Journal of Computing and Information Technology - CIT 18, 2010, 4, 333-340

doi:10.2498/cit.1001919

333

An Empirical Investigation of Code
Smell ‘Deception’ and Research
Contextualisation through Paul’s

Criteria

Steve Counsell, Hamza Hamza and Rob M. Hierons

School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, United Kingdom

Code smells represent code decay and as such should
be eradicated from a system to prevent future mainte-
nance problems. A range of twenty smells described
by Fowler and Beck each require varying numbers and
combinations of refactorings in order to be eradicated
— but exactly how many are needed when we consider
related, nested refactorings is unclear. In this paper,
we enumerate these refactorings when categorised ac-
cording to Mantyla’s smell taxonomy. We then show
how, ironically, the ‘smelliest’ of smells (and hence most
difficult to eradicate) are actually those best understood
by developers. So, code smells are not only unpleasant
to have around, but are deceptive in their nature and
make-up. The study is thus a warning against attempting
to eradicate what are seemingly easily eradicated smells
— these are often the smells the developer needs to be
most wary of. Finally, we incorporate the answers to six
questions suggested by Paul for ‘How to write a paper
properly’ to position the paper in a reflective way.

Keywords: refactoring, OO, code smell

1. Introduction

Code smells represent a form of code decay and
unless eradicated, can become a source of main-
tenance problems from both an increased fault
and effort investment perspective. Fowler (and
Beck) (Fowler 1999) list twenty code smells,
covering all aspects of OO ‘smelly’ code and
prescribe how each of these smells can be erad-
icated through the application of one or more
refactorings (Counsell et al. 2006; Demeyer et
al. 2000; Fowler 1999; Kerievsky 2005). What
is not clear from this listing is a) how many

related refactorings each requires for its eradi-
cation, b) which are the ‘smelliest’ smells (in
terms of refactorings required for their eradica-
tion) and c) the views of which smells are un-
derstood “most” and “least” by developers. In
this paper, we use a smell taxonomy of Mantyla
(Mantyla et al. 2003) to determine the range of
required refactorings by each smell when placed
in categories defined by that taxonomy; we then
establish whether there is any correlation be-
tween ‘smelliness’ and an industrial survey of
smells by Mantyla using developers and accord-
ing to the smells they understand the ‘least’ and
‘best” (Mantyla 2003).

The remainder of the paper is organized as fol-
lows. In the next section, we describe the moti-
vation for the study and related work. In Section
3, we describe the smell taxonomy of Mantyla
and the decomposition of those smells to high-
light an important feature of the categories in
that taxonomy (Section 4). We then demon-
strate how the developer survey of Mantyla
shows that the ‘smelliest’ smells are those that
the developer finds easiest to understand (Sec-
tion 5). In Section 6, we state and then answer
the six questions posed by Paul (Paul 2009) to
frame the paper in a reflective sense. Finally,
we draw conclusions and point to future work
(Section 7). Note — a new reader wishing to
appreciate the six answers to Paul’s questions
before reading the paper content and thus to
gain the benefit of the reflection therein is di-
rected to Section 6 first.

334

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

2. Motivation/Related Work

The motivation for the research described stems
from two sources. First, as a software engineer-
ing community, we still know very little about
developer perception, intent and habits. In par-
ticular, we know very little about the views on
code smells and their ‘smelliness’ (i.e., an in-
dication of required effort to eradicate those
smells). In this sense, the study we present
attempts to form a link between the theoreti-
cal and the practical, industry-views. Second,
the three studies of Mantyla et al. (Mantyla
2003; Mantyla et al. 2004; Mantyla et al. 2006a;
Mantyla et al. 2006b) represented landmarks in
the analysis of code smells, but as yet have not
been studied in anger with any other analyses.
This represents a gap in the area. Third, a pre-
vious paper by Counsell et al. (Counsell et al.
2010) has suggested that no strategy currently
exists for the assessment of code smells, even
though there is significant industrial resonance.
The research in this paper is a small step in
this direction. Finally, much research has been
done in the field of refactoring recently and in
seminal work traceable to 1992 (Opdyke 2002;
Counsell et al. 2008), with which code smells
have a strong relationship. The presented re-
search places some of that previous research in
context.

In terms of related work, a well-known ‘tax-
onomy’ for allocating code smells (and which
we use in this paper) was proposed by Mantyla
— an empirical study of industrial developers
and their opinion of smells was also reported;
a précis of the same results was presented in
(Mantyla et al. 2004). Both studies gave in-
sights into which smells developers most ‘un-
derstood’, least understood and hence those that
they would be most or least likely to want to
eradicate. In subsequent work, Mantyla and
Lassenius (Mantyla et al. 2006b) also described
mechanisms for making refactoring decisions
based on smell identification and also for evolv-
ing systems (Mantyla et al. 2006a). Counsell
et al. reported a link between code smells and
refactoring in terms of in — and out-degrees on
a dependency diagram (Counsell et al. 2006)
and this was supported with empirical open-
source data. Research by Khomh et al. has re-
cently explored code smells using the Bayesian
approach (Khomh et al. 2009b) — the same

authors have looked at changes made to a sys-
tem as an indication of smells (Khomh et al.
2009a); on a slightly different tack, the inter-
relationships between smells was explored by
Pietrzak et al. (Pietrzak et al. 2006). Finally, in a
similar vein to the study presented, Hamza et al.
(Hamza et al. 2008) decomposed both Fowler’s
and Kerievsky’s code smells (Kerievsky 2005)
to determine smell overlap and commonality.
Refactoring was used as a basis for that decom-
position (Mens et al. 2003; Mens et al. 2004,
Najjar et al. 2003). Finally, Munro (Munro
2005) describes a set of product metrics that can
be used to guide the developer to bad smells in
code and a tool was developed to aid this pro-
cess.

3. Smell Taxonomy

For our analysis, we use the smell taxonomy
described by Mantyla (Mantyla 2003), the pur-
pose of which is to try and understand, ap-
preciate and tackle the composition, relation-
ships and commonalities between the set of code
smells. Table 1 shows the taxonomy of smells
according to the five categories.

The Bloater smells reflect something that has
become so large that it can no longer be man-
aged efficiently (e.g. ‘Large Class’).

| Group | Smellsingroup |

Long Method,
Large Class,
Primitive Obsession,
Lon]% Parameter List,

ata Clumps.

Switch Statements,
Temporary Field,
Refused Bequest,

Alternative Classes with

Different Interfaces.

Divergent Change,
Shotgun Surgery,
Parallel Inheritance
Hierarchies.

Lazy class,

Data class,
Duplicate Code,
Dead Code,
Speculative Generality.

Feature Envy,
Inappropriate Intimacy,

essage Chains,

Middle Man.

Bloaters

Object-Orientation
abusers

Change Preventers

Dispensables

Couplers

Table 1. Mantyla’s Smell Taxonomy (Mantyla 2003).

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

335

The Object-Orientation abusers category con-
tains situations where obvious and intuitive fea-
tures of OO are not fully exploited (e.g., ‘Switch
Statements’ — where polymorphism should be
used instead).

The Dispensable smells represent ‘something’
that needs to be removed from the source code
(e.g., code that is duplicated).

The Couplers reflect harmful and excessive cou-
pling in code (e.g., Feature Envy — where one
class uses the features of another class exces-
sively).

Where appropriate, we describe the meaning of
a smell.

4. Smell Decomposition

To inform our analysis, a bespoke software tool
was developed to generate the number of refac-
torings for each of the twenty-two code smells
listed by Fowler. The algorithm for generat-
ing the refactorings was based on a recursive
tree-based search of all dependencies between
the seventy-two refactorings of Fowler in their
respective texts. The tool is described in more
detail in Hamza et al. (Hamza et al. 2008), to
which the reader is directed.

Table 2 lists each of the code smells and the
number of refactorings that each requires to be
eradicated (in parentheses). For example, the
‘Alternative Classes with Different Interfaces’
smell (bolded in Table 2) requires the applica-
tion of two refactorings in order to be eradi-
cated. This smell occurs when two classes have
a similar internal content, but different exter-
nal composition (i.e., in the parameter list) —
they should thus be amalgamated to present
a common interface. From Fowler (Fowler
1999), the two refactorings it requires are ‘Re-
name Method’ and ‘Move Method’. The smells
that require the fewest refactorings are the ‘Di-
vergent Change’ and ‘Message Chains’ smells
(both bolded in Table 2). Divergent Change is
a smell which occurs when a class has to be
changed frequently in response to a range of
change types. The Message Chains smell oc-
curs when a series of objects need to be used
to facilitate a relatively simple call (the series
should be eliminated).

The smell that requires the highest number of
refactorings is the ‘Primitive Obsession’ smell
(requiring 7 refactorings), which arises when

| Group | Smells in group |
1. Long Method (4),
2. Large Class (4),
Bloaters 3. Primitive Obsession (7),

4. Long Parameter List (3),
5. Data Clumps (3).

6. Switch Statements (5),
7. Temporary Field (2),

8. Refused Bequest (1),

9. Alternative Classes
with Different Interfaces (2).

10. Divergent Change (1),
11. Shotgun Surgery (3),
12. Parallel Inheritance
Hierarchies (2).

13. Lazy class (2),
14. Data class (3),

Object-Orientation
abusers

Change Preventers

Dispensables 15. Duplicate Code (4),
16. Speculative Generality (4).
17. Feature Envy (3),
18. Inappropriate Intimacy (5),
Couplers 19. Message Chains (1),

20. Middle Man (3).

Table 2. Smells and number of refactorings.

there is an over-reliance on primitive data types
in aclass. Interestingly, the Primitive Obsession
refactoring requires the use of many ‘replace-
ment’ type functions as part of its eradication:
e.g., Replace Data Value with Object, Replace
Array with Object, Replace Type Code with
Class, Replace Type Code with Subclasses and
Replace Type Code with State/Strategy refac-
torings; all five are used by this smell. Table 2
also shows that, on average, the Bloaters cate-
gory is the set of smells that requires the most
effort to eradicate based on number of refactor-
ings (averaging 4.20). The Change Preventers
have the lowest average number of refactorings
required to be eradicated (averaging 2.0).

4.1. Nested related decomposition

The smells in Table 2, while listing the number
of refactorings required to eradicate each smell,
give only a superficial impression of the actual
effort required to eradicate a smell. This claim
is made on the basis that each of those refactor-
ings may, in turn, require other further refactor-
ings to be completed. For example, smells 9,
11, 12, 14, 17, 18 from Table 2 all require the
application of the ‘Move Method (MM)” refac-
toring. The MM refactoring moves a method
to a class where it is more conveniently situated

336

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

to reduce coupling. The MM refactoring itself
requires a set of further refactorings, each of
which themselves may require further refactor-
ings (Fowler 1999). Figure 1 therefore shows
the ‘actual’ number of refactorings that each of
the twenty smells from Table 2 generate when
we analyzed their related refactorings. Smell
1 — ‘Long Method’ requires 20 ‘actual’ refac-
torings and smell 2, ‘Large Class’ requires the
application of 40 actual refactorings. In fact,
there is a clear trend for smells in the Bloaters
category (i.e., smells 1-5) to require relatively
more actual refactorings than any other cate-

gory.

A
o

N
s}

No. refactorings

= =2 NN W W
o o0 O oo oo O
| | | | | | |

ﬂﬂ—rrﬁiw -

12345 67 8 91011121314151617 181920

Smell

Figure 1. Smells and ‘actual’ refactorings.

On the other hand, smells in the Object-Orienta-
tion Abuser category (smells 6-9) have an aver-
age of just 6.25 refactorings. The only category
that has a similar number of actual refactor-
ings to the Bloaters is the Dispensable category
(smells 13-16) with an average of 17.0 refac-
torings. Clearly, attempting to eradicate one the
Bloater smells is likely to require more effort
than any other category (in theory and on av-
erage). Large Class generates higher numbers
of ‘actual’ refactorings than any other smell.
Smells 8 and 19 (Refused Bequest and Message
Chains) are the smells that generate least refac-
torings. Interestingly, the first is an inheritance-
based smell and the second coupling-based; in-
heritance and coupling are difficult features to
untangle because they may require the devel-
oper to appreciate knowledge of the scope of
many classes.

Table 3 shows the refactorings (Refs.) that the
Large Class smell requires in order to be erad-
icated (Fowler 1999). On average, each of the

Smell || Original Refs. Actual
1. Extract Class,
2. Extract Subclass,
Large || 3" Extract Interface, 40
Class || 4. Replace Data Vaiue
with Object

Table 3. Large Class refactorings.

original refactorings from this smell requires 10
other refactorings to be undertaken. The reason
for this high value is relatively straightforward.
The Extract Class, Extract Subclass and Extract
Interface refactorings 1, 2 and 3 from Table 3
require a wide range of other refactorings due to
the number of code dependencies that need to
be resolved. For example, the Extract Subclass
(refactoring 1 in Table 3) requires the use of
no less than 6 other refactorings, each of which
may have their own refactorings.

It would appear that a wide variation exists in the
effort required to eradicate each set of smells,
as well as between individual smells.

5. Mantyla’s Developer Survey

In theory, we might reasonably expect devel-
opers to choose the smells to eradicate that
have a small set of required refactorings. We
would also expect the smells that developers
‘understand best’ to correlate (negatively) with
the effort required to eradicate that smell. In
other words, a tentative hypothesis is that easily
understood smells are easier to eradicate than
less easy to understand smells and developers
will therefore attempt to eradicate the former.
Mantyla (Mantyla et al. 2004) surveyed 12 de-
velopers from a Finnish software development
company developing in Delphi. The developers
were asked for their opinions about the set of
different code smells.

Table 4 shows the three smells (a, b, and c)
that were most often left as either ‘Don’t Un-
derstand (DU)’ or ‘Don’t Know (DK)’ by the
developers in the same survey. These were the
smells that developers knew about, but did not
understand easily (the former case) and sim-
ply did not know anything about (in the latter
case). In the case of smells b and ¢ (inheritance-
based refactorings) Mantyla suggests that there

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

337

Smell | DU | DK |

a. Data Clumps 3 10

b. Alternative Classes 0 7
with Different Interfaces

c. Refused Bequest 0 6

Table 4. 3 least understood smells
(from (Mantyla 2003)).

are good reasons why developers ‘didn’t know’
about these smells — manipulating and recall-
ing inheritance structures is fraught with com-
plexity. Mantyla also suggests that in the case
of ‘Data Clumps’ (c), the lack of understand-
ing was due to weakness in the survey style.
The data from Table 2 (and Figure 1) shows
that Data Clumps has a relatively high number
of both related refactorings and ‘actual’ refac-
torings, and this may be a factor. The Data
Clumps smell uses the Extract Class, Introduce
Parameter Object and Preserve Whole Object
refactorings; again, we see that extraction of
class features can add significantly to the effort
of smell eradication.

Table 5 shows the standard percentage responses
found in the same study by Mantyla. Only
64.3% of developers responded that they under-
stood the Data Clumps smell. Equally, 100%
of developers understood the meanings of the

Smell || % |

Long Parameter List,
Dupﬁcate Code. 100

Long Method,
Large Class,
Message Chains,
Middle Man,

Lazy Class,
Primitive Obsession,
Temporary Field,
Shotgun Surgery.

Speculative Generality,

Feature Envy,

Switch Statements

Comments,

Incomplete Library Class.
Parallel Inheritance Hierarchies,
Dlveréent Change,

Data Class,
Inappropriate Intimacy.

Refused Bequest. 83.8

Alternative Classes with 81.1
Different Interfaces. :

Data Clumps.

97.3

94.6

91.9

89.2

64.3

Table 5. Code smell responses (from (Mantyla 2003)).

Long Parameter List and Duplicate Code smells.
Most interesting from Table 5 is the response
rate of smells in the second row of the table —
the high response of 97.3% implies that these
smells were relatively well understood (cf. Fig-
ure 1). The bolded smells in Table 5 are drawn
from the Bloaters category of bad smells and
many of those bolded smells thus have a rela-
tively high number of actual refactorings from
Figure 1. Only the Data Clumps smell is outside
the top nine smells from Mantyla’s survey. In
other words, the smells that developers tended
to understand most were the classes that, from
our analysis, tended to require the largest num-
ber of refactorings in order to be remedied. On
the other hand, the italicized smells in Table 5
are the five smells with the fewest number of
required refactorings from Figure 1 (requiring
a low number of actual refactorings). Counter-
intuitively, three of the five were those least un-
derstood by developers.

It appears from the preceding analysis that de-
velopers understood best the smells that were
likely to require most effort to eradicate and,
conversely, they least understood the smells that
appear to require less effort to eradicate. Smells
therefore provide a facade in terms of what they
are, how they are decomposed and how they are
resolved — a deception and mask for the real
effort required in their eradication.

5.1. Discussion

We note that any study based on empirical data
will suffer from a number of threats to its valid-

1ty.

First, we accept that an assumption of the anal-
ysis presented is that each refactoring takes a
similar amount of effort to undertake and that
this is unlikely in practical reality. However,
without the data on timed effort by actual de-
velopers, or a set of correspondingly subjective
assumptions, we feel that this represents a start-
ing point for an analysis of code smells.

Second, our analysis makes the assumption that
a developer has no sense of the effort required
to eradicate a smell. In other words, that a de-
veloper is oblivious to the presence of smells or
the effort required for their eradication. On re-
flection, this stance could be seen as misguided
on our part. A developer might be able to detect

338

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

a smell; the same developer might also be fully
aware of the implications of leaving that smell
to become a “stench” (i.e., an advanced form of
smell) or to eradicating that smell.

Third, developers also have to make difficult
choices as to how they allocate their time. We
have no evidence that developers actively avoid
smells, yet there is no evidence, as we presented,
to suggest that developers do eradicate smells.

Finally, there may be many other types and vari-
ations of code smell that a developer would con-
sider eradicating before those we have consid-
ered. We cannot necessarily assume that the 22
smells listed in Fowler (Fowler 1999) are the
definitive set of smells that we should adopt. In
a commercial setting, a likely recognizable set
of smells is that of in-house smells, as sinister as
any of those listed in Fowler. Future work will
consider an experiment involving actual devel-
opers and measurement of times taken for refac-
toring activities. The dependency graph used as
the basis of the present work is described in
detail in Counsell et al. (Counsell et al. 2006)
and size precludes its inclusion in this paper.
The data for this graph can be made available
to interested researchers for the replication of
studies.

6. Paul’s Criteria

One issue that arises with any research paper is
that, at some point after publication, even the
authors of the paper are unable to remember
the message of the paper when they re-visit it,
the story it tells and the value of the research
to a reader. This has implications for how
widespread the research message can become.
The purpose of publishing research should be
motivated by the desire to extend the bound-
aries of knowledge in a specific area. To that
end, Paul (Paul 2009) has suggested six ques-
tions that need to be answered for ‘How to write
a paper properly’. In this section, we explore
those five questions with one objective in mind:
to frame and abstract the material in the previ-
ous six sections from the perspective of those
six questions. The six questions posed by Paul
(Paul 2009) and treated individually in turn are
as follows:

Question 1: What ‘story’ is the paper trying
to tell the reader? Paul provides a number of

guidelines as to why this is an important ques-
tion to answer.

Paper focus: there should be one story, not
many. There may be two or three major points
to the story, but much more than that is likely to
confuse the reader.

Longevity: a story written for the reader should
be able to be understood in ten years time by the
author if they need to revisit the paper. A story
written for the authors only is likely to leave the
authors as perplexed in ten years time as readers
are now. The authors’ response that encapsu-
lates our story is as follows:

Question 1 Response: Code smells are an on-
going problem for developers and project man-
agers alike since they represent a code that badly
needs refactoring. Smells vary in the likely ef-
fort they require to be eradicated. We would
expect ‘really’ bad smells to require relatively
more effort to eradicate. Paradoxically how-
ever, the ‘smelliest’ of smells (and hence the
most difficult to eradicate) are actually those
that are best understood by developers. Code
smells are therefore unpleasant to have around,
but more sinisterly are deceptive; they might
seem easy to eradicate, but in reality are not.
The study is a warning for developers against at-
tempting to eradicate what are seemingly easily
eradicated smells — these are often the smells
the developer needs to be most cautious of.

Question 2: What will the reader know after
reading your story that they did not know before
reading the story? Paul provides a guideline as
to why this is an important question to answer.

Purpose: What is the point of the paper?

Question 2 Response: The paper provides
an insight into the problems that might arise
when trying to eradicate code smells. The data
presented ties into the first motivation for the
broader research question stated in Section 2
— ‘the software engineering community still
know very little about developer perception, in-
tent and habits. .. we know very little about
the views on code smells and their ‘smelliness’
(i.e., an indication of required effort to eradicate
those smells)’. Second, the tie-up between the
theoretical and practical is often overlooked in
research studies. A further point of the paper is
informed by the statement in Section 2, which,
paraphrased, can be summarized as an attempt

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

339

to form a link between the theoretical and the
practical, industry-view of code smells. Finally,
code smells have been an under-researched area
of software engineering, as reported by Coun-
sell et al. (Counsell et al. 2010). A further
point of the paper is to explore the area of code
smells following the publication of early lead-
ing studies. Section 2 states that ‘the two studies
of Mantyla reported in (Mantyla 2003) repre-
sented landmarks in the analysis of code smells,
but as yet have not been studied in anger with
any other analyses’.

Question 3: Why should anyone believe you?
If the paper is not believable, then this will be
the downfall of the paper.

Question 3 Response: The paper presents em-
pirical data produced from a tool to support the
conclusions it makes. It also presents evidence
from a study by Mantyla (Mantyla 2003) to
compare empirical data with conclusions from
Mantyla’s study. We therefore rely on data and
conclusions drawn from the data. Although
there are various threats to validity (described
in Section 5.1), we believe that the conclusions
are credible. Of course, a single empirical study
will not be definitive on its own and more stud-
ies need to be undertaken in this area before a
body of knowledge can be formed; this is one
of the reasons why we offer to provide the data
from the study at the end of Section 5.

Question 4: Why should anyone care about the
story being told? Paul provides some guidance
on this particular question. The reader needs to
attach value to the points being made; without
value, the significance of any research contri-
bution can be questioned.

Question 4 Response: Developers and project
managers have to make decisions on how to
allocate their limited time. Smells are a prob-
lem that every developer faces; the choice of
what to do about those smells is another ques-
tion altogether. In other words, the value of the
paper is in highlighting the relative effort that
smells may induce. If the reader is a developer
or project manager, then we have confidence
that the value of the research will be high. If
the reader is a researcher, then we hope that
the research will provide the impetus for further
replication studies.

Question 5: In one sentence what is the essence
of your paper?

Question 5 Response: We would envisage such
a sentence to be: Code smells are a develop-
ment fact of life and should be eradicated, but
serious thought should be given to which smells
are most practical to eradicate, based on the rel-
ative effort that eradication may induce.’

Paul (Paul 2009) also asks (as a final ques-
tion 6) the authors to consider what motivated
their research and the paper written? We refer
the reader to Section 2 of the paper and to the
elements of our response to question 2, which
contains further background to the motivation
for the paper.

7. Conclusions/Further Work

In this paper, we have described an analysis of
bad code smells. The basis of our analysis is
that code smells hide the true effort that they
require to be eradicated when nested refactor-
ings are explored. We used the smell taxon-
omy of Mantyla (Mantyla 2003) to analyze the
categories of smells and the refactorings they
required. The ‘Bloater’ category was found to
be the most expensive in this sense. Counter-
intuitively, many of the smells from this cate-
gory were best understood by developers as part
of a study of developers; on the other hand, the
cheapest smells (in terms of perceived effort)
were actually the least understood by the same
developers. The real stink about smells is there-
fore their capacity to deceive. As well as provid-
ing empirical evidence to support this stance, we
provide a critique of Paul’s six questions as to
what makes a good research paper. Future work
will focus on a developer-based experiment to
replicate Mantyla’s developer survey and on an
exploration of the testing implications of smell
eradication. The results presented here are the
first of many smell studies and we welcome
further exploration in this area.

8. Acknowledgments

The research in this paper was supported by
a grant from the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) Grant
number: EP/G031126/1.

340

An Empirical Investigation of Code Smell ‘Deception’ and Research Contextualisation through Paul’s Criteria

References

[1] S. COUNSELL, Y. HASSOUN, G. LOIZOU, R. NAJJAR,
Common Refactorings, a Dependency Graph and
some Code Smells: An Empirical Study of Java
OSS. Proceedings of IEEE/ACM Symposium on
Empirical Soft. Engineering, (September 2006) Rio
de Janeiro, Brazil, pp. 288-296.

[2] S.COUNSELL, R. M. HIERONS, Is a Strategy for Code
Smell Assessment Long Overdue? Proceedings of
the Workshop on Emerging Trends in Software
Metrics, ICSE 2010, (May 2010) Cape Town.

[3] S. COUNSELL, S. SWIFT, Refactoring Steps, Java
Refactorings and Empirical Evidence. Proceedings
of the 32nd Annual IEEE International Computer
Software and Applications Conference, COMPSAC
2008, (28 July — 1 August 2008), Turku, Finland.
IEEE Computer Society, pp. 176-179.

[4] S. DEMEYER, S. DUCASSE, O. NIERSTRASZ, Find-
ing refactorings via change metrics, ACM Conf. on
Object Oriented Prog. Systems Languages and Ap-
plications (OOPSLA), (2000) Minneapolis, USA,
pp. 166-177.

[5] M. FOWLER, Refactoring (Improving The Design of
Existing Code). Addison Wesley, 1999.

[6] H. HAMZA, S. COUNSELL, G. Loizou, T. HALL,
Code Smell Eradication and Associated Refac-

toring, Proceedings of the European Computing
Conference (ECC), (September 2008) Malta.

[7] J. KERIEVSKY, Refactoring to Patterns. Addison-
Wesley, 2005.

[8] F. KHOMH, M. D1 PENTA, Y. GUEHENEUC, An Ex-
ploratory Study of the Impact of Code Smells on
Software Change-proneness, Proceedings of the
15th Working Conference on Reverse Engineering,
(2009a) Antwerp, Belgium.

[9] E. KHOMH, S. VAUCHER, Y. GUEHENEUC, H.
SAHRAOUL, A Bayesian Approach for the Detection
of Code and Design Smells. In Choi Byoung-ju,
editor, Proceedings of the 9th International Con-
ference on Quality Software (QSIC), 2009b IEEE
Computer Society Press.

[10] M. MANTYLA, J. VANHANEN, C. LASSENIUS, Bad
Smells — Humans as Code Critics. 20th IEEE
International Conference on Software Maintenance
(ICSM’04), (2004) Chicago, USA, pp. 399-408.

[11] M. MANTYLA, C. LASSENIUS, Subjective Evalua-
tion of Software Evolvability Using Code Smells:
An Empirical Study. Journal of Empirical Soft.
Engineering, vol. 11, no. 3, 2006a, pp. 395-431.

[12] M. MANTYLA, C. LASSENIUS, Drivers for Software
Refactoring Decisions. Proceedings of the Intl Sym-
posium on Empirical Soft. Engineering, (2006b)
Rio de Janeiro, Brasil, pp. 297-306.

[13] M. MANTYLA, Bad Smells in Software — A Tax-
onomy and an Empirical Study. Master’s Thesis,
Helsinki University of Technology, Software Busi-
ness and Engineering Institute, 2003.

[14] T. MENS, A. VAN DEURSEN, Refactoring: Emerg-
ing Trends and Open Problems. Proceedings of the
Ist Intnl. Workshop on Refactoring: Achievements,
Challenges, Effects (REFACE), (2003) Univ. of
Waterloo.

[15] T. MENS, T. TOURWE, A Survey of Software Refac-
toring, IEEE Transactions on Software Engineering
30(2): (2004), pp. 126-139.

[16] M. MUNRO, Product Metrics for Automatic Identi-
fication of “Bad Smell” Design Problems in Java
Source-Code. IEEE METRICS, 15: (2005).

[17] R.NAJIAR, S. COUNSELL, G. L01ZOU, K. MANNOCK,
The role of constructors in the context of refactoring
object-oriented software. IEEE European Confer-
ence on Software Maintenance and Reengineering,
(March 26-28,2003) Benevento, Italy, pp. 111-120.

[18] W. OPDYKE, Refactoring object-oriented frame-
works, PhD. Thesis, Univ. of Illinois, 1992.

[19] R. PAUL, The Overseas Contribution to the In-
ternational Conference on Information Technology
Interfaces (ITI), Editorial for CIT Special Issue,
Journal of Computing and Information Technology,
18(2), pp. ii-iv., (2010).

[20] B. PIETRZAK, B. WALTER, Leveraging Code Smell
Detection with Inter-smell Relations, Proceedings
of XP 2006, Oulu, Finland, pp. 75-84, Springer.

Received: June, 2010
Accepted: November, 2010

Contact address:

Steve Counsell

School of Information Systems,

Computing and Mathematics

Brunel University

Uxbridge, Middlesex

UBS8 3PH

United Kingdom

e-mail: steve.counsell@brunel.ac.uk

STEVE COUNSELL is a senior lecturer in the Department of Information
Systems and Computing at Brunel University. He received his PhD
from Birkbeck, University of London in 2002 and his research interests
relate to empirical software engineering; in particular, refactoring, soft-
ware metrics and the study of software evolution. Before his PhD, he
worked as an industrial developer.

HAamMzA HAMZA is currently a PhD student in the Department of In-
formation Systems and Computing at Brunel University. His research
interests focus on the empirical aspects of software engineering and, in
particular, that of real-time systems. His first degree was obtained from
the University of Aleppo in Syria.

ROB M. HIERONS received a BA in mathematics (Trinity College, Cam-
bridge), and a Ph.D. in computer science (Brunel University). He then
joined the Department of Mathematical and Computing Sciences at
Goldsmiths College, University of London, before returning to Brunel
University in 2000. He was promoted to full professor in 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

