Journal of Computing and Information Technology - CIT 17, 2009, 2, 123-140 123

doi:10.2498/cit.1000964

mFrame: An Application Framework
for Mobile Resource-constrained
Computing Environments

Hinko Vincar', Hossein Saiedian? and Serhiy Morozov?

United Nations, Cologne, Germany
ZUniversity of Kansas, Lawrence, USA

The component and architectural design reuse value
of application frameworks enables higher productivity,
faster turn-around time, and reduced cost when compared
with the traditional development approaches. Because of
the constrained nature of mobile devices, the application
frameworks for such a computing environment have to
provide a simple and lightweight implementation while
still maintaining their flexibility and reusability value.
This paper presents mobile Framework (mFrame) ap-
plication framework that can be used for deploying
software applications to compact mobile devices such as
cellular phones, personal digital assistants (PDA), global
positioning systems (GPS) etc. It introduces a queuing
and service layer architecture that provides simple data
exchange mechanism between the presentation compo-
nents and local and remote business services. Compact
mobile devices using this architecture will be able to
handle network disconnections, because the requests will
be saved; and information will be exchanged with the
remote services upon reconnection.

Keywords: mFrame, application framework, mobile
computing, resource-constrained

1. Mobile Resource-constrained Devices

1.1. Introduction

The market for compact mobile devices like cel-
lular phones, personal digital assistants (PDA),
and global positioning systems is growing ra-
pidly. With the advent of third generation mo-
bile networks (3G), and other improvements in
hardware design, these devices are becoming
more suitable as a platform for application de-
velopment. However, because of inconsistent
design guidelines and lack of agreed upon spec-
ification, reusability and modifiability quality

attributes are usually not considered during de-
velopment of mobile applications.

When applied to mobile resource-constrained
devices, application frameworks can simplify
the application development. An application
framework is a semi-finished application where
core parts are already implemented and are in
place. An application developer who uses the
application framework provides the other parts
and completes the application. The component
and architectural design reuse value of applica-
tion frameworks can enable higher productivity,
rapid development and reduction in overall de-
velopment cost.

1.2. Problem Definition

Development environment for compact mobile
devices has tight memory constraints and re-
quires very careful and controlled allocation
and de-allocation of memory. The reliability
of mobile networks is very diverse and unpre-
dictable. The networks are characterized by
high latency, low bandwidth and interrupted
connections. Since information can be de-
layed or lost over wireless links, mobile ap-
plications must be able to tolerate some delays
that can have a major impact on user’s percep-
tion of an application’s performance (Varshney
2002). An application framework for such a
resource-constrained environment has to enable
simple and lightweight implementation, while
still maintaining its flexibility and reusability
value.

124 mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

This paper presents the design, implementation
and usage of mFrame (mobile Framework)
application framework for deploying software
applications to compact mobile devices such
as cellular phones, personal digital assistants
(PDA), global positioning systems (GPS) etc.
The proposed application framework introduces
a queuing and service layer architecture that
provides simple data exchange mechanism be-
tween the presentation components and local
and remote business services. Compact mobile
devices using this architecture will be able to
handle network disconnections, because the re-
quests will be saved; and information will be
exchanged with the remote services upon re-
connection.

Multiple related research efforts focus on main-
taining a reliable connection and data transfer
during mobile handoffs. In fact, the majority of
published material in this area is concerned with
improving the shortcomings introduced by the
wireless links at lower OSI layers. One of the
earliest successful solutions to this problem is
discussed in “Improving reliable transport and
handoff performance in cellular wireless net-
works”. The authors of this article were able
to improve the throughput performance by 20
times and decrease the handoff latency by 10
times (Balakrishnan, Seshan, & Katz 1995).
Similarly, Ludwig, Konrad, and Joseph focused
on the link layer performance. The authors were
able to achieve a 25% improvement in network
throughput that was capable of resuming data
exchange after minutes, hours and even days of
link unavailability (Ludwig, Konrad, & Joseph
1999). A similar disconnection solution could
also be done at a data level. Bayou is an infras-
tructure designed specifically for collaborative
applications. It is capable of maintaining its
database integrity across multiple users that are
loosely connected at any given time. Bayou is
especially well suited for mobile users, whose
network connections are often slow and unreli-
able (Edwards et al. 1997). An alternative data
level framework, called IBM Fluid Middleware,
supports building applications that are not con-
cerned with network connectivity, replication of
data or concurrency. Unlike the client-server
Bayou architecture, this framework adopts a
peer-to-peer approach. Peers are allowed to
communicate in real time as long as connection
exists and with small latency otherwise. IBM
Fluid Middleware is also based on a Model-

View-Controller pattern with special focus on
conflict resolution and synchronization issues
(Bourges-Waldegg, Duponchel, Graf & Moser
2005).

A great number of existing solutions with demon-
strated results, while very impressive, do not
guarantee that a mobile application built on top
of such transport protocols is able to gracefully
handle the loss of connectivity. This research
is focused specifically on this issue. When the
connection is absent, the application should be
aware of it, yet remain functional. All user ac-
tions are captured and transmitted into the net-
work as soon as a connection becomes available.
The mFrame architecture reduces the user’s de-
pendency on the connection availability. The
main contribution of this paper is not to replace
the existing reliable data exchange solutions but
to implement them at a different level. Appli-
cation level implementations are abstracted by
other network levels and should be much easier
to implement. Additionally, mFrame is per-
fectly suited for working in parallel with lower
level solutions, thus further improving the reli-
ability of mobile communication.

2. Related Works

Following is a brief description of application
frameworks that address problems similar to
those addressed by the proposed mFrame frame-
work.

2.1. Struts

Struts is a server-side application framework
based on the Model-View-Controller (MVC)
architectural framework. It consists of helper
classes used for the development of Java 2 En-
terprise Edition (J2EE) applications based on
the Model 2 design pattern (Carnell & Linwood
2003). Web applications developed using Struts
framework are configured with an external con-
figuration file. Struts includes a notion of tag
libraries that helps to reduce the amount of Java
code in the presentation component. Another
benefit of this framework is its built-in valida-
tion mechanism. Furthermore, Struts has a sup-
port for internationalization and database con-
nection pooling.

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

125

The Struts application framework is built around
an ActionMapping structure (Carnell & Lin-
wood 2003). This structure is used to convert
HTTP requests submitted by users into applica-
tion actions. ActionMapping encapsulates in-
formation about a handler that is intended to
process the request.

2.2. Spring

Spring Framework is an open source applica-
tion framework for Java. It is mostly used for
implementing complex business logic applica-
tions that are very difficult to build from the
ground up. It is often considered a collection
of smaller sub-frameworks. Each one of these
component frameworks is usually responsible
for a common feature. Some of the components
that are most relevant to this research include
data access, model-view-controller, and remote
access framework. The data access framework
is usually combined with transaction manage-
ment, fault-recovery and caching components,
which results in a very feature-rich yet reliable
solution. Similar to Struts, Spring is a request-
based framework. It defines strict interfaces for
every exposed service. One of the most impor-
tant aspects of this framework is the simplicity
and clarity of purpose for each of these inter-
faces (Spring Application Framework).

2.3. Maverick

Maverick is yet another MVC framework used
to build web applications. This framework is
available in Java and Microsoft .NET environ-
ments. Maverick is a minimalist framework
which focuses solely on MVC logic, allowing
developers to generate user interface compo-
nents using a variety of templating and trans-
formation technologies (Maverick Application
Framework). In this process, Maverick uses the
pipe-and-filter approach to chain the transfor-
mations. These transformations are pluggable
and customizable.

Maverick application framework automatically
picks from different views based on user lan-
guage, browser type, or any other characteristic
of the request. This framework includes a sup-
port for internationalization.

2.4. jShrunk

jShrunk is an open source framework for mo-
bile application development. This framework
is based on the J2ME CLDC specification and as
such it is used to develop applications for cellu-
lar phones and PDAs. jShrunk includes commu-
nication libraries to help developers build mo-
bile applications quickly and efficiently. The
data structures used to transmit data between
remote and local components are very com-
pact to comply with limited bandwidth available
(jShrunk Application Framework).

One of the problems we have faced while inves-
tigating jShrunk application framework is that
its documentation and binaries are not currently
available. The documentation we found seems
to be obsolete and inaccurate.

2.5. Aranea

Aranea is a lightweight Java component frame-
work. Like every other approach, it attempts to
reduce the development complexity by reusing
existing components. One of the main features
of this approach is that each component’s inter-
face is restricted to only 4-6 methods. Such
strict interaction constraints ensure low cou-
pling and improve framework’s agility. Aranea
is also an event-driven framework. Each com-
ponent within a network is constantly listening
for user events and is able to react to them. This
greatly simplifies the development process as
certain functionality may be linked to user in-
terface items without any additional code. Ad-
ditionally, each component in this framework is
a Java object which adds the benefit of object-
oriented programming. This aspect of Aranea
is especially useful for application modifiability
as each component may be extended, replaced,
or partially modified without any changes made
to the framework code. Finally, this framework
comes with pre-built components responsible
for user interface, validation and request han-
dling which make it very easy to get started on
development (Miirk & Kabanov 2006).

126

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

2.6. Cocoon

Cocoon is a similar framework, maintained by
the Apache Software Foundation. It is based
on the concepts of separation of concerns and
component-based development. This approach
encourages using components as building blocks,
putting them together to solve the problem at
hand without any additional programming. Even
though this framework focuses on XML and
XSLT publishing, its caching mechanism is very
interesting. Cocoon framework utilizes the lazy
evaluation approach. In other words, the veri-
fication of the cache validity of a component
is delayed until the last possible moment in
the hope that it might not be necessary. In
fact, the framework provides as many as 10 lo-
cations where the application may choose to
use cached data. One of the main contribu-
tions of the Cocoon developers is the adaptive
cache algorithm that performs cache cost cal-
culations. This feature compares the cost of
generating /transforming new data to the cost of
validating the cache. The authors of this frame-
work claim better performance than traditional
caching mechanisms because Cocoon-based ap-
plications always choose the least costly option
(Cocoon Application Framework).

2.7. Grails

Grails is an open source web application frame-
work based on Groovy programming language
(extension of Java platform). Similarly to other
frameworks, Grails attempts to reduce the de-
velopment time by removing the configuration

aspect of application development. It encour-
ages the “coding by convention” approach. In
fact, this framework does not have an XML con-
figuration file that other frameworks rely on.
The authors of Grails claim that maintaining a
complex and frequently changing configuration
file uses valuable development time that could
be spent elsewhere. Instead, this framework re-
lies on naming and coding conventions to gener-
ate configuration. Additionally, this framework
dynamically adds certain methods to many of
its base classes. It determines their association
from the type of class i.e. its name. This elim-
inates the need for developers to write wrap-
per and connectivity code (Grails Application
Framework).

3. Design of the mFrame Framework

The proposed mFrame framework is a cus-
tomized version of the Model-View-Controller
(MVC) architectural framework. As the name
suggests, MVC framework, shown in Figure 1,
consists of a number of components that can
be grouped into three main categories: model,
view and controller. Model encapsulates the
core business logic and maintains the state of
application; View presents the results of op-
erations; and Controller provides navigation
management mechanism. MVC separates view
and model components by establishing a sub-
scribe /notify relationship between them, where
view ensures that its appearance reflects the
state of the model (Gamma, Helm, Johnson,
& Vlissides 1997). A set of well-defined ob-

request Controller
EEEE——
creates
redirects Service Handler -
v uses
response User Interface Computational Component
+— (View)
> Control Flow

Ei Persistence Store

Figure 1. Model-View-Controller architectural framework.

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

127

jects called domain objects are used to exchange
information between the components.

mFrame customizes the MVC framework to in-
clude the following:

e Service component, which includes local
and innovative remote service handler im-
plementations.

e Presentation component responsible for ren-
dering information retrieved from the service
component.

e Controller, which provides the access au-
thentication and reconfigurable presentation
and service management.

e Domain objects used to exchange informa-
tion between the framework components.

Portability of the system is achieved using J2ME.
J2ME is a portable, compact programming model
which has been widely accepted in the mobile
computing community. Using configurations
(horizontal specification) and profiles (vertical
specification), a rich set of APIs is provided to
allow access to functions that are specific to a
mobile device, without affecting portability.

Some of the most distinguishable aspects of
this framework are its architecture, configura-
tion, component coupling and cache function-
ality. Similarly to Struts, mFrame is using ex-
ternal xml configuration files. This method has
been chosen as opposed to “coding by conven-
tion” approach, implemented in Grails, because
the complexity and variability of the architec-
ture does not justify loosing the configuration
file. Additionally, Struts, Aranea and mFrame
have built-in user input validation functional-
ity, which reduces the required traffic. Fur-
thermore, like jShrunk, the proposed frame-
work provides remote data exchange abstrac-
tion in order to maintain application function-
ality, especially if the available bandwidth is
limited. Similarly to Spring and Aranea solu-
tions, mFrame uses few, well-defined and strict
interfaces. This ensures the robustness and
modifiability of this framework. Like Aranea,
mFrame is event-driven, as it reacts to user ac-
tions as well as changes in connectivity. Like
in many other classic MVC implementations
(e.g. Maveric), the data, business logic and pre-
sentation are completely separate and handled
by dedicated components. Unlike the Cocoon

framework, mFrame does not offer a very so-
phisticated cache and cache evaluation func-
tionality. However, there is nothing in the pro-
posed framework’s architecture that prevents it
from being extended to include or mimic this
feature. mFrame is, in fact, very similar to
many other frameworks. The goal of this re-
search was to create a new solution built on the
success of the existing frameworks by combin-
ing successful feature implementations.

3.1. Top-down Architectural Model

As mentioned previously, the mFrame frame-
work is a customized version of the MVC archi-
tectural framework. The top-down architectural
model has been shown in Figure 2.

3.1.1. Presentation Component

The user initiates an action by submitting a re-
quest. The presentation component associated
with the action creates the corresponding re-
quest and performs a basic validation. In case
of error, the request is reverted back to the pre-
sentation component; otherwise, it is passed to
the controller. Responsibilities of the presenta-
tion component are as follows:

e Serve as a template for concrete view imple-
mentation.

e Define command behavior of the screen com-
ponents.

e Intercept the request and perform a basic user
input validation.

e Decide the actions that should be performed
in response to specific user events.

e Present the results of the operation.

3.1.2. Controller Component

Controller handles the flow of individual re-
quests and provides access control. The re-
quests passed through the controller are autho-
rized against action id-based permission struc-
ture. If the permission is denied, the business
transaction is stopped and the user is notified
about the exception. The Controller component
delegates all the requests invoked by the mo-
bile application to the service components, and

128

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

Mobile Device

Presentation
Component

Framework Boundary

L |

Request Handler

A

4

Conti

roller
Component

A

Service
Component

Cache Handler

SOAP Handler

A
A 4

Data Access
Component

-

Persistence

Internet

Computational Component

Control Flow

Persistence Store

Figure 2. Top-down architectural model.

the responses to the presentation components.
The service components and presentation com-
ponents are initialized at run-time using action
identifiers. In this manner, support for new busi-
ness logic and its presentation can be added eas-
ily by providing new presentation and service
component classes and registering them against
corresponding actions. The registration is done
using an external configuration file as explained
in section 5.1.1. Thus the reference model dy-
namically adapts to the modifications done in
the navigation paths.

The controller manages the following:

e Provides navigation management of the ap-
plication i.e. dispatches requests to the ser-
vice components and responses to the pre-
sentation components.

Manages exceptions raised during the dis-
patching process.

e Handles the flow of requests and provides
access control by means of action level au-
thorization.

3.1.3. Service Component

The actual business logic is executed either lo-
cally or remotely. These details are encapsu-
lated by the service component.

Local Business Logic. In case of the local
business implementation, a service component
directly invokes local Data Access Components
and executes business logic. A Data Access
Component provides access to mobile device’s
persistence layer. Since a persistence imple-
mentation is device-specific, the domain of the
framework does not include this component. It

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

129

is left up to the application developer to imple-
ment this component using appropriate device-
specific APIs. The device access package will
include classes to execute query procedures, re-
trieve result sets from the storage etc.

Remote Business Logic. The reference archi-
tecture employs a Simple Object Access Proto-
col (SOAP)-based interface to exchange data
with remote services via HTTP communica-
tion protocol. Support for tightly coupled syn-
chronous remote object protocols like IIOP or
DCOM is not provided, but nothing in the archi-
tecture precludes the addition of another proto-
col. This framework uses Enhydra kSOAP, an
Open Source package designed to enable SOAP
applications to run on resource-constrained en-
vironments, specifically on J2ME CLDC-based
devices.

Due to the strict constraints on available band-
width and reliability, Cache component, a com-
munication component that is not dependent
upon continuous network connectivity has been
used. Itutilizes the asynchronous point-to-point
messaging pattern as shown in Figure 3. Users
can access remote services even if the connec-
tivity is interrupted since the information would
be exchanged upon the reconnection (Bellav-
ista, Corradi & Stefanelli 2001). Depending on
the type of request, the controller component
either invokes a local service repository handler
or, if the connection to remote server is avail-

able, a SOAP handler. If the connection is not
available, the request is queued in an Output
Queue in the cache handler for future submis-
sion when the connection becomes available.
The cache handler checks for the availability of
external web service; and once the service is
available, it processes the queued requests on
first-in-first-out (FIFO) basis, using an encap-
sulated SOAP handler. The responses received
from the remote service are stored in the Input
Queue. When the request and response objects
are no longer needed, the cache handler removes
them safely and cleans up the resources. A re-
quest’s expiration time is defined in the config-
uration file as explained in section 5.1.1. Thus,
the service component is responsible for the fol-
lowing:

e Interpret input request objects
e Interact with a local persistent storage

e Control the remote execution sequence re-
quired to fulfill the request

e Pass the processing results back to presenta-
tion component

3.2. Design Patterns

The following design patterns have been used

when developing the top-down architectural model

explained above.

Mobile Device

Cache Handler

Local Cache
Request
> Output - dp]
Queue
Response
< » Input
Queue

SOAP
Handler

External
Web Service

A 4

System Component

Synchronous Call

Asynchronous Call

Figure 3. Cache component architectural model.

130 mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

ClientObject

T
{ |
Controller |

+dispatch(in request : Request) \
T |

|
N/

PresentationObject

«utility»
Authorizer

+canTransact(in action : Action) : boolean

| t___>

ServiceHandler

+process(in request : Request) : Response

Figure 4. Front controller pattern class diagram.

3.2.1. Front Controller Pattern

The Front Controller Pattern (Alur, Crupi &
Malks 2001) is used to handle the flow of infor-
mation between presentation and service com-
ponents. See Figure 4. This model authorizes
user requests and handles exceptions that could
be raised in the dispatching process. By cen-
tralizing the control, this pattern helps reduce
size of the application, which is a key require-
ment for resource-constrained computing envi-
ronment.

ClientObject submits requests to the Controller.
The requests are validated against the frame-
work’s security model (Authorizer). Depend-
ing on whether the request is for local service or
remote service, the Controller invokes an appro-
priate business object (ServiceHandler). The
Controller then synchronously waits for the re-

sponse from ServiceHandler. Finally, the re-
sults of processing are dispatched to the Presen-
tationObject.

3.2.2. Simple Factory Pattern

Extensibility of the architecture has been achieved
using the Simple Factory Pattern. See Figure
5. This pattern describes an object that creates
one or more class instances in response to a
certain action. All the classes that the factory
object instantiates have a common super class
and common methods, but the implementation
of the methods is usually different.

Consider an example of a presentation object
factory. The getlnstance() method of Presen-
tationObjectFactory returns an appropriate in-

ClientObject

PresentationObjectFactory

+getinstance(in response : Response) : PresentationObject

1

*

PresentationObject

+submit()

T T

ConcretePresentationObject1

ConcretePresentationObject2

Figure 5. Simple factory pattern class.

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

131

ClientObject

CacheHandler

+addRequest(in request : Request)
+processAndPurge()

1
0.*

Request

Figure 6. Cache management pattern class diagram.

stance of ConcretePresentationObject depend-
ing on the Response. If a new Response type
is to be added, we just have to implement one
more ConcretePresentationObject that extends
the PresentationObject, and registers it in the
PresentationObjectFactory. This pattern has
also been used for instantiating a ServiceHan-
dler, depending on the Request type.

3.2.3. Cache Management Pattern

Reliability of the system has been achieved us-
ing the Cache Management pattern (Larman
2004). See Figure 6. The pattern has been
used to queue the requests until they can be
passed to the remote service for further pro-
cessing. As shown in Figure 6, the Requests for
remote services are queued in the CacheHan-
dler. The addRequest() and processAndPurge()
methods are used for cache inserts and purges.

4. Implementation

As explained in the previous section, the top-
down architectural model consists of three ma-
jor components; model, view and controller.
The implementation details of these compo-
nents are explained in this section. Exchange
of information between these components is ac-
complished using domain objects.

4.1. Domain Objects

Action object is used to store the information
about the action performed by the user. It holds
the class name of the service handler to be used
for processing the request. In addition, it en-
capsulates the callback details — the presenta-
tion objects to be called in case of successful or
erroneous processing (see Figure 7).

DomainObjects

-values : Hashtable

Errors
Response
-responseCode : int D

+add(in name : Object, in value : Object)
+get(in name : Object) : Object
+isEmpty() : boolean

+keys() : Enumeration

+clear()

4}

Request

-requestDate : Date

Action

-actionld : String

-description : String
-errorPresentationObject : String
-successPresentationObject : String
-serviceHandler : String

Figure 7. Domain objects implementation.

132

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

The Request object serves as a container for
the parameters being passed from the presenta-
tion component to the service component. This
class encapsulates the Action performed by the
user and the date and time when the request was
submitted. Request is initiated by a presenta-
tion object and passed to an appropriate service
handler via the Controller.

The Response object includes information about
the business processing results (either local or
remote) and the original Request object. The
encapsulated Request object is used to fetch in-
formation about the original request in case of
error. In addition, Response object has a respon-
seCode attribute, which specifies if the process-
ing was successful or not. In case of failure, the
response object holds the information describ-
ing the error. Response object is created by a
service handler and passed via Controller to the
target presentation object.

The Errors domain object stores errors gener-
ated by PresentationObject’s validate() method.
These errors are generated within the presen-
tation component and, as such, do not cross
the presentation to service component bound-
ary. Rather, user interface errors are inter-
cepted by PresentationObject’s commandAc-
tion() method and shown to the user.

All domain objects extend from an abstract Do-
mainObject class, which hides the specifics of
the underlying map data structure. This class
provides convenient methods to store/retrieve
properties, and to clear the internal data struc-
ture.

PresentationObject

1: commandAction(command, displayableei
|

2: buildRequest(command, displayable)

4.2. Presentation Component

mFrame application framework contains a sin-
gle MIDlet object called MFrameApplication.
The MFrameApplication class extends from
J2ME’s abstract class javax.microedition.midlet.
MIDlet. startApp() method serves as an en-
try point of the application and is responsible
to pass the thread of execution to the Con-
troller which, in turn, invokes the first presen-
tation object. PresentationObjects are always
displayed by means of MFrameApplication’s
show () method.

PresentationObject abstract class serves as a
template for the concrete view implementations.
It is displayed on a per-screen basis and is pri-
marily used to present a choice of actions and
user interface components. PresentationObject
implements J2ME’s CommandListener inter-
face. As shown in the sequence diagram (Fig-
ure 8), commandAction() method is invoked in
response to a submitted event.

This method calls buildRequest() to instanti-
ate the corresponding Request object. User
interface validation is performed by means of
validate() method enforced via IRequestVal-
idator interface. If the validation fails, Errors
object holding error information is passed to
MFrameApplication, which displays a mode-
less dialog on top of the current presentation ob-
ject. This dialog shows an error as name/value

MFrameApplication Controller

|

|

|
i
3: validate(request) }
|
I
|
|

4: showErrors(errors) D

L T

5: dispatch(request) D
|

Figure 8. PresentationObject sequence diagram.

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

133

Jjavax.microedition.midlet.MIDlet

«interface»
IRequestValidator

+pauseApp()

+validate(in request : Request) : Errors

+startApp() AN

+destroApp(in unconditional : boolean)

MFrameApplication

+showDialog(in title : String, in text : String) !
+show(in presentationObject : PresentationObject)
+showErrors(in errors : DomainObject)

«interface»
javax.microedition.lcdui.CommandListener

+commandAction(in command : Command, in displayable : Displayable)

2\

PresentationObjectFactory

+getinstances(in response : Response) : PresentationObject

1

*

PresentationObject

+buildRequest(in command : Command, in displayable : Displayable) : Request

CacheBrowser
-menu : List
-response : Response
Switchboard +getMainDisplayable() : Displayable
-menu : List ———[>}+populateControls()
+validate(in request : Request) : Errors

Figure 9. Presentation layer implementation.

pair. If the validation is successful, Request is
dispatched via the Controller component.

The PresentationObjectFactory takes the Re-
sponse received from the Controller, and creates
an instance of the concrete PresentationObject.
See Figure 9.

The framework provides two concrete imple-
mentations of PresentationObject: Switchboard
and CacheBrowser (shown below). Switch-
board is the first presentation object invoked
upon the application initialization. It presents
the list of available applications read from the
configuration file as explained in Section 5.1.2.

CacheBrowser displays queued Response ob-
jects in the CacheHandler. This component dis-
plays information about the action performed

honekook
ache Browser

Exit

Switchboard Presentation Object

by the user and the date and time when the orig-
inal request was submitted. Upon selection of a
Response from the list, the user is taken to the
appropriate results screen.

4.3. Service Component

The ServiceHandlerFactory takes the Request
received from the Controller and creates an in-
stance of the ServiceHandler. ServiceHandlers
implement process() method to perform busi-
ness logic. In case of the local service imple-
mentation, this method invokes local data access
objects, performs business logic and returns the
results in the form of a Response object.

160404 19:10:23

Viewy Ciuote

Close

CacheBrowser Presentation

134

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

ServiceHandlerFactory

+getinstance(in request : Request) : ServiceHandler

MainFormHandler 1
Response
_LD ServiceHandler -responseCode : int
0.*
>+process(in request : Request) : Request *
SoapHandler 1
CacheHandle
Request
1 -
. [taddRequest(in request : Request) k> -requestDate : Date
+processAndPurge() 1 o

Figure 10. Model layer implementation.

SoapHandler encapsulates remoting details of
the framework. It uses kKSOAP libraries to build
and parse XML messages exchanged between
local application components and remote web
service. SoapHandler converts input Request
object into a corresponding SOAP request us-
ing kSOAP’s getSoapRequest() method. Next,
SoapHandler opens an HTTP connection to the
external Web service and submits the SOAP
message. Remote Web service parses the in-
coming SOAP request, converts it to server-side
domain objects, and forwards it to middle-tier
components responsible for business process-
ing. Upon completion, Web service sends a
response message over the same HTTP connec-
tion used to submit the request. SoapHandler
reads the HTTP response stream and builds a
SoapObject, which contains the SOAP response
data. Next, the handler parses the response data
using the SoapObject.getProperty() method. It
is the responsibility of kKSOAP libraries to au-
tomatically convert primitive SOAP elements
into the appropriate Java types. Finally, these
Java object are used to build the Response ob-
ject that, in turn, is sent back to Controller or
CacheHandler. See Figure 10.

The CacheHandler extends the ServiceHandler
and encapsulates the collection of Request ob-
jects that are locally queued until the connec-
tion is re-established. The CacheHandler im-
plements a worker thread to check the avail-
ability of the remote server, and to purge any
expired Requests and Responses in the local
cache. The cacheHandler uses an encapsulated
SoapHandler to communicate with the external

service. Whenever the external communication
isrestored, CacheHandler processes queued Re-
quest objects and queues Responses objects that
are made available to the client application by
means of the CacheBrowser presentation object.

MainFormHandler provides a list of available
applications to be displayed by the Switchboard
presentation object. This service object uses
ConfigurationManager to retrieve the applica-
tion list from the configuration file, as explained
in Section 5.1.2.

4.4. Controller Component

This framework does not support multiple con-
trollers — all the traffic will be handled through
the single instance of the Controller object.
Therefore, Controller is implemented as the
Singleton pattern. The Singleton pattern is a
reusable solution where the class itself is re-
sponsible for keeping track of its sole instance,
while ensuring that no other instance of the ob-
ject can be created, and providing a way to ac-
cess the instance (Gamma et al. 1997).

As shown in the framework’s sequence dia-
gram (Figure 11), at the initial call, the Con-
troller invokes the ConfigurationManager class
that loads the information from the configura-
tion file into an internal map structure. This
information can then be retrieved by calling ap-
propriate methods exposed by Configuration-
Manager class.

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

135

ConfigurationManager Authorizer ServiceHandlerFactory

ServiceHandler PresentationObject || mFrameApplication

‘ Controller

PresentationObjectFactory ‘

1:dispatch(request) | |

M .11 ™ i

etPopulatedAction(action) !

N |
3:parseConfigurationXML

i

|

N

4:action

9:process(request)

:' ! 7:<<create>>

} 8:serviceHandler }

L I}
e’7777777777777777777777\7 777777777777

i
I

1 O:résponse
I

12:<<create>>

14:show(presentationObject)

4444444j444444
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|

R |

Figure 11. Controller sequence diagram.

Configuration file parsing is done using kXML
pull-based APIs. In pull-based parsing (Sarang,
Browne, Ayala & Chopra 2002), the parser in-
tercepts an event and traverses the XML data
while issuing callbacks to a previously regis-
tered event listener whenever it encounters par-

ticular structures in the data. This approach is
very efficient since it does not have to build the
complete document’s tree in memory. Configu-
rationManager is also implemented as a single-
ton class. See Figure 12.

MFrameApplication

PresentationObjectFactory

+showDialog(in title : String, in text : String)

+getinstances(in response : Response) : PresentationObject

+show(in presentationObject : PresentationObject) |- -

s :

77777 N 1 |

PresentationObject

-response : Response

|
|
|
\
|

Controller

|
|
|
|
|
|
|
1
|
! +showErrors(in errors : DomainObject) [
|
|
|
|
|
|
|
|

L +buildRequest(in command : Command, in displayable : Displayable:) : Request
+getMainDisplayable() : Displayable

******* +populateControls()

+validate(in request : Request) : Errors

+dispatch(in request : Request)
T T

|
|
| b
|
|

P ServiceHandlerFactory

+getinstance(in request : Request) : ServiceHandler

ConfigurationManager

-applicationName : String

-applicationDescription : String
-mainFormActionld : String

-logging : boolean

-actions : Map

-items : Enumeration

+getPopulatedAction(in action : Action) : Action
+parseConfigurationXMLFile(in fileName : String)

«utility» 1
Authorizer
+canTransact(in action : Action) : boolean *
ServiceHandler

+process(in request : Request) : Response

«utility»
Logger

+error(|n className : Stnnq |n methodName : Strmq |n message : Stnng[

Figure 12. Overall implementation.

136 mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

Controller class exposes a public method called
dispatch(). This method sends the Request ob-
ject to the corresponding ServiceHandler. De-
pending on the Response, an appropriate Pre-
sentationObject is instantiated, which is then
passed to MFrameApplication’s show () method
to display processing results.

The Controller uses the Authorizer utility class
to determine if the user is authorized to perform
the requested business action. The Authorizer’s
canTransact() method is implemented on top of
a device’s role permission model. If such a per-
mission model is not provided, the method re-
turns true (i.e. the action is always authorized).

Finally, this framework provides a basic error
logging service. Similarly to Controller and
ConfigurationManager classes, Logger utility
class is implemented as a singleton class. Log-
ger’s error() and debug() methods are imple-
mented to write logging messages to device spe-
cific persistent storage. Logging information
includes source class and method name infor-
mation. In the mFrame, all critical exceptions
thrown within the framework are caught and
stack traces are logged to enable fault analysis.

5. A Case Study

In this section, a case study will be used to ex-
plain the Configuration and Client Implementa-
tion of an application using mFrame framework.

<7xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Application SYSTEM "configuration.dtd" >

The case study presents a prototype for a real
application that was deployed later. An appli-
cation will be constructed for a brokerage com-
pany that needs to access real-time stock prices
and call clients with quote updates. Therefore,
the application should fulfill the following re-
quirements:

e Retrieve current quote for a specified stock
symbol. The services.xmethods.net getQuote
web service will be used for this purpose.

e Display a list of the stored phonebook en-
tries. The phonebook entries will be re-
trieved from the local persistence storage.

e Resulting application has to be smaller than
128kB due to maximum mobile application
download size.

5.1. Configuration

Configuration of mFrame application frame-
work is done using a configuration.xml file. The
configuration file has three major sections: ap-
plication action descriptions, startup application
list, and logging state. Following is the Config-
uration file specific to this application.

<Application name="Test" description="Testing Application">

<Logging state="true" />
<MainForm actionld="switchboard" >

<Item label="Stock Quote" actionld="get_quote" />
<Item label="Phonebook" actionld="phonebook" />

<Item label="Cache Browser" actionld="cache_browser" />

< /MainForm>
<Actions>

<Action actionld="switchboard" description="Switchboard">
< CallbackSuccess presentationObject="org.mframe.view.Switchboard" />
< CallbackError presentationObject="org.mframe.view.Switchboard" />
<Process serviceHandler="org.mframe.model. MainFormHandler" />

< /Action>

<Action actionld="cache_browser" description="Cache Administration">
< CallbackSuccess presentationObject="org.mframe.view.CacheBrowser" />
< CallbackError presentationObject="org.mframe.view.CacheBrowser" />
<Process serviceHandler="org.mframe.model.CacheHandler" />

< /Action>

<Action actionld="get_quote" description="Get Quote" >
< CallbackSuccess presentationObject="org.mframe.view.StockQuote" />
< CallbackError presentationObject="org.mframe.view.StockQuote" />

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

137

< /Action>

<Action actionld="view_quote" description="View Quote" >
< CallbackSuccess presentationObject="org.mframe.view.StockQuoteResult" />
< CallbackError presentationObject="org.mframe.view.StockQuote" />
<Process serviceHandler="org.mframe.model.SoapHandler" />

<Parameters>

<Parameter name="cache_request" value="true"/>

<Parameter name="expire_in_milliseconds" value="300000"/>
<Parameter name="url" value="http://services.xmethods.net/soap" />
<Parameter name="urn" value="urn:xmethods-delayed-quotes" />
<Parameter name="soap_action" value="getQuote" />

< /Parameters>
< /Action>

<Action actionld="phonebook" description="Phonebook" >
< CallbackSuccess presentationObject="org.mframe.view.Phonebook" />
< CallbackError presentationObject="org.mframe.view.Phonebook" />
<Process serviceHandler="org.mframe.model.PhonebookHandler" />

< /Action>
< /Actions>
< /Application>

5.1.1. Action Description

As explained in the design and implementa-
tion sections of this paper, presentation and ser-
vice objects are delegated at runtime. config-
uration.xml defines these objects in terms of
<Action> XML element that describes: pre-
sentation object, service handler, and a list of
optional application parameters. An <Action>
element also includes a unique action id and
description attributes:

e <CallbackSuccess> and <CallbackError>
sub-elements identify presentation objects to
be called in case of success and failure re-
sponse codes. If needed, the same Presenta-
tionObject can be used for both success and
failure callbacks.

e The service object responsible for handling
the request is specified in the <Process>
element.

e Parameter cache_request specifies that the
request should be cached if connection is
not available.

e Parameter expire_in_milliseconds defines du-
ration for which the request will be valid

e Parameters url, urn, and soap_action de-
scribe the web service being invoked.

5.1.2. Startup Application List

As pointed out in Section 4.2, Switchboard ob-
ject is the first user interface component dis-
played upon the application initialization. It

presents a list of available top-level applications
that the user can choose from. This list is de-
fined by means of the <MainForm> element.
<Item> sub-element defines a top-level appli-
cation, including the label which is presented to
the user, and the corresponding actionld. Ap-
plication items are displayed in the same order
as they appear in the <MainForm> element. If
Switcboard does not fulfill requirements of the
mail form component, a different action value
can be used.

5.1.3. Logging State

For the performance and storage limitation rea-
sons, mFrame introduces a check compared be-
fore the actual logging, which defines if the
logging should be executed. Therefore, an over-
head of the data manipulation and persistence
I/O activity can be controlled. This check is
configured within configuration.xml file, as fol-
lows: <Logging state="true" />

5.2. Client Implementation

As described in the previous sections, an Au-
thorizer can be implemented optionally. This
is typically a job of framework developers and
constitutes the first step in the conception of the
application. The second step is the implemen-
tation of presentation and service objects and is
the responsibility of application developers.

138 mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

5.2.1. Authorizer

The Authorizer’s canTransact() method can be
optionally overridden to customize to a specific
cellular device. The default Authorizer imple-
mentation returns true value.

5.2.2. Presentation Object

The steps towards implementing a presentation
object will be demonstrated by the means of
StockQuote object, shown in Figure 13. First,
user interface components are created and ini-
tialized:

private Form form=new Form ("Stock Quote");

private TextField symbolField=new TextField ("Sym-
bol", "", 5, TextField. ANY);

Command getCommand=new Command("Get", Com-
mand.SCREEN, 1);

':F aulll EEn
Etuck Guote
=ikl
|'CZ ose et

Figure 13. StockQuote presentation object.

Next, the user interface controls are populated
and positioned using populateControls|()

public void populateControls() {
form.append(symbolField);
form.addCommand(getCommand);

form.setCommandListener (this);

This method registers with the command lis-
tener responsible for events fired by the get-
Command component. Normally, the populate-
Controls() method would retrieve information
from the Response object and populate controls,
but in this example we are building a presenta-
tion object without any input values.

The buildRequest() method sets the internal Re-
quest object that is passed to Controller for fur-
ther processing. Request object is built with

view_quote action id and the parameter named
Symbol:
protected Request buildRequest(Command command,
Displayable displayable) {
Request request=new Request();
Action action=new Action();
action.setActionld("view_quote");
request.add("Symbol", symbolField.getString());

request.setAction(action);
return request;

}

Finally, validate() method is implemented to in-
clude any presentation specific validation logic.
In this example, information has to be entered
in the symbolField field before it is passed to
SOAPHandler for remote processing:
public Errors validate(Request request) {
Errors errors = new Errors();
if (symbolField.getString()==null ||
symbolField.getString().length()==0) {
errors.add("Symbol", "Cannot be empty");

}

}

This method takes the populated Request object
and performs validation on it. Any errors identi-
fied in the validation are registered in Errors col-
lection and returned to the client. StockQuote
uses SoapHandler to retrieve quote value, and
as such does not require custom handler imple-
mentation. Therefore, the last step to complete
this business service would be to build Presen-
tationObject to display the stock’s value.

return errors;

5.2.3. Service Handler

Business logic is defined by means of the service
handlers. Method process() performs business
logic and sends the results in the form of a Re-
sponse object back to the presentation layer via
the Controller object. Here is an example of
PhonebookHandler’s process() method:

public Response process(Request request) {
Response response=new Response();
PhonebookDataAccess phonebook=new Phone-
bookDataAccess();
response.add("phonebook”, phonebook.getPhone-
book());
return response;

}

This method uses PhonebookDataAccess mock
data layer object to create static enumeration of
phonebook entries. PresentationObject’s popu-
lateControls() method presents the resulting list
of phonebook entries:

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

139

public void populateControls() {
Vector phonebook=(Vector) response.get("phone-
book");
for (int i=0; i < phonebook.size(); i++) {
String phone=(String) phonebook.clementAt(i);
menu.append(phone, null);

}

Significant cost and effort savings were achieved
due to:

e Simplified navigation management via con-
figuration file — the configuration file al-
lows centralized setting and makes it easy
to switch to a different operation mode.

e Convenient application packaging and de-
ployment — the simplicity (both in terms of
interface as well as implementation) allows
easy deployment.

The resulting application size is 69.7kB and sat-
isfies the size requirement.

6. Conclusion and Future Work

mFrame is an innovative, reliable and exten-
sible framework that supports rapid applica-
tion development for compact mobile devices.
mFrame enables dynamic presentation and ser-
vice management where objects are registered
by means of an external configuration facility
provided by the architecture. Thus, new busi-
ness services can be easily added. This frame-
work introduces message queuing between com-
pact mobile devices and external service provi-
ders. This caching model enables uninterrupted
application execution, even though a communi-
cation channel could be lost due to resource
preservation or remote service unavailability.
However, this framework primarily focuses on
flexibility and reusability, and hence applica-
tions built on top of it may perform slower than
conventional applications.

Future work would include improving the vali-
dation mechanism such that validation routines
are applied to the corresponding fields via the
configuration file instead of specifying them in
the validate() method. If form values are miss-
ing or in an incorrect format, the current form
would be automatically redisplayed with error
messages, which is defined in the configuration
file. Another improvement is to implement the
data access layer to enable interaction with a

mobile device’s persistence storage. The data
access package would include classes to exe-
cute query procedures and retrieve result sets
from the storage. This research did not pre-
scribe any rules about the external Web service
implementation. It is up to the server devel-
opers to implement these services and corre-
sponding business objects and deploy them to
the application server. One of the architecture’s
future improvements will be development of the
server Web service-based framework that will
transparently map mobile application’s request
objects to underlying remote business services.

References

[1] ALUR, D., CRUPL, J., MALKS, D. Core J2EE Pat-
terns: Best Practices and Design Strategies, Pren-
tice Hall, NJ, June 2001.

[2] BALAKRISHNAN, H., SESHAN, S., KATZ, R., Improv-
ing reliable transport and handoff performance in

cellular wireless networks, Wireless Networks, Vol.
1, No. 4, December 1995, pp. 469-481.

[3] BELLAVISTA, P., CORRADI, A., STEFANELLI, C., Mo-
bile Agent Middleware for Mobile Computing,
IEEE Computer, Vol. 34, No. 3, March 2001, pp.
73-81.

[4] BOURGES-WALDEGG, D., DUPONCHEL, Y., GRAF,
M., MOSER, M., The Fluid Computing Middle-
ware: Bringing Application Fluidity to the Mobile
Internet. Proceedings of the 2005 Symposium on
Applications and the Internet, Trento, Italy, 2005.

[5] CARNELL, J., LINWOOD, J., Professional Struts Ap-
plications: Building Web Sites with Struts, Object
Relational Bridge, Lucene, and Velocity, Wrox
Press Inc., Birmingham, UK, March 2003.

[6] Cocoon Application Framework,
http://cocoon.apache.org

[7] EDWARDS, W., MYNATT, E., PETERSEN, K., SPRE-
ITZER, M., TERRY, D., AND THEIMER, M., Design-
ing and implementing asynchronous collaborative
applications with Bayou, Proceedings of the 10th
Annual ACM Symposium on User Interface Soft-
ware and Technology, pp. 119-128, Banff, Alberta,
Canada, 1997.

[8] GaMMA, E., HELM, R., JOHNSON, R., VLISSIDES,
J., Design Patterns: Elements of Reusable Object-
oriented Software, Addison-Wesley Professional
Computing Series, MA, 1997.

[9] Grails Application Framework.
http://grails.codehaus.org

[10] jShrunk Application Framework.
http://jshrunk.sourceforge.net

140

mFrame: An Application Framework for Mobile Resource-constrained Computing Environments

[11] LARMAN, C., UML and Patterns: An Introduction
to Object-oriented Analysis and Design, and the
Unified Process, 3" edn, Prentice Hall, NJ, July
2001.

[12

Lubwig, R., KONRAD, A., JOSEPH, A., Optimiz-
ing the end-to-end performance of reliable flows
over wireless links. Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile
Computing and Networking, pp. 113-119, Seattle,
Washington, 1999.

ey
2

Maverick Application Framework.
http://mav.sourceforge.net

[14] MURK, O., KABANOV, J., Aranea: web framework
construction and integration kit. Proceedings of
the 4th International Symposium on Principles and
Practice of Programming in Java, Vol. 178, pp.
163-172, Mannheim, Germany, 2006.

[15] SARANG, P. G., BROWNE, C., AYALA, D., CHOPRA,
V., Professional Open Source Web Services, Wrox
Press Inc., Birmingham, UK, July 2002.

16

SATYANARAYANAN, M., Fundamental Challenges in
Mobile Computing. Proceedings of the Fifteenth An-
nual ACM Symposium on Principles of Distributed
Computing, pp. 1-7, ACM Press, 1996.

17

Spring Application Framework.
http://wuw.springframework.org

[18] VARSHNEY, U., Multicast Support in Mobile Com-
merce Applications, IEEE Computer, Vol. 35, No.
2, February 2002, pp. 115-117.

WELLING, G., BADRINATH, B., An Architecture for
Exporting Environment Awareness to Mobile Com-
puting Applications, IEEE Transactions on Soft-
ware Engineering, Vol. 24, No. 5, pp. 391-400,
May 1996.

19

Received: October, 2006
Revised: September, 2008
Accepted: January, 2009

Contact address:

Hossein Saiedian, PhD

Professor and Assoc Chair

Department of EECS

School of Engineering

University of Kansas

Lawrence, KS 66045, USA

Tel: 41 785-864-8812

e-mail: saiedian@eecs.ku.edu

URL: http://people.eecs.ku.edu/ saiedian

HINKO VINCAR is an Information Systems Officer at the United Nations
(in Cologne, Germany). He received a Master’s degree in computer
science from the University of Kansas (USA) in 2004 and a Bachelor’s
degree in computer information systems from the Ottawa University
(USA). Before joining the United Nations, he was a software engineer
and systems architect at the YRC Logistics.

HOSSEIN SAIEDIAN is currently a professor of software engineering in
the Department of Electrical Engineering and Computer Science at the
University of Kansas (KU) and a member of the KU Information and
Telecommunication Technology Center (ITTC). Professor Saiedian’s
primary area of research is software engineering. He received a Ph.D.
in computer science from the Kansas State University (USA) in 1989.

SERHIY MOROZOV is currently working on his Ph.D. in computer sci-
ence at the University of Kansas (USA). He received a Master’s degree
in computer science from the University of Kansas (USA) in 2007 and
a Bachelor’s degree, also in computer science, from the Westminster
College (USA) in 2003.

