This is be-
cause it constitutes a computationally complex
task that is performed at each step of the visual
search; once per acquired image per object.

Each such cycle typically takes a couple of sec-
onds, a fact which makes the number of hy-
potheses (and thus searches) generated by the
attentional mechanism very important. Figure 7
illustrates how the number of misleading hy-
potheses depends upon the distance (on aver-
age over all tests in Subsection 4.2). The false
hypothesis count obviously also depends on the
distinctiveness and size of the object sought.

The movement of the robot and the camera, in
comparison, take up relatively little time, and

the view planning carries a negligible cost in our
experiments as well. Nevertheless, this does not
mean that it would be more efficient to replace
the zooming procedure with moving up close
to objects: doing so would require more move-
ment and more initial images in order to achieve
full coverage, as well as more navigation nodes.
Also, perspective causes more deviation from
training images at closer range.

5. Discussion

The results indicate that the combination of
RFCH-based long range object detection strat-
egy, distance estimate-based zooming, and SIFT-
based close range recognition leads to a success-
ful strategy for object acquisition. The addition
of a visual view planning technique gives rise
to a viable approach for object search and local-
ization in indoor environments. This approach
has several advantages: the ability to simulta-
neously search for multiple objects of different
sizes, cover the scope of the environment for all
objects with a limited number of views, and de-
tect objects at long range. There are numerous
conceivable improvements that could be worth-
while to explore.

5.1. Attention Mechanism

RFCH is a comparatively new method and might
be improved in a number of ways. For example,
the object-specific thresholds and the vote cell
size are currently set manually. Finding a gen-
erally applicable way of determining these pa-
rameters would be an important improvement.
Moreover, the sensitivity of the method to noise
means it often generates false positives, reduc-
ing efficiency. Methods for alleviating noise
effects by, for instance, averaging RFCH re-
sponses over time or space would be worth in-
vestigating. The use of other types of similar
long range detection techniques could also be
considered.

5.2. Scalability

The current visual search is not highly scal-
able in terms of the number of objects to be
sought at the same time. It is adequate when
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searching for a specific object, but for more gen-
eral tasks such as exploring, inventory or active
knowledge maintenance more efficient modes
of object detection may be needed. The obvi-
ous way of dealing with this would be a first
stage indexing approach, which could produce
hypotheses for the presence of whole classes
of objects and subsequently refine these. This
would also make for a more compact internal
representation.

A related approach is that of abstraction, in
which visual processes extract some form of
semantic information which may then be used
to guide classification and recognition. Simi-
larly, the view planning could benefit from cat-
egorizing objects in terms of e.g. size cate-
gories, which would decrease complexity for
cases where many similarly sized objects are in
the set being searched for.

5.3. Map Complexity

Using a 2D map obtained from laser scans for
view planning is somewhat problematic; with-
out very strong assumptions of spatial layout, it
does not entirely convey a reliable picture of oc-
clusions, nor of the probability of the occurrence
of objects. It is also very sensitive to flawed
room subdivision: cells belonging to neighbor-
ing rooms, that may well be completely hidden,
can still affect the plan, leading to futile image
searches.

Some sort of 3D representation, whether ob-
tained from vision or range scans, could help in
this regard. Another path that could be investi-
gated is improving the methods for subdividing
the map into regions within which the assump-
tions hold true. In the end, however, a map built
only from a 2D occupancy grid cannot fully
capture all the relevant structures of a complex
environment; data from other modalities must
be included in order to do this.

5.4. Viewing Angles

Another issue is that the view planning algo-
rithm in its current form does not take into ac-
count the fact that objects may be difficult or
impossible to detect or identify when seen at
some angles, even setting aside occlusion by

other objects. Specular glare, lighting or per-
ceptual aliasing may vary depending on direc-
tion. To ensure detection in the face of these
complications, the planner must be made aware
of them on an object-by-object basis.

5.5. Prior Knowledge

The planning strategy in this paper implicitly
assumes that the prior probability distribution
of each object over all the feasible locations is
uniform. This is not always the case in reality.
One natural extension of this work would be to
weight possible locations of objects with prob-
abilistic knowledge (learned, directly provided
or deduced from semantics) of the likelihood of
objects’ presence. Such a weighting might in-
crease efficiency tremendously when the quality
of the agent’s knowledge is high.

Other promising avenues of research also in-
clude simultaneous integrated object detection
and mapping, online object learning and hierar-
chical approaches to detection.

6. Conclusion

This article presents a solution for the object
search and localization problem in a realistic
environment, incorporating both planning for
efficient view selection — including robot mo-
tion — and visual search using a combination
of receptive field cooccurrence histograms and
SIFT features, and a method of visual distance
estimation for the dual purpose of zoom level
calculation and object positioning in the map.
In a set of experiments, we have evaluated the
reliability of RFCH-based object detection, the
accuracy of the distance estimation methods, the
operation of the view planning technique, and
visual object search and localization as a whole.
The results indicate that the system presents a
viable approach for object search and localiza-
tion in indoor environments.
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