
Journal of Computing and Information Technology - CIT 18, 2010, 4, 349–360
doi:10.2498/cit.1001921

349

Think! Interactive Systems
Need Safety Locks∗

Harold Thimbleby
Future Interaction Laboratory, FIT Lab, Swansea University, Wales, United Kingdom

This paper uses a simple analogy. A gun is designed to
shoot bullets, but it is obvious that accidentally shooting
is a danger one should avoid if at all possible. Thus
guns have safety locks, which aim to protect users and
bystanders.

Interactive computer systems sometimes accidentally do
bad things too, but something like “safety locks” are
not often enough implemented to help protect users or
bystanders from harm.

Worse, user interfaces often behave quite unpredictably
with erroneous input — rather than blocking errors and
requiring the user to correct them. This is a bit like guns
that misbehave.

Computers and computers embedded in everyday devices
are not always as dangerous as guns, although there are
many cases where they can be as dangerous. Medical
devices may give patients undetected overdoses. In-car
entertainment devices, like radios, may, through their
badly-designed user interfaces, cause a driver to have an
accident. A slip in a spreadsheet may be the first step
towards an organisation going bankrupt. And so on.

The solution should include better design, including the
concept of safety locks, that block some forms of user
error.

Keywords: safety locks, human error, number entry, user
interface design

1. Introduction

Machine guns have triggers, which the user
squeezes to make them shoot. Machine guns
also have safety locks so that they cannot shoot
by accident. Safety locks do not signficantly
interfere with normal use of a gun, but they sig-
nificantly reduce the probability of accidental
misuse.

Why do guns have safety locks? Here are
two facts: guns are dangerous, and even the
best-trained users make slips from time to time.
Safety locks significantly reduce the chances of
unintended firing.

By analogy, any system that may have unwanted
or potentially undesirable effects should have
some sort of analogue to safety locks. More
specifically:

• Any system that may have unwanted effects
that are large compared to the final effort
to make them happen, or are hard to undo,
should have safety locks.

Safety locks are thus one way to follow the de-
sign law of commensurate effort [9], whereby
results should be broadly proportionate to user
effort. (You should not be able to delete an
entire day’s work with a single keystroke. . .)

The only argument against safety locks is that
theymay add complexity or cost to a design, and
may then in themselves cause types of error that
would not or could not occur without them. For
example, safety locks on guns may slightly slow
down shooters taking their first shot. Somebody
may then be shot because a gun was delayed,
locked in safe mode and so was not immediately
usable to protect them. And even if we want to
avoid safety locks so guns are faster to use, it is
also a priority to ensure that a gun user doesn’t
get killed by their own gun! A user being killed
by accident would be far more inefficient than
all of the small delays of using a safety lock
each time the gun is needed to be deliberately
fired.

∗Revised paper based on: H. Thimbleby, “Interactive Systems Need Safety Locks”, Proceedings of the ITI 2010 32nd International
Conference on Information Technology Interfaces, V. Luzar-Stiffler, I. Jarec and Z. Bekic, eds, pp. 9–36, Cavtat, Croatia, 2010.

350 Think! Interactive Systems Need Safety Locks

Taking account of such complexities, a more
considered design rule is

• Any system with potentially unwanted ef-
fects should have a safety lock (or equiva-
lent) unless the safety lock itself increases
the risk of problems more than the prob-
lems it is supposed to reduce.

In other words, having a safety lock is a de-
sign trade-off. The key argument to be made
by this paper is that this design rules fits in-
teractive computer systems, and moreover, that
what is obvious for a machine gun is too often
overlooked in the case of interactive computer
systems.

Computer systems are in many ways very much
like machine guns. A simple action, perhaps
intentional, perhaps a slip, can have enormous
and quite unintended consequences. Like a ma-
chine gun, any system controlled by a human
requires some sort of trigger so that it can be
made to operate when its user wants to operate
it. (Of course, many systems are more complex
than guns: the actions triggered may require
further control and refinement.)

Imagine: a single keystroke triggers sending
an unfortunate email to thousands of people. A
button press triggers a patient receiving an over-
dose of a drug. Clicking “save” overwrites a file
the user wanted to keep, and there is no undo to
recover all the work that has been lost.

Where are the safety lockswhen they are needed?

This question is wrapped up within deeper, con-
textual questions: sometimes the user really
wants to do something unfortunate, but which
only too late they realise was unfortunate. The
user might really want to send the email, and
perhaps nothing the computer can do will make
it safer, and the user only realises their er-
ror when thousands of complaints start coming
back to them much later.

Paul Cairns observes that “safety lock” is a con-
cept much more general than what is needed
on obviously dangerous devices like guns. In
electrical wiring systems, there are fuses. A
fuse blowing is an inconvenience (it causes a
black-out and has to be replaced), but it stops
an electrical fault of some sort escalating into
perhaps a fire. A climber’s safety rope stops
them falling uncontrollably. It does not stop
them falling in the first place, and it may not

save their lives (occasionally safety ropes are
cut to save other people’s lives, so that not ev-
eryone is pulled off together), but a safety rope
is a simple device that increases safety at small
cost.

In this paper, whilst we use machine guns as
a dramatic background motivation for safety
locks, conceptually we see them as a far more
general idea, and ones that could be very widely
used in many sorts of applications. Somehow
we do not think of computers ever needing
safety locks in the same sense.

Just because there are different sorts of safety
lock and sometimes complicated answers to the
questions do not mean we should ignore funda-
mental issues. . .

2. Ignoring Safety Locks in Programming

A leading undergraduate textbook on algorithms
[2], “the bible” of the field according to its blurb,
explicitly says that it does not cover error han-
dling. Almost 1,000 pages of text assume all
data is correct, and, if so, how to process it. The
book has no sanity checks, no assertions, noth-
ing on exception handling — in short, no safety
locks anywhere. This is an example of how we
train undergraduate programmers.

If any data originates from a human — or orig-
inates from a program written by a human —
there is no guarantee the data is error-free. In
the worst case, the program it is fed into may
behave sort-of like a machine gun with all the
possible untoward consequences.

3. Not just Safety Locks – Design for Error

While “think safety locks” is a key message
of this paper, the corollary is “think human er-
ror” — for many systems are designed assum-
ing user error never happens. Safety locks are
needed because errors always eventually hap-
pen, and the idea of a safety lock is to stop an
error turning into harm or other undesirable out-
comes. Human error is the reason why we need
safety locks. Thinking “safety locks” reminds
us that safety locks are necessary because of the
unavoidable nature of human error.

Think! Interactive Systems Need Safety Locks 351

Fortunately, most errors are corrected by re-
silient mechanisms around the user. For exam-
ple, other users or people may intervene and
stop things escalating. A patient may ask a
nurse, “. . .Stop! Yesterday you gave me 1mL
not 10mL!” Then the error that led to the nurse
incorrectly preparing 10mL is intercepted, and
the patient gets the correct dose (or an explana-
tion why the dose has changed).

When using a computer system, errors happen
all the time! Many applications will have an
undo key, and the user will simply correct the
error before proceeding. It is interesting to note
that devices (such as phones rather than applica-
tions on computers) rarely have undo keys. It is
also interesting to note that undo keys are often
inconsistent and somewhat limited in what they
can undo. For example, in Microsoft Word, I
can undo any error — so long as it has nothing
to do with the whole file! If I accidentally save
a file over some other file I wanted, the other
file will be lost and undo will not help me.

However, because errors are so frequently in-
tercepted and corrected before they lead to bad
outcomes, the impression is that users get on
with their work without making errors. Thus
the organization they work for may specify and
procure computer systems assuming errors do
not happen. Thus when an error does happen,
as it surely will sooner or later, the system is
less supportive of correcting the error.

Consider this real example. Staff in an organi-
zation can submit expense claim forms, so that
they are paid for their personal expenses sup-
porting the organization. Typically, expenses
have to be charged to accounting codes. Staff
fill in forms, make mistakes, and pass the forms
on to administrators, who then fix the mistakes.
Then the forms go to Finance, who authorize
payment of the expenses.

So this simple paper-based form-filling system
is replaced by a computer system, specified by
the people who work in Finance. The intention
is that staff will use a web-based form, which
they fill in, and then submit directly to Finance.

Of course, the Finance Department is now inun-
dated with incorrectly filled-in forms. Finance
did not know staff were making mistakes, be-
cause their administrators who understood what
was going on corrected their paper forms for
them. Finance never knew staff made so many

mistakes, because they only saw the corrected
forms. The computer system developed did
not allow for user error, because management
never got to hear about user error; it was always
corrected before they saw anything. The com-
puter system did not allow for administrators,
because they were “invisible” in the previous
paper-based approach.

How would a safety lock help? The simplest
step would be to have an “are you sure?” check
before the form is submitted — a bit like,
“you’ve pulled the trigger, but do you really
want to shoot?” Then, of course, the designer
should ask, “how can a user answer such a ques-
tion?” In the pre-computer, paper days, the an-
swer was provided by a colleague, another user,
or the administrator, who reviewed the com-
pleted form. Why not let other users view the
forms to answer the safety lock question, and
help correct the forms? This way, local exper-
tise and best practice about form-filling would
naturally spread through the organization and
everyone will get more skilled at filling in forms
correctly, or helping others fill in forms cor-
rectly. This simple idea not only increases the
effectiveness of the system — reduces errors —
but probably also increases job satisfaction for
all the helpful bystanders.

Thinking explicitly about safety locks helps
make safer systems; that is the intention, but
they are also a technique to raise the profile
of potential errors. We know that safety locks
are a good idea — because users may make
errors, but as the example above showed (guns
aside), the system, organization or other context
may successfully conceal errors from designers
and developers. In particular, managers and
procurement probably know little about “sharp
end” errors, since users do not want to report
their errors up the management chain! Then, as
errors seem to be rare, organizations often take
steps that inadvertently hide them still further; if
somebodymakes an error that is detected, if they
are branded as a “bad apple” and fired or sus-
pended, then the problem is apparently solved!
The organization no longer has that error-prone
user, so now it really makes no errors! The
system, provided it treats users as bad apples,
never needs to face up to the important role of
safety locks. The mantra goes: good users do
not make errors . . . so why have safety locks?
There are no bad users here . . . we sacked the

352 Think! Interactive Systems Need Safety Locks

last one. Clearly, such (unfortunately common)
thinking is not as strategic or as realistic as de-
signing interactive systems that are better able
to help users manage errors.

We now turn from these general comments to
exploring errors and safety locks in an ubiqui-
tous issue: numbers.

4. Ignoring Safety in Numbers

Number entry is one of the most basic and
widely-encountered tasks (and is even a step
in filling in expense claims forms, the example
used in the previous section).

A user presses keys, say, 1, 2, ·, then 3 (where
I am using · to mean a decimal point) and then
the computer will convert the sequence of key
presses, 12 · 3, to the number 12.3. Often the
user will have to press ENTER or GO or some
other key (perhaps starting the next step of the
data entry) to indicate when they have finished
entering each number.

Although we write 12 · 3 or 12.3 (the keys)
and 12.3 (the number), to a computer these are
quite different concepts, and one has to be care-
fully converted to the other. Humans gener-
ally think of numbers as particular sequences
of digits rather than as abstract values, so the
subtle differences between keys, numerals and
numbers are often glossed over. Recall that
computers use binary; what we write in this
paper as 34, say, may be represented inside
the computer as 100010 — and even then one
would search in vain to find anything that looks
like 100010, as the 1s and 0s are represented
as electrical states, not as anything humanly
readable. Indeed, our habitual ways of talking
about numbers makes them look very easy, and
correspondingly makes it quite hard to grasp
how complex number entry really is. Another
way of helping see the difference is that our
choice of representing the number 34 as the two
characters 3 and 4 is an arbitrary decision; Ro-
mans would have written XXXIV, and, conceiv-
ably, if Roman numerals had not given way to
Arabic numerals, we might have numeric key-
boards with I, V and X on them! But both 34
and XXXIV, though different numerals, are the
same number, but the way we talk about that
number is to call it thirty four — and that’s
writing the numeral in English words instead!

In summary, we press keys to describe the nu-
meral we want to enter, and the computer has
to do some interesting work to convert the keys
into the actual number (which in fact it will
represent inside itself as a binary numeral or in
some other notation).

A typical approach to converting keystrokes to
numbers is as follows.

The computer starts off with the number 0.
When a user hits a digit key, the number is mul-
tiplied by 10 and the value of the digit (not the
key itself!) is added to it. So if the user presses
the key with the label ‘3’ on it, then the calcula-
tion 0×10+ valueof (key3), which in this case
works out to be 3, is performed, and then the
computer gets the number 3. This may seem
rather obvious and perhaps a little complex for
what it achieves, but exactly the same process
will work on the next key too. If the user keys
‘4’ next, another digit key, then the same pro-
cess is repeated: 3 × 10 + valueof (key4) will
be 34.

In this example, as can be seen, the user keyed
‘3’ then ‘4’ and the computer determined that
they entered the numerical value 34. The pro-
cess is repeated so long as the user is keying dig-
its. Figure 1 shows the algorithm as it would be
written in a typical programming language, like
Java. The simple algorithm described above
works very nicely until the user keys a dot or
DELETE, or keys so many digits that the com-
puter loses track of the value of the large number
intended; then things get more complex and the
consequences will be unpredictable. In some
languages, 10 times a positive number may be-
come negative, or perhaps an exception will be
raised and the program will start doing some-
thing else entirely. The point is that the sim-
ple program code we wrote above implicitly
assumes the user enters a number without error.
Any deviation, and the results are undefined —
and the user will not be notified, as the program
makes no attempt to check that what the user
does is what it expects. Indeed, nowhere does
the program define what it expects!

Wewill not pursue the elementary programming
details further in this paper. Nevertheless, it is
interesting to note that when the user has done
nothing, the computer is already thinking zero
(thanks to the very first line of code, n = 0, in
Figure 1). However, nothing and zero are not

Think! Interactive Systems Need Safety Locks 353

n = 0;
key = getKey();
while(is Digit(key))
{ n = 10∗n+valueOf(key);

key = getKey();
}
return n;

Figure 1. Simple code to read a number.

the same, and perhaps this confusion — on the
computer’s part — will cause what may seem
like user errors from time to time. Here’s how:

Many devices display the initial number as 0.0,
which may further confuse the user, as display-
ing 0.0 cannot possibly distinguish between a
user who has keyed nothing, keyed zero, keyed
a decimal point, keyed a decimal point followed
by zero . . . and so on. To illustrate the prob-
lem: if a user walks up to a device displaying
0.0 and they immediately key just a single 5, the
display could legitimately but unpredictably go
to any of these values: 5.0, 0.5 or 0.05. This is
explained in the table below:

Display shows 0.0
but some user

previously keyed:
What the display

shows after keying 5

Nothing or 0 (or 00000. . .) 5.0
· or 0· 0.5

·0 or 0 · 0 0.05

This does not seem satisfactory for devices that
are used in safety critical environments, such as
in healthcare. If a nurse casually keys 5 (say,
wanting to set the equipment to deliver 5 millil-
itres of drug per hour) and then presses ENTER
or GO, then the device may deliver 5, 0.5, or
0.05 millilitres per hour — the erroneous data
could be out by a factor of 10 or 100 too small.
Some devices take a drug concentration from
the nurse, such as 5 mg/mL from which they
calculate the rate of delivery in mL/hr. Here,
entering a number too small would result in a
delivery rate that is too high: so the same user
interface problem may result in a delivery rate
potentially a factor of 10 or 100 too high. In
fact, neither under nor over-doses are good for
patients, though it may be easier to understand
how an overdose can have adverse effects.

Treating nothing as zero (and hence treating 0·
and 0 · 0 as different sorts of nothing) is per-
haps a bit like a machine gun that fires a bullet
even when the user has done nothing. The al-
gorithm we gave in Figure 1 is standard: the
routine gives the rest of the program a number
whatever the user does, even if they do nothing.

A different sort of problem arises if a user makes
a slip when entering numbers. Hypothetically,
consider that they press 12 · ·3. This is clearly
not a number; it is not even well-formed. What
does a typical device or program do? Does it
treat this as a “trigger squeeze” for some number
or other, or does it recognize it as an inappropri-
ate sequence of actions for number entry, and
safely lock it out?

If the computer’s number entry algorithm is as
trivial as the one sketched above, then the pro-
gram will get as far as 12 and then terminate
with 12.0 as the number, rather than reporting
an error.

Programmers rarely programnumber entry code
themselves: it is often built-in so that there is a
way of doing it automatically.

Consider the programming language JavaScript,
which is one of the most widely used program-
ming languages, as it is used to script web
browsers. In JavaScript, keystrokes can be con-
verted to numbers automatically, and few pro-
grammers worry about how this works because
it is so easy to do. Yet erroneous sequences
of characters are incorrectly converted. For ex-
ample, 1, 2, ·, ·, 3 is converted to “12” — it is
treated as a valid number, but is given the wrong
value.

In fact, the treatment of the · key is more com-
plex than we have so far given it credit. The
symbol embossed on the key may be ·. On my
computer keyboard, a small . is combined with
> on a single dual-purpose key, but on many
devices, the · is on a dedicated key. On an Ab-
bott infusion pump, · is combined with a menu
selection key (it is drawn inside an arrow sym-
bol), which means that entering numbers and
changing modes are easily confused [11]. In
any case, whatever a key is labelled, when it
is pressed an electric contact is made, which
has nothing to do with the symbols on the key;
some electronics and program working together
then (hopefully!) converts the electrical signal
(and whether SHIFT has been pressed, etc) to

354 Think! Interactive Systems Need Safety Locks

the ASCII or Unicode for a dot. Programmers
rarely concern themselves with these technical
details: in a normal program · always looks
like “.” and it is not given a second thought —
which may well be why devices like the Ab-
bott just mentioned end up making unfortuntate
design choices.

Sometimes the program code for converting
keystrokes to codes is faulty because it has
ignored serious details of the electronics; this
most often causes key bounce problems, such as
ignored or extra keys apparently getting pressed.
Users are often warned to check that what they
keyed is what appears in the display; if they
think they entered 5, they should check that the
display shows 5, not 55, for instance.

JavaScript provides several ways to convert se-
quences of keystrokes to numbers; for exam-
ple, the built-in routine parseFloat converts the
same string of characters 12..3 into “NaN” —
now it is treated as “Not a Number.” It is then
up to the programmer to check that NaN is not
used as a number in the rest of the program, as
this would cause knock-on problems.

Trying parseFloat on 1.2.3 gives 1.2. It looks
like parseFloat reads as much of a number as
it can make sense of, then returns that as the
value and ignores the rest. Indeed, parseFloat
gives 0 as the value for 0m (where ‘m’ is some
non-digit, perhaps a letter), but gives NaN for
m0.

In other words, JavaScript programs can try to
convert a sequence of user actions into a num-
ber using any of the various built-inmechanisms
provided by the designers of the language, and
depending on how they do it, they will get dif-
ferent results.

Sometimes JavaScript recognizes errors (though
it never blocks them), sometimes it ignores
the error and generates some sort of number.
Generally, JavaScript assumes errors can prop-
agate, meaning that some other part of the pro-
gram has to block NaN and do something sen-
sible, rather than treating NaN as some number
(maybe zero) or worse.

If the programmer chooses to handle numbers
explicitly themselves, different things may hap-
pen again, especially considering the building
blocks of the language (including parseFloat)
are unreliable.

The keys of the computer or the keys of a de-
vice are the triggers that make it do things. We
have shown that pressing some keys can trigger
the computer to work incorrectly. Conceptu-
ally trivial, but a safety lock would only have
to block invalid number entry, and like a gun’s
safety lock, need not interfere at all with normal
— correct — number entry.

Many more examples of the problem are given
in [10], and some details of safety locks and
their effectiveness are also presented (though
the present paper introduces and motivates the
term ‘safety lock’ itself).

5. Complex Inter-twining

Our observationsmake clear that parsing a num-
ber, which we’ve discussed thoroughly above,
displaying a number as the user enters it and
editing it are very different activities, and their
programming has to be very carefully inte-
grated.

Most likely many errors happen because the
overall properties of number entry are not con-
sistent: a DELETE key may delete a key, but
not have a predictable effect on the parsed num-
ber. We shall see various examples below of
this and other related problems.

6. Does it Happen? Does it Matter?

There have been no reports of mass incorrect
number entry on the web. People seem to pay
their bills correctly. So it seems like poor pro-
gramming is not a serious problem.

Suppose you pay your bills online and acciden-
tally enter an incorrect number, and you either
over-pay or under-pay your bills. You probably
say “oops,” and sort out the problem. It seems
you made a mistake, so you fix the problem
— and nobody else learns about it. Who would
think of complaining to the designers of the pro-
grams they were using, or even to the designers
of the programming language?

In complete contrast, the 1994 Intel processor
floating point problem was a cause célèbre be-
cause an unusual error, that Intel initially tried to
dismiss as very unlikely, was easily reproduced
by everybody who cared to try it [6]. Even

Think! Interactive Systems Need Safety Locks 355

though virtually nobody needed to do the par-
ticular sum, once people knew what the sum
was, they could reproduce it and see that the
result was incorrect. This undermined the cred-
ibility of the processor, and Intel had to retract
and replace affected processors at cost.

Nobody has complained about number errors,
and nobody has said the Intel-equivalent of “try
doing 4195835÷3145727 with these particular
numbers as it will go wrong”. [6][7] Perhaps
if somebody said “try entering 1 · 2 · 3 and see
what happens” would lead to improvements in
the quality of programming, and force develop-
ers to introduce safety locks?

Whenever you use an interactive system that ac-
cepts numbers, try entering 1 ·2 ·3 and see what
it does. Few systems, from Excel to Mathemat-
ica, from infusion pumps to web search engines,
handle it correctly (see [10]).

Evidently, systems do not process number entry
errors dependably. Also, users seem not to com-
plain and not to notice. (We gave some more
general comments along these lines in Section
3, above.) The next question, then, is: does it
matter?

7. Errors that Happen and that Matter

Syed et al [8] report an unfortunate medical in-
cident where a nurse entered the number 0.5
instead of 5, an error that led to respiratory ar-
rest (i.e., potential death) of a patient. In the
paper it is clearly assumed that the design of the
device used was correct: the device behaved
as designed, and its logs showed the nurse had
entered 0.5. Problem solved; nurse error.

Nurse A apparently entered a morphine concen-
tration of 0.5 mg per mL instead of 5 mg per mL
into the infusion pump; this is what the device
has logged. With the device initialized with a
concentration that is ten times too low, it would
naturally pump a volume ten times too much of
morphine into the patient.

The patient was finally dosed with 153 mg of
morphine. The then empty supply of morphine
caused the device to alarm, which led to an-
other nurse attending and detecting and correct-
ing the error. The full details of the incident are
very interesting and are beyond the scope of the
present paper— for example, nurseA alsomade

a separate error, which had the consequence of
delaying the impact of the morphine overdose.
Nevertheless, the patient arrested and the log of
the device showed a number entry error.

The paper reports that nurse A was uncertain
how to set up the infusion pump, and asked for
the assistance of a second nurse, nurse B. This
suggests that the human factors engineering of
the device was substandard or that the training
of the nurse was inadequate relative to the work
they were supposed to do. While the paper
does not make clear whether this was suppos-
edly a routine job for the nurse, it does make
clear that poor training for nurses was a con-
tributory factor to the error. One might more
correctly rephrase this as poor training relative
to the complexity of the device was inadequate.
Presumably, prior to the incident the complexity
of the device and/or the inadequacy of the train-
ing to enable nurses to use the device effectively
was not recognized by management.

It is presumably beyond the scope of the Syed
et al paper to suggest it: but the manufacturers
simplifying and fixing their designs so they are
easier and more reliable to use would be more
strategic than retraining all the nurses that use
the systems. Or hospital procurement should
avoid purchasing systems that allow this sort of
error. If procurement checked whether systems
had safety locks, then eventually manufacturers
would provide better systems. In the meantime,
we note that it is surprising that manufacturers
continue to design systems with trivial faults;
the expertise to make them properly is readily
available if they want to make use of it.

The user apparently made a number entry er-
ror. The infusion pump involved, an Abbott
Lifecare PCS Plus II Infuser type 4100, does
not have number keys, but has “increase” and
“decrease” buttons. Nor does it have a deci-
mal point. This reduces the number of keys
(numbers can be entered with 2 keys rather than
11) and perhaps makes the device look simpler,
but it inevitably creates modes — for example,
which digit (units, tens, etc) is being increased
or decreased when pressing up or down buttons?
Or is a value increased and decreased, and any
digit in its decimal representation might change
(e.g., going from 99 to 100 in one button press
changes 3 digits simultaneously)?

Does the rate of increase change the longer the
relevant button is held down (typically, the first

356 Think! Interactive Systems Need Safety Locks

press increments by 0.1 and if held down longer
increments by 1 then by 10)?

Every mode a user interface has increases the
chance that the user mistakes the mode the de-
vice is in, and hence makes errors.

The paper indicates that the infusion pump was
set to a default setting of 0.5, and it suggests (but
does not make it sufficiently clear) that nurse A
selected 0.5 rather than entered it explicitly. It
appears the device was set up so that 0.5 is the
initial value, and the user would then increase
or decrease it to the desired target value.

If so, there are various ways to explain the error,
including the following:

• A single key press error could have caused
the error; the keying error may not have been
noticed by the nurse. We note that the de-
vice does not beep when keys are pressed,
thus making it hard to keep track of which
buttons work.

• Misreading the display as 5 would mean the
nurse would accept it with no further action
required.

Another problem (described in the paper) is the
device has an out-of-range check, which should
have helped protect the patient. If a dose is to
take longer than 4 hours, this is blocked.

Unfortunately, entering the wrong concentra-
tion need not make the infusion of the drug take
longer. It appears that the device does not check
concentrations (or the calculated drug delivery
rates which are functions of the concentrations).

8. Other Scenarios

We have discussed in some detail ways in which
the nurse error may have been induced by de-
vice design. We know that other number errors
cause incidents in healthcare and that the infu-
sion pump involved in the story above is not the
only style of pump. In general, then, there are
other potential sources of number error.

We now briefly consider other ways the number
entry error could happen (on a different device)
using numeric keys rather than increase/decrea-
se keys.

(1) We’ve already considered a simple possi-
bility above. Assume that a · has already

been pressed (perhaps some time ago, or
by accident), but the display will show 0.0,
which is also what it would display if · has
not been pressed. (The standard initial dis-
play of 0.0 does not tell a user whether ·
has already been pressed.) If nurse A now
presses 5, the value entered is 0.5 even
though the nurse expects it to be 5.0 —
based on the fact that on many previous oc-
casions, pressing 5 when the device shows
0.0 has got it to 5.0.

(2) Laura Gosby has pointed out that many de-
vices have a fixed position for the decimal
point, but digits move right-to-left as they
are keyed. So many devices display 0.0
as their initial display. As a user presses
123 in that order, the display would change
successively through 0.1, 1.2, 12.3. (Cash
machines/ATMs often work like this.) In
this scenario, nurse A simply presses 5,
thinks they have pressed 5, but the device
would treat it as 0.5, the wrong value and
out by a factor of ten.

(3) Perhaps nurse A keys 0 · ·. This is a simple
slip: 0 · · is not the start of a well-formed
number. Nurse A recognizes this error,
and presses the DELETE or CANCEL key
to correct the erroneous keystroke. On
any sensible device (like Microsoft Word)
pressing ··DELETE has the meaning same
as · alone.

However, most medical devices do not
keep track of how many decimal points a
nurse has keyed: a number either has no
decimal points or one. So 0 · · is recorded
by a device as 0·with only a single decimal
point. But then nurse A presses DELETE
to correct the error. The result will be as
if the nurse pressed 0, not 0·, because, ef-
fectively, both dots keyed by the user have
gone. Next, nurse A presses 5, and the
device has got 05 as the number entered,
presumably equal to the numeric value 5,
yet nurse A believes they have entered 0.5.

This is a tenfold error (but, as it hap-
pens, in the wrong direction for the specific
Syed et al scenario). Nevertheless, it illus-
trates how a user’s reasonable expectations
(learned from other familiar systems like

Think! Interactive Systems Need Safety Locks 357

Written around 1790BC, the Code of Hammurabi says
things like, “If a builder builds a house for someone,
and does not build it properly, and the house falls
down and kills its owner, then the builder shall be
put to death.” Likewise, today’s programmers should
be plugged into their devices: not only is it a de-
terrent for bad programming, but if the programmer
is killed by their own bad programming, they won’t
have any children. Eventually evolution will take care
of improving programming standards. . .

Figure 2. Updating the Code of Hammurabi?

word processors) may be seriously under-
mined by poor programming.

(4) Another possibility is that the device ini-
tially displays 0.0, and as the user keys in
digits and dots, the display updates. The
nurse keys 5, and the display shows 0.5; if
the nurse continued and keyed 0, the dis-
play would update to 5.0, as the 5 “scrolls”
to the left. Who knows? But this is a plau-
sible way that nurse A thinks they have
keyed 5, but the device logs 0.5.

(5) The nurse keyed · by mistake as their first
key press, and noticed this slip. The nurse
hit DELETE, but the delete did not work,
perhaps because the nurse did not press the
key hard enough. Keying the digit 5 next
would have led to the device treating the
number as 0.5, not as 5.

(6) Another, sadly common, possibility is that
the device has timeouts. The nurse presses
0· and then is maybe distracted for a few
seconds (perhaps to say something or at-
tend to the patient) then continues by press-
ing 5. The nurse knows they pressed 0 · 5,
but the device timed-out after the · and ig-
nored it. The nurse has, so far as the device
is concerned, entered 5.0.

(7) On devices with up/down keys, the up/
down keys may change the value displayed
by 0.1. The user pressed UP and the num-
ber being entered cycles via 0.9 to 0.0 (or
0.1), because some other operation is re-
quired for UP to increment units and tens
digits. On seeing the number reach 5, the
nurse may have thought “I have increased
the number, and it has changed to 5, there-
fore I have finished.” Unfortunately, this is
also a misreading error: the number is 0.5,
even though the nurse saw it increase from
0.5 to 0.6, 0.7. . . etc. This error would be

even more likely if the user interface accel-
erates the rate of change the longer UP is
pressed.

(8) We know that the infusion pump involved
uses 7 segment digit displays. A display
of 0.5 (which was selected), rather than
5 (which should have been selected), may
easily have been misread, as decimal points
in 7 segment displays are not very salient.
Possibly the decimal point was faulty; pos-
sibly the machine was positioned so the dot
could not be seen because of parallax. Pos-
sibly 0.5 is displayed as 05, with a slightly
smaller decimal 5, but no decimal point at
all.

(9) Thehypothetical scenarios abovewere lim-
ited to the specific 0.5 or 5.0 confusion,
though they obviously generalize to other
values, such as 0.1 and 1.0 confusions. The
literature explores many other forms of nu-
merical confusion — for example, Johnson
et al [4] show how keying 135 · 0 can be
taken as 1,350 because the device gratu-
itously ignores decimal points on values
larger than 100. Cairns and Thimbleby [9]
show how keying 10 ·5 gets 10.5 but 100 ·5
gets 1,005 on the Baxter Colleague. In
these two examples, the device’s handling
of · depends on contingent modes that may
not be, and probably are not, obvious to the
user.

(10)All the hypothetical examples above as-
sume the user made a slip in the opera-
tion of the device. The solution to these
sorts of problem are better device design
and/or better user training. (We prefer
better device design, since users will even-
tually make slips regardless of their train-
ing.) A different possibility is that the user
intended to enter 0.5, but by mistake. Per-
haps the prescription was misread? Per-
haps there was a smudge before the 5 that
was misread as a ·? Perhaps if the dose had
been written as 5 ·0 it would have been less
likely to have been misread as 0 · 5? Most
probably, if the training of everybody was
that a little dot (.) is never written when •
(i.e., a real decimal point) is intended, such
misreading would be far less likely. (As an
aside: a user, or more often an unhelpful
relative of the patient than a nurse, may

358 Think! Interactive Systems Need Safety Locks

intend to make a mistake, perhaps mak-
ing some drug dose deliberately easy to
misread, but knowing perfectly well what
the correct dose is; this is then a violation
rather than a mistake or a slip.)

∗ ∗ ∗
Sadly, these ten hypothetical scenarios explored
above (in addition to the ones, which we de-
scribed earlier, that are possible on the specific
device actually involved in the incident) are all
plausible: user interfaces are often badly de-
signed, and it is all too easy to imagine the
errors not being blocked by safety locks.

In summary, there are many hypothetical ways
that a device can log an apparent “user error”
which has been induced by design, not by unrea-
sonable behavior on the part of the user. Logs
should at least record the exact keystrokes the
user performed and their timings, not the final
value the device somehow works out, perhaps
erroneously, from the keystrokes.

• Device logs should allow investigators to
distinguish between different possible cau-
ses of error.

One can infer in the Syed et al case that the
device log was not sufficiently clear to suggest
alternatives other than “obvious nurse error” to
the authors of the paper.

9. Discussion

The list of possible causes of error is not in-
tended to be exhaustive, nor are all possibilities
suggested equally likely on the particular device
at the centre of the reported case. The point is to
raise a variety of ways in which the absence of
safety locks can cause problems. Almost cer-
tainly one or more safety locks on the device
in question failed or, more likely, were never
designed into the device.

Sadly, without more detailed information (of
the device condition and set up, including de-
fault values, and of the incident itself) one can
only speculate as to the specifics.

The Syed et al paper mentions documented
cases of concentration errors made before on
the same device. Evidently, concentration er-
rors are well known and encountered relatively

often. One wonders whether there is a sys-
tematic reason for this class of error other than
independent human error. The unvarying com-
mon factor in all the errors is the device (and its
design).

The paper says,

“. . . the primary error involved incorrect
programming of the PCA pump.”

— where “programming” means the nurse
pressing a sequence of keystrokes to set
the timing, rate or quantity of drug infu-
sion, not programming as in the software
programming of the device;

— where “PCA” means patient controlled
analgesia; i.e., an infusion pump with
features for the patient to have some con-
trol over their drug dose, for instance to
give themselves a bolus, an extra few
mL, of pain-killer, on top of the baseline
rate programmed by the nurse.

We would beg to disagree. The primary error,
in our opinion, lies in the design of the device.
Moreover, fixing the design would solve many
of the paper’s recommendations, such as im-
proved training. Why have better training for
something that is over-complex, as it would be
more strategic to improve the device — and re-
programming the device (e.g., in a firmware up-
date) could be done without any training costs.

The Syed et al paper makes six recommenda-
tions, including better nurse training (they do
not mention that perhaps prescriptions should
be written out more carefully, which would be
an issue of pharmacy or consultant training).

None of their recommendations cover better
procurement of devices (why are bad devices
purchased?) nor better design of devices (why
are bad devices designed in the first place?) Nor
is there any explicit learning from the investiga-
tion that might lead to better device design.

Although the paper was written from a medical
perspective, from our point of view, like many
if not all such papers it is too vague about the
design and use of the device. The assumption is
that the nurse made the error, not that the device
induced or contributed to the error.

Think! Interactive Systems Need Safety Locks 359

10. Conclusions

Machine guns are dangerous, but they are made
considerably safer without significantly com-
promising their effectiveness by having safety
locks. Now imagine this: there is a machine
gun available on the international market with-
out a safety lock. I think we would all know
about it: films would be made of exploits with
it!

Now imagine that somebody has been shot by
a machine gun, but nobody mentions that the
machine gun involved had no safety lock. If
a gun had no safety lock, that fact would be
likely to be mentioned in any accident inves-
tigation. Yet, let’s say, nobody mentions the
missing safety lock. For some reason, people
are not thinking about it.

That would be a bizarre story for guns, maybe,
but the story makes a point: it implies we are
very familiar with safety locks when lives are
obviously at risk.

The need for safety locks on machine guns can
be easily and dramatically demonstrated. Imag-
ine there is no “safety lock: press the trigger,
and the gun sprays bullets . . .and the gun’s re-
coil creates chaos. . .

Without a safety lock, a gun is clearly lethal.
Guns have the advantage, both for the rhetoric
of this paper and in reality, that there is a very
small psychological distance between pressing
the trigger and a dangerous bullet emerging
noisily!

For completeness we note that safety locks on
guns are not without controversy. If a user mis-
takenly thinks the safety is on, when in fact it is
off, they may be worse off than if the gun had
no safety lock at all. If the safety is on, and
the gun user knows this, they may take more
risks with the gun than otherwise. Not hav-
ing a round in the chamber may be better, but
whether a gun is loaded is generally harder to
see than whether the safety is engaged. And if
you are being attacked by a frenzied polar bear
and you are wearing gloves, do you really want
to fiddle with the possibly frozen safety catch?
However, regardless of the controversy and the
differences in opinion in what’s best, it is not
controversial to think about safety catches.

Yet nobody is familiar with safety locks when it
comes to programming, for instance in devices

like hospital infusion pumps. Nobody notices
“safety lock absence.” This paper has argued,
as is very obvious with guns, that safety locks
in “ordinary” programming could lead to lives
being saved. Elsewhere [10] we’ve shown they
could halve mortality.

In summary:

• Many devices have no safety locks in num-
ber entry;

• Number entry errors may cause significant
problems;

• Analyses do not discuss details of use in suf-
ficient detail to be certain of relevant design
factors;

• Although human factors can improve per-
formance and safety, no connection is made
between particular incidents and general so-
lutions.

Although the present paper has concentrated on
number entry (because of its familiarity, clarity
and ubiquity), there are problems with all forms
of user interface. Number entry is, for the sake
of exposition, merely easier to demonstrate as
flawed. With any device, try entering 1 · 2 · 3
(or make some other keying error) and see what
happens.

We considered the Syed et al paper as a case
study to help support our points; worryingly, the
paper’s concerns and approach are not unusual
[1]. Therewas a slip followed by an adverse out-
come for a patient, and the paper itself makes
it clear that this error was not a one-off event
for this device. The healthcare implications are
discussed. Maybe there will be some manage-
ment changes. But design was not criticized,
except tangentially in mentioning a human fac-
tors paper that shows that human factors can
reduce error [5]. The Syed paper leaves unex-
plored whether human factors redesign would
have avoided the problem discussed. Sadly, pa-
tients with an overdose of morphine die quietly
without the sort of noisy and memorable drama
one expects of a badly-designed machine gun.
It’s time to take safety locks in interactive sys-
tems seriously.

360 Think! Interactive Systems Need Safety Locks

11. Acknowledgments

This work was funded by EPSRC grant nos.
EP/G003971/1 and EP/G059063/1. The au-
thor is grateful for discussionswithChitraAcha-
rya, Paul Cairns, Laura Gosby and Ray Paul.

References

[1] A. BLANDFORD, G. BUCHANAN, D. FURNISS, P.
CURZON, H. THIMBLEBY, Few are Looking: In-
visible Problems with Interactive Medical Devices.
Workshop on Interactive Systems in Healthcare
(WISH), Proceedings ACM CHI, (2010) Atlanta,
G.R. Hayes and D.S. Tan, eds, pp.–12.

[2] T.H. CORMEN, C.E. LEISERSON, R.L. RIVEST, C.
STEIN, Introduction to Algorithms. 3rd edition, MIT
Press, 2010.

[3] ISMP, INSTITUTE FOR SAFE MEDICATION PRAC-
TICES, (2007) Fluorouracil Incident Root Cause
Analysis, http://www.ismp-canada.org

[4] T.R. JOHNSON, X. TANG, M.J. GRAHAM, J. BRIXEY,
J.P. TURLEY, J. ZHANG, A. KESELMAN, V.L. PATEL,
Attitudes toward Medical Device Use Errors and the
Prevention of Adverse Events. The Joint Commis-
sion Journal on Quality and Patient Safety, 33(11)
(2007), pp. 689–694.

[5] L. LIN, K.J. VICENTE, D.J. DOYLE, Patient Safety,
Potential Adverse Drug Events, and Medical Device
Design: A Human Factors Engineering Approach.
Journal Biomed Inform, 34 (2001), pp. 274–284.

[6] C.B. MOLER, A Tale of Two Numbers. MATLAB
News and Notes, (1995), pp. 10–12.

[7] P. SODERQUIST, M. LEESER, Area and Performance
Tradeoffs in Floating Point Divide and Square-Root
Implementations. ACM Computing Surveys, 28(3)
(1996), pp. 519–564.

[8] S. SYED, J.E. PAUL, M. HUEFTLEIN, M. KAMPF, R.F.
MCLEAN, Morphine Overdose from Error Propaga-
tion on an Acute Pain Service. Canadian Journal of
Anesthesia, 53(6) (2006), pp. 586–590.

[9] H. THIMBLEBY, User Interface Design. Addison-
Wesley, 1990.

[10] H. THIMBLEBY, P. CAIRNS, Reducing Number Entry
Errors: Solving a Widespread, Serious Problem.
Journal Royal Society Interface, 7(51) (2010) pp.
1429–1439.

Received: June, 2010
Accepted: November, 2010

Contact address:

Harold Thimbleby
Future Interaction Laboratory

FIT Lab
Swansea University

Wales, United Kingdom
e-mail: harold@thimbleby.net

HAROLD THIMBLEBY is a professor of computer science at SwanseaUni-
versity, Wales, where he established the Future Interaction Technology
Lab, FIT Lab (www.fitlab.eu). His passion is designing dependable
computer systems to accommodate human error. He has been a Royal
Society Wolfson Research Merit award holder, has published over 400
papers and wrote the book Press On, which won the American Publish-
ers’ Association best book award in computer science. His web site is
www.harold.thimbleby.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

