Journal of Computing and Information Technology - CIT 19, 2011, 2, 83-91
doi:10.2498/cit.1001006

83

GXQuery: Extending XQuery for

Querying Graph-structured
XML Data

Hongzhi Wang and Jianzhong Li

Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

XML data can be naturally modeled as a graph. Existing
query languages to XML can only express queries of
matching XML document with a tree-structured schema
with structural and value constraints without the con-
sideration of graph features. The ability of such query
languages cannot satisfy various requirements of query-
ing graph-structured XML data. In this paper, GXQuery
is presented as an extension of XQuery, an XML query
language recommended by W3C, to express more flexible
query on graph-structured XML. GXQuery expressions
can match XML document with graph-structured schema
with not only structural and value constraints, but also
topological constraints.

Keywords: XML, XQuery, query language, topological

1. Introduction

In some applications, XML data can be natu-
rally modeled as graph structure. For an exam-
ple, Figure 1 shows a graph structure of an XML
document in Figure 2. This is a document about
the relationship between authors and publica-
tions. Such document adapts to graph structure

bib

conference confernece Journal

name paper paper name paper

TAWANRTA

n; title author title author n, title author title author

paper name paper Ppaper

ny title author

since one paper may have more than one author
and one author may have more than one paper.

<hib> </paper>
<conference id="c1"> <paper author="personl">
<name>nl</name> <titlext4<Aitle>

<paper author="person3"> </paper>
<title>t] <Aitle> <fjournal>
</paper> <persons>

<paper author="person2">
<title>t2</title>

<person id="personl" editor="j1">
<name>pl</name>

</paper> <address>al </address>
</conference> </person>

<conference id="c2"> <person id="person2" PCrumber="c2">
<name>n2</name> <namne>pl</names

<paper author="person2"> <address>ad</address>
<title=t3</title> <fperson=

</paper> <person id="person3" editor="c1">
<paper author="person3"> <name>p3</name>

<title>td </title> <address>a3</address>

</paper= </person>

<fconference> </persons>

<journal id="1"> </bib>

<name>n3</name>

<paper author="person2">
<title=t2</title>

Figure 2. bib.xml.

Query processing on graph-structured XML data
brings new challenges. One of them is that cur-
rent query language can not satisfy all require-
ments of query description of graph-structured
XML documents.

persons

person

N
name address (Chairman

a3

Figure 1. An example of graph structure.

84 GXQuery: Extending XQuery for Querying Graph-structured XML Data

Current query languages [2] for XML do not
support the following features for graph-structu-
red XML document.

e Current query languages for XML are de-
signed for tree-structured XML data and do
not support the matching of schema in form
of general graph. Even though XPath can
express a node with multiple parents by mul-
tiple constraints with axis “parent”, it cannot
express a graph with cycles.

e Current query languages for XML do not
support topological constraints. Topologi-
cal constraint in the query to a graph means
that the required graph must have some topo-
logical constraint with a given graph. For
example, in Figure 5(d), subgraph G4 in
Figure 5(b) and subgraph Gp in Figure 5(b)
are overlapping. Topological relationships
between two graphs include connect, over-
lapping, contain and disjoint.

Inreal applications, these two features for query-
ing graph-structured XML data have their appli-
cations. Two applications are shown in follow-
ing examples.

e Retrieve the person who has published paper
in the conference with himself as a PCmem-
ber. Performing such query in the graph in
Figure 1 is to retrieve person element in a cir-
cle “person — Pcmember — conf erence —
paper — author — person”. Note that the
last person and first one should be the same
element.

e Retrieve the conference which shares at least
one paper with same title and authors as a
journal. Such query uses a topological rela-
tionship “overlapping” as a constraint. Per-
forming such query in the graph in Figure 1 is
to find subgraphs containing conference and
sharing common parts of author information
with some subgraph containing information
about journal.

In this paper, in order to describe queries on
graph-structured XML data effectively, we ex-
tend XQuery [3], a query language for XML
recommended by W3C by adding these fea-
tures of graph representation and topological
constraints to XQuery. We define a new data
type XGraph as an extension of XPath to ex-
press structural constraints as a general graph,

which may contain some circles. We also de-
fine topological constraints to make XQuery ex-
pressions support topological queries. These
two new features can be embedded in current
XQuery expression seamlessly.

The contributions of this paper includes:

e XPath is extended to be XGraph to support
the description of general directed graph.
XGraph can express a kind of graphs in a
flexible and concise way. The extension re-
serves original features of XPath. Addition-
ally, XGraph can be embedded in original
XPath expression as structural constraint.

e With the support of XGraph, topological
constraint is added to XPath and XQuery.
With such extension, queries such as “re-
trieve graphs overlapping with graph B” can
be expressed. As far as we know, this is the
first paper that considers this problem.

e A labelling-scheme-based processing strat-
egy of GXQuery is presented in this paper.

This paper is organized as follows. In Section 2,
some background knowledge is presented. In
Section 3, we give the description of XGraph
and topological constraints. Some use cases
about extended XQuery are presented in Sec-
tion 4. We design preliminary implementation
of GXQuery in Section 5. In Section 6, we give
an overview of work related to this paper. We
draw the conclusions in Section 7.

2. Preliminaries

In this section, we briefly introduce graph-
structured XML model and some terms used
in this paper.

2.1. Data model

XML data is often modeled as a labelled tree:
elements and attributes are mapped into nodes
of the tree; directed nesting relationships are
mapped into edges in the tree. A feature of
XML is that there may be an IDREF between
two elements representing their reference rela-
tionship [11]. With this feature, XML data can
be modeled as a labelled digraph: elements and
attributes are mapped into nodes of the graph;
directed nesting and reference relationships are

GXQuery: Extending XQuery for Querying Graph-structured XML Data 85

mapped into edges in the graph. An XML frag-
ment is shown in Figure 2, which can be mod-
eled as the graph shown in Figure 1. Note that
the graph in Figure 1 is not a DAG.

2.2. XPath and XQuery

XPath [S]is a path description language pre-
sented by W3C. The unit of XPath is called
a step. A step generates a sequence of items
and then filters the sequence by zero or more
predicates. The result of the step consists of
items that satisfy the predicates. Such a step
has two parts: an axis, which defines the “di-
rection of movement” for the step, and a node
test, which specifies the node kind and /or name
of the nodes to be selected by the step. For ex-
ample, to retrieve the title of the paper published
in a conference “nl”, the XPath expression
is bib/conf erencelname = “nl”]/paper/title.
The results of performing this query on XML
document in Figure 2 is ¢1 and 2.

XQuery [3] is a query language recommended
by W3C. It uses XPath to express complex path
and supports flexible query semantics. XQuery
has “For-Let-Where-Return”(FLWR for brief)
structure. For example, query

for $i=document (“bib.xml”)//
person|PCmember]

let $j = $i/addres

where $j = “a2”

return < name > $i/name < /name >

is to retrieve the name of a person with address
“a2” who has been a PCmember of some con-
ference. The result of this query is an XML
fragment “< name > p2 < /name >".

2.3. Labelling schemes

The labelling scheme for a graph-structured
XML document is to judge the structural re-
lationship between any two nodes in a graph.

In XML document without accessing other in-
formation. Such that subgraph queries can be
processed efficiently. The labelling scheme
used in this paper is an extension of that in [9].

The reachability labelling scheme can be gen-
erated in the following steps:

e Each strongly connected component in G is
contracted to one node to convert G to a DAG
D.

e Anoptimum tree covering T of the DAG D is
found. A depth-first traversal from the root
of T accesses all nodes to generate the post-
order of each node. Note that during the
traversal, when a node nc generated from
a strongly connected component C C G is
accessed, if the post order of last accessed
nodeis pc,thenpc+ 1, pc+2,...,pc+|V,|
are assigned to n¢ (where V¢ is the number
of nodes in C). Then, each node n € T is
assigned a number id and an interval [x, y]|,
where id and y are both the post order of n; x
is the smallest post order of descendants of
ninT.

e All the nodes in D are traversed in the re-
versed topological order. When a node n
18 met, the interval sets of n’s children in
D are copied to that of n. Then intersected
intervals in the interval set of n are merged.

e For each node in C, its interval set is that of
nc; its id is one of the ids of nc. Note that
each node in C has a different id.

When such steps are finished, each node n in
G is assigned a number n.id and a set of inter-
vals I,. A node a reaches a node b (no matter
whether a and b are in the same strongly con-
nected component) if and only if b.id belongs
to some interval of 1,. With slight modification
of attaching the interval [i, /] of each node with
id i to its parent, the adjacent labelling scheme
is generated and the judgement condition is the
same as that of reachability labelling schemes.

3. Description of GXQuery

In this section, we describe how to extend XQue-
ry to support querying graph flexibly. A basic
idea of the enhancement is to describe the query
to a graph flexibly. By extending XPath, we
present XGraph. Similar to XPath expression
describing matching rules of a path, XGraph
describes matching rules of a graph.

In this section, at first, we will present the de-
scription of XGraph. Then, we describe topo-
logical relationships between XGraph objects.
At last, we present how to embed XGraph fea-
tures into an XQuery expression.

86 GXQuery: Extending XQuery for Querying Graph-structured XML Data

3.1. The definition of XGraph

In this subsection, we will present the definition
of XGraph. XGraph is an expression language
to describe a special class of graph matching
some patterns. An example of graph structure
of an XML document is shown in Figure 3.

Figure 3. Example graph.

In XGraph, we use XPath as the backbone to
describe general graph. Each XGraph expres-
sion can be represented as a graph, as is called
query graph. There are two kinds of nodes in
query graph, nodes as result and nodes as struc-
tural constraint. Similar to XPath, we use “[|”
to represent “‘existing” a branch or subgraph in
query expression. We use “<>" to represent
a schema to be matched and exist in the result
of this XGraph expression. If a tag is not in
any bracket, it represents structural constraint.
In a simple example query with query graph in
Figure 4(a), since a at the top of the figure has
more than one child/descendant in the query,
all its children/descendants are in brackets. It
is different from XPath. An XPath expression
can only represent the query requiring a spe-
cial kind of nodes, while an XGraph expres-
sion can represent the query requiring a special
kind of subgraphs. For example, an XPath ex-
pression a/b/c will retrieve nodes with tag c¢
and incoming path a/b. An XGraph expres-
sion < a/b/c > will retrieve all subgraphs with
schema a/b/c. XGraph has the same semantics
as XPath when nodes in XML document match-
ing only one node in query should be returned
as results. For example, XGraph expression
a/b/c has the same meaning as XPath expres-
siona/b/c.

In order to describe circle or node with multiple
parents /ancestors, we add variables binding to
XGraph expression. “%” is used as the suffix of
variable in XGraph expression. The variable in

brackets “()” following a node n is the variable
binding to n.

We use an example to illustrate XGraph. The
structure of a graph query is shown in Fig-
ure 4(a). Solid lines and circles in the query
graph represent the nodes and relationships to
be matched as result in the graph. Dotted lines
and circles represent that the nodes and rela-
tionships are constraints. Single line represents
parent-child relationship. Double lines repre-
sents ancestor-descendant relationship. The ex-
pression of the query graph in Figure 4(a) is as
follows.

Query 1 a(%a)la/%d] < [/c//%d > | <
ble = 2]/d(%d)%a >

where %a and %d are variables binding to query
nodes with tag a and d, respectively. ‘/° and
‘//” in Query 1 represent parent-child relation-
ship and ancestor-descendant relationship, re-
spectively. The result of processing Query 1 in
Figure 3 is shown in Figure 4(b).

Another case is that in the graph, it is required

a4
b, ¢
s v
- 0

(a) Query 1 (b) Result 1
€) C G

(d) Result 3

(e) Query 4
a, @
5 e a
g @ f
(f) Result 4 (g) Query 5

Figure 4. Example queries.

GXQuery: Extending XQuery for Querying Graph-structured XML Data

87

that multiple nodes match one node in the query
while other nodes in the query only match just
one node in the document graph. We use “*” to
represent multiple-matching part of the query.
For example, a query

Query2<a/ <c>x>

will return result shown in Figure 4(c).

As a comparison, a query

Query3 <a/c >

will return results as is shown in Figure 4(d).

The result of XGraph expression is a graph.
Note that in the result, both ancestor-descendent

and parent-child relationships between two match-

ing nodes are both represented as parent-child
relationship.

XGraph reserves all the features of XPath, such
as axis, structural, value and position constraints.
For example, query

Query 4 < a(%a)/c[position() = 2]/
d[:: ancestor%al/ /e = 5]] >

represents the query within form of graph in
Figure 4(e). The result of Query 4 is shown in
Figure 4(f).

XGraph expression can be embedded in an
XPath expression as structural constraint. For
an example, query

Query 5 a/c/d[a(%a)/a/f | %al]

represents the query graph in Figure 4(g). The
result is d;.

3.2. Topological constraints of XGraph

In this subsection, we present the constraints
among XGraph objects. Besides traditional
constraints of value, structure and position, we
present a novel constraint, topological constraint

of XGraph object. There are five kinds of topo-
logical relationship between two XGraph ob-
ject. Their semantics, expressions and exam-
ples are shown in Table 1. The topological re-
lationships are illustrated by an example. Three
subgraphs G4, Gp and G¢ are shown in Fig-
ure 5(a), Figure 5(b) and Figure 5(c), respec-

Géﬁ Gé@

(a) Ga

(b) G

(d) Overlap

: Géﬁ

(e) Connect

oée eéo

(f) Separate

Figure 5. Example of constraints.

| relationship || semantics expression | example |
connect two graphs connected with some edge G4 CONNECTED Gz WITH a/b Figure 5(e)
overlap two graphs have some common part G4 CONNECTED G WITH < a > | Figure 5(d)
contain one graph contains another graph G¢ CONTAIN Gg Figure 5(c)
be contained || one graph is contained by another graph | G IN G¢ Figure 5(c)
disjoint (hees a0 bath between any nodes of | G, DISJOINT G Figure 5(f)

Table 1. Topological relationships.

88 GXQuery: Extending XQuery for Querying Graph-structured XML Data

tively.

The “example” column in Table 1 means if sub-
graphs are in such relationship, then expression
in “expression” column is true.

Topological constraint can be embedded in
XGraph expression as a filter. The usage of such
expression is the same as position and value
constraints in XPath expression. For example,

query
Query 6 < a/c/d > [graph()SEPARATE <

//aje>]

represents subgraphs with schema a/c/d which
have no common node with any subgraph with
schema //a/e in the same graph.The result of
performing this query on the graph in Figure 3
is only node d;. d; is not the result because that
it is connected with a subgraph al/el with a
common node al.

XPath can express connection relationship be-
tween two nodes but not graphs. This is differ-
ent from the connection relationship in XGraph.
In XGraph, the constraint “A CONNECT B
WITH a/b” is true if there is a path “a/b” be-
tween any node in A and any node in B.

3.3. Embedding XGraph and topological
constraints into XQuery

XGraph expressions and topological constraints
can be embedded XQuery seamlessly. In this
subsection, we will show how to embed XGraph
expressions and topological constraints into
XQuery expression. We define XQuery ex-
tended by these two features of XGraph expres-
sion and topological constraint as GXQuery.

An XGraph object can be used in the similar
way as an element described by XPath. A
variable with suffix “#” is used to represent an
XGraph object. Note that XGraph is different
from XPath because a variable binding to an
XGraph object represents a subgraph while in
an XPath expression, a binding variable repre-
sents just one node. In order to distinguish the
difference of such semantics, we add a keyword
“AS” to define the schema to matching. The
keyword “IN” is used to describe whose sub-
graph this XGraph object is. The expression
after AS should be an XGraph expression. The
expression after in should be an XGraph object
or variable. A documentis treated as an XGraph
object.

When there is only one matching node in an
XGraph expression, a variable with suffix “$”
can also bind to such expression. The semantics
of such binding is the same as that of XPath.

For example, we suppose the XML document

corresponding to the graph in Figure 3 is “text.xml”,

query

Query 7 FOR#G AS < a < //b > [/c/d >
IN document(“test.xml”)

FOR#SGAS < a//c/d > IN #G

FOR $d ASa//c/d IN #SG

RETURN < result > $d < [result >

returns result

<result><d>5</d></result>
<result><d>6</d></result>
<result><d>6</d></result>

Since an XGraph variable represents a graph in-
stead of a node, if it exists in a “return” clause,
there is an XGraph variable, the graph should
be represented in the form of an XML fragment
with “ID” and “IDREF”. The number of id is
the same as that in original XML document.
Note that it is different from variables binding
to XPath expression, the variable binding to an
XGraph expression in “return” clause returns
only the elements in XML documents match-
ing nodes in “<>" in the XGraph expression
with value as the result. If a complex node is
required to be represented with all its context in
the XML document, it should be bound to an
XPath expression instead of an XGraph expres-
sion. The reason is that since XGraph should
describe the structure of the subgraph explicitly,
if the result is required to contain the context
of each node in an XGraph object, the expres-
sion of this XGraph object must include all the
nodes as the context of this XGraph object in
the schema and be too complex.

For example, query

Query 8 FOR#G AS < a(%a) < /b/d(%d) >
/c/%d/%a > IN document(text.xml)
RETURN #G

will return the result

<aid="al”>

<b id="b1”">

<d id="d1” a="a">5</d>

<cid="“cl” d="“d1”>

Topological constraints can also be embedded
in GXQuery expression as constraint in XPath

GXQuery: Extending XQuery for Querying Graph-structured XML Data 89

or XGraph expression or in WHERE clause. Expected result:
For example, query

| <name>p2</name> |
Query 9 FOR#G AS < a < //e > [c/d > _ _
IN document(“text.xml’”) 3. Retrieve the names of conferences which
LET#SGAS < //b/d > IN document(*test.xml”) share at least one paper with same title and
WHERE #G OVERLAPPING #SG WITH <d> author in a journal.
RETURN #G Solution in GXQuery

returns the result

. for #G as bib/<conference<name>/
<aid="al’> <paper<title>/author>*> in document
<cid="cl’> (“bib.xml”)
<d id="d1">5</d> for #SG as bib/<journal /<paper<title>/
</ e author>*>
<eid="el”> in document(“bib.xml”)
 o let $i as conference /name in #G
<aid="al"> where #G overlap #SG with <paper<
<cid="c2"> title>/author>
<d id="d1">5</d> return $i
</c>
<e id="“el”> Expected result:
 | <name>nl</name> |

4. Retrieve the names of persons who have
4. Use Cases of GXQuery not published papers in the conference with
some paper whose author has name n;.

In this section, we will present some use cases of

GXQuery in order to explain GXQuery further- Solution in GXQuery
more. The data as example is shown in Figure for #G as bib//<paper/author/person/
. . X pap p
2. Corresponding graph structure is shown in name> in document(“bib.xml”)
Figure 1. for #SG as bib/<conference/ [paper/
1. Retrieves the names of persons who have author/person [name;“nl”]]/ paper
published papers in both conference and /author/ <per.son>*> mn
journal document(“bib.xml”)
.. let $i as paper/author/person
Solution in GXQuery name in #G / / /
for $n as bib[journal /paper/author/ where #G DISJOINT #SG
person(%p)] return $i

/conference/paper/author/%p/name in

document(“‘bib.xml”) Expected result:

return $n [<name>p3</name> |
Expected result: 5. Retrieve persons who have been PCmem-
bers of some conference, the result should
[<name>p2</name> | contain the name and address of each person
2. Retrieve the names of persons who published and the name of the conference where he has
paper in the conference with himself as one been the PCmember.
of PCmembers. .
Solution in GXQuery
Solution in GXQuery:
. for #G as bib// <person<name>
for $i as bib//person(%p)/PCmember <address>/PCmember /<conference /
/conference /paper/author/%p/ name in name>*> in document(“bib.xml”)
document(“‘bib.xml”) return #G
return $i

90 GXQuery: Extending XQuery for Querying Graph-structured XML Data

Expected result:

<person>

<name>p2</name>
<address>al</address>
<PCmember><conference><name>n2
</name></conference></PCmember>
</person>

6. Retrieve the conferences with their names
and papers. Each paper has title, names and
addresses of the authors.

Solution in GXQuery

for #G as bib/<conference
<name|value()="nl"]|>/paper<title>/
<author<name>/address>*>

return #G

Expected result:

<conference>
<name>nl</name>
<paper>
<title>tl</title>
<author>
<name>p3</name>
<address>a3<name>
</author>

</paper> <title>t2</title>
<author>
<name>p2</name>
<address>a2<name>
</author>

</paper>
</conference>

5. Preliminary Techniques for
GXQuery Evaluation

In this section, the implementation issues are
proposed. At first the framework of the GX-
Query evaluation is presented. Then, the oper-
ators related to GXQuery are introduced with
their implementation.

5.1. The framework of GXQuery evaluation

The basic framework of GXQuery evaluation
is to split the query into XGraph expressions.
Each XGraph expression is processed sepa-

rately. Then, the topological constraint is judged.

As the last step, the final results are constructed.

For example, Query 9 in Section 3 contains two
XGraph expressions. To process Query 9 on the
graph shown in Figure 3, as the first step, these
two XGraph expressions of <a<//e>/c/d>
and <//b/d> are processed respectively. The
results of the former XGraph expression is
Slz{(ah €1,Cl1, dl)’ (ala €1,C2, d2)’ (Cll, €1,Cl1,
da), (a1, e2,c1,d1), (a1, e, ¢2,d2), (a,ey,cy,
dy)}. The result of the later XGraph expres-
sion is (by,d;). Then the graphs in S; are
filtered with the graph (b1,d;) with the con-
straint “overlapping with <d>". The results
are (aj, ey, cy1,dy) and (ay, es,c1,dp). The last
step is to construct the graphs with values and
tags with the ids for these tuples.

5.2. Implementation of operators

From Section 5.1, two major operators are graph
pattern matching for XGraph subquery pro-
cessing and the ropological constraint judge-
ment. They can be processed with the algo-
rithms based on the labelling scheme introduced
in Section 2. The algorithms for graph pattern
matching and topological constraint judgement
are presented in [13] and [12], respectively.

The basic idea of the former one is to split a
graph pattern into bipartite graphs and process
each pattern by bipartite graphs in a hash-based
method.

The latter is to process topological constraint
judgement with existing graph pattern match-
ing algorithms. This algorithm is to build a
structure to store the labelling schemes of the
nodes in the graph of topological constraints
and then use such structure to filter the results
as the results.

6. Related Work

Existing query languages for XML [2] are only
based on tree structure without considering graph
features. Even though Lorel [1] considers IDREF,
it considered path as basic unit instead of graph.
The disadvantage of using path as the basic unit
is that circle and topological relationships are
difficult to be represented.

There are also several query languages designed
for describing recursion relationship [6] and
graph matching [7, 10]. They focus on the
description of query in the form of labelled
graph without complex structural restrictions
and topological restrictions. Query languages

GXQuery: Extending XQuery for Querying Graph-structured XML Data 91

related to RDF [8] can be used to represent query
in the form of graph. But current query lan-
guages do not consider topological restrictions.

Currently, existing work of querying graph-
structured XML mainly focus on structural query
of subgraph/subtree matching in a [14,4]. None
of them considers the problem of topological

query.

7. Conclusions

In this paper, GXQuery, an extension of XQuery
is presented to support represent queries in form
of general graph and queries with topological
constraints. We present XGraph as an exten-
sion of XPath language to express graph match-
ing in flexible forms. GXQuery is compatible
with XQuery and XGraph expression can be
embedded in XPath and XQuery expressions.
GXQuery can represent five topological rela-
tionships between XGraph objects. As far as
we know, this is the first paper that considers
topological query on XML data.

In this paper, only the description of GXQuery
is presented. Efficient implementation of GX-
Query is a challenging work and it is left for
further research.

References

[1] S.ABITEBOUL, D. QUASS, J. MCHUGH, J. WIDOM, J.
L. WIENER, The lorel query language for semistruc-
tured data. Int. J. on Digital Libraries, 1(1) (1997),
pp. 68-88.

[2] A.BONIFATI, S. CERI, Comparative analysis of five
xml query languages. SIGMOD Record, 29(1)
(2000), pp. 68-79.

[3] D.D.CHAMBERLIN, D. FLORESCU, J. ROBIE, Query:
A Query language for XML. In W3C Working Drafft,
http://www.w3.org/TR/xquery, 2001.

[4] L. CHEN, A. GUPTA, M. E. KURUL, Stackbased al-
gorithms for pattern matching on dags. In VLDB,
(2005), pp. 493-504.

[5] J.CLARK, S. DEROSE, XML path language (XPath).
In W3C Recommendation, 16 November 1999,
http://wuw.w3.org/TR/xpath, 1999.

[6] I. E. Cruz, A. O. MENDELZON, P. T. WooD, A
graphical query language supporting recursion. In
SIGMOD Conference, (1987), pp. 323-330.

[7] R. H. GUTING, Graphdb: Modeling and querying
graphs in databases. In J. B. Bocca, M. Jarke, C.
Zaniolo, editors, VLDB’94, Proceedings of 20th In-
ternational Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile,
(1994), pp. 297-308. Morgan Kaufmann.

[8] P.HAASE, J. BROEKSTRA, A. EBERHART, R. VOLZ, A
comparison of rdf query languages. In International
Semantic Web Conference, (2004), pp. 502-517.

[9] H. V. J. RAKESH AGRAWAL, A. BORGIDA, Efficient
management of transitive relationships in large data
and knowledge bases. In Proceedings of the 1989
ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 1989), (May 1989), pp.
253-262, Portland, Oregon.

[10] L. SHENG, Z. M. OzsoYOGLU, G. OZSOYOGLU, A
graph query language and its query processing. In
Proceedings of the 15th International Conference
on Data Engineering, 23-26 March 1999, Sydney,
Australia, TEEE Computer Society, (1999), pp.
572-581.

[11] J. P. TiM BrAY, C. M. SPERBERG-MCQUEEN, F.
YERGEAU, Extensible markup language (xml) 1.0
(third edition). In W3C Recommendation 04 Febru-
ary 2004, http://www.w3.org/TR/REC-xml/,
2004.

[12] H. WANG, J. L, J. Luo, Topological queries on
graph-structured xml data: Models and imple-
mentations. International Journal of Information
Technology, 4(4) (2008), pp. 213-220.

[13] H. WANG, J. L1, J. Luo, H. GAO, Hash-base sub-
graph query processing method for graph-structured
xml documents. PVLDB, 1(1) (2008), pp. 478-489.

[14] V.J. T. ZOGRAFOULA VAGENA, M. M. MORO, Twig
query processing over graph-structured xml data. In
Proceedings of the Seventh International Workshop
on the Web and Databases (WebDB 2004), (2004),
pp- 43-48.

Received: February, 2007
Revised: April, 2009
Accepted: March, 2011

Contact addresses:

Hongzhi Wang

Department of Computer Science and Technology

Harbin Institute of Technology, Harbin Institute of Technology
Harbin, China

e-mail: wangzh@hit.edu.cn

Jianzhong Li

Department of Computer Science and Technology

Harbin Institute of Technology, Harbin Institute of Technology
Harbin, China

HONGZHI WANG is an Associate Professor at Department of Computer
Science and Technology, Harbin Institute of Technology, China. His
areas of interest include XML and information integration.

JIANZHONG Ll is a Professor at Department of Computer Science and
Technology, Harbin Institute of Technology, China. His areas of inter-
est include parallel database, sensor network, XML, digital library and
compressed database.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

