Journal of Computing and Information Technology - CIT 20, 2012, 1, 51-58 51

doi:10.2498/cit.1002019

An Evolutionary Algorithm Based on
Repeated Mutations for Solving the
Capacitated Vehicle Routing Problem

Krunoslav Puljié

Department of Mathematics, University of Zagreb, Croatia

An evolutionary algorithm for solving the capacitated
vehicle routing problem is described. The algorithm
employs repeated mutations in a manner similar to local
search. Experiments are presented, where the algorithm
has been implemented and tested on some benchmark
problem instances.

Keywords: capacitated vehicle routing problem, evolu-
tionary algorithms, repeated mutations, local search,
experiments

1. Introduction

The capacitated vehicle routing problem (CVRP)
is an interesting combinatorial optimization task,
which occurs frequently in real-world applica-
tions [28]. The problem deals with scheduling
a fleet of vehicles to distribute goods between
depots and customers. A set of routes for ve-
hicles should be determined, which are in some
sense optimal, e.g. the shortest or the cheap-
est. Certain constraints should be taken into
account, such as customer demands and vehicle
capacities.

Evolutionary algorithms (EAs) are a popular
metaheuristic which tries to solve optimization
problems by imitating processes observed in na-
ture [17]. An EA maintains a population of chro-
mosomes where each of them encodes a solution
to a particular problem instance. The evolu-
tion of those chromosomes takes place through
the application of operators and procedures that
mimic natural phenomena, such as reproduc-
tion, mutation, survival of the fittest, etc.

The CVRP is known to be computationally ex-
tremely hard. First of all, it belongs to the

class of NP-hard problems [21]. Moreover, it
is in fact a generalization and combination of
the traveling salesman problem (TSP) and the
bin-packing problem (BPP). Consequently, the
CVRP turns out to be even harder than the al-
ready NP-hard TSP or BPP. We can expect that
very small instances of the CVRP can be solved
to optimality, but large instances can be solved
only approximately. Thus it makes sense to
consider applications of metaheuristics, such as
EAs, to the CVRP.

In recent years, there have been many attempts
to solve the CVRP and similar problems by EAs.
Some of the obtained performance results are re-
ported for instance in [1, 4,7, 11, 13, 15, 19, 22,
24, 29, 30]. General impression is that a pure
evolutionary approach is not yet competitive on
the CVRP or its variants compared to the other
metaheuristics, particularly tabu search [28]. It
seems that the presently used chromosomes and
evolutionary transformations are not able to
capture the full essence of the problem itself.
Therefore, many authors have proposed hybrid
algorithms [2, 5, 8, 10, 12, 16, 18, 20, 25, 26, 27|,
where the performance of an EA has been im-
proved by replacing its mutation operator by a
traditional local-search procedure [3, 6, 21].

The aim of this paper is to present yet another
EA for solving the CVRP. Our algorithm is
purely evolutionary in the sense that it uses only
“genetic” operators for altering chromosomes.
The novelty of our approach is something we
call repeated mutations. Namely, the genetic
mutation operator is evaluated many times to

52 An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem

produce similar effects as local search in hybrid
algorithms. The paper is organized as follows.
Section 2 gives preliminaries about the CVRP
and EAs. Section 3 describes some useful build-
ing blocks of EAs for solving the CVRP, which
have originally been introduced by other au-
thors. Section 4 explains how those building
blocks have been arranged in a different way to
form our algorithm. Section 5 reports on the
results of experiments, where the algorithm has
been implemented and tested on a well known
library of benchmark problem instances. The
final Section 6 gives a conclusion.

2. Preliminaries

The CVRP may be described as the following
graph problem. Let G = (V,A) be a complete
directed graph, where V. = {0,1,2,...,n} is
the vertex set and A is the arc set. Vertices
i=1,2,...,ncorrespond to the customers, and
vertex O corresponds to the depot. A nonneg-
ative cost ¢;j is assigned to each arc (i,j) € A,
and it represents the travel cost spent to go from
vertex i to vertex j. Each customer vertex i is
associated with a nonnegative demand d; to be
delivered, and the depot O has a fictitious de-
mand dy = 0. A set of K identical vehicles,
each with the capacity C, is available at the de-
pot. The CVRP consists of finding a collection
of < K elementary cycles in G with minimum
total cost, such that:

e cach cycle visits the depot vertex 0,

e each customer vertex i = 1,2,...,nis vis-
ited by exactly one cycle,

e the sum of the demands d; of the vertices vis-
ited by a cycle does not extend the vehicle
capacity C.

By an elementary cycle in G we mean a circular
path that does not traverse any vertex more than
once. The total cost of a collection of cycles
is defined as the sum of the costs c;; of all in-
volved arcs. Obviously, the solution to a CVRP
instance specifies an optimal schedule for the
vehicles delivering goods from the depot to the
customers, so that the demand of each customer
is satisfied and no vehicle is overloaded. Each
cycle in the solution corresponds to a vehicle
route.

In many benchmark problem instances, the ver-
tices from V are associated with points of the
plane having given coordinates, and the cost
c;j for each arc (i,j) € A is defined as the
Euclidean distance between the two involved
points. Such instances belong to a more re-
stricted problem called the Euclidean symmetric
CVRP (ESCVRP).

The general structure of an evolutionary algo-
rithm is shown in Figure 1. Thus an evolution-
ary algorithm for solving an optimization prob-
lem is a randomized procedure which maintains
a population (set) of so-called chromosomes.
Each chromosome represents a potential solu-
tion to the given problem instance, and it is im-
plemented by some data structure. The popula-
tion is iteratively changed, thus giving a series
of population versions which are called gener-
ations. It is expected that the best chromosome
in the last generation represents a near-optimum
solution.

void Evolution() {

t = 0;

initialize P[t];

evaluate P[t];

while (!termination condition) {
t = t+1;
select P[t] from P[t-1];
alter P[t];
evaluate P[t];

Figure 1. Structure of an evolutionary algorithm.

The initial population P[0] is created by us-
ing the initialize step. Each chromosome
is evaluated during the evaluate step to give
some measure of its “fitness”. The fitness mea-
sure is related to the objective function of the
original optimization problem. A new gener-
ation P[t] is created in the select step, by
choosing the more fit chromosomes from P [t-
1]. During the alter step, some members
of P[t] undergo transformations by means of
“genetic” operators to form new chromosomes.
After some number of iterations the algorithm
hopefully converges, i.e. it satisfies the termi-
nation_condition.

An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem 53

There are unary genetic operators, called mu-
tations, which create new chromosomes (mu-
tants) by a small random change in a single
chromosome. There are also higher order oper-
ators called crossovers, which create new chro-
mosomes (children) by combining parts from
several (usually two) chromosomes (parents).
More fit chromosomes should have more chance
to take part in crossovers.

3. Basic Components of the Algorithm

In our algorithm, a chromosome is built as pro-
posed in [14], thus it is a list of integers rep-
resenting a permutation of customer vertices.
This permutation is interpreted as a large ele-
mentary cycle, which is obtained from a CVRP-
instance solution by concatenating the vehicle
routes and by omitting visits to the depot. Note
that the same chromosome can in fact repre-
sent many different solutions. Still, we use a
unique decoding, which is based on the greedy
approach. Thus it is assumed that the first ve-
hicle visits as many customers from the initial
part of the chromosome as it is possible accord-
ing to the vehicle capacity C, the second vehicle
serves as many customers as possible from the
following part of the chromosome, etc. For in-
stance, let the vehicle capacity be C = 20, and
suppose that we have n = 9 customers whose
demands d, ds, . . . dg are in turn:

2,4,7,5,3,5, 8,6, 1.
Then the chromosome
p=(258937614)

is decoded by the greedy approach to the fol-
lowing three vehicle routes:

(2589) (376) (14).

It is assumed, but not explicitly written, that
each route starts and ends in the depot.

In our algorithm, we use the crossover operator
called order-crossover (OX) proposed in [23].
First, two cut points are randomly selected, and
the chromosome part located between those cut
points on the first parent is assigned to the child.
The remaining positions are then filled one at a
time, starting after the second cut point, by con-
sidering the customer vertices in order found

on the second chromosome (wrapping around
when the end of the list is reached). For in-
stance, let the two parents and the two cut points
“” be as follows:

P11 =
p2 =

(123]5467|89),
(452]1876]93).

Then the first child ¢ is:
cp = (218|5467]93).

If we exchange the roles of the two parents p;
and p,, we can obtain the second child:

¢, = (354|1876]|92).

In our algorithm, we use three different mutation
operators, called remove-and-reinsert (RARM),
swap (SM) and invert (IM), as proposed in [14],
[23] and [11], respectively. The operators start
in the same way by randomly choosing two po-
sitions within the chromosome, and then they
proceed in different ways. Namely, RARM re-
moves the vertex (customer) from the first posi-
tion and reinserts it to the second position, SM
swaps the vertices at the two positions, while IM
inverts the sequence of vertices between the two
positions. For instance, let the starting chromo-
some be

p=(123456789).
Suppose that the randomly chosen positions are

3 and 7. Then the three operators produce in
turn the following three mutants:

Py = (124567389),
P, = (127456389),
p, = (127654389).

Each of the three mutation operators is further
on used in two variants called global and local,
respectively, thus making altogether six variants
denoted by RARMG, RARML, SMG, SML,
IMG and IML. In the global variant, all posi-
tions within the chromosome are considered. In
the local variant, both the old and the new posi-
tions of the moved customers should belong to
the route of the same vehicle.

54 An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem

4. Overall Design of the Algorithm

The structure of our evolutionary algorithm fol-
lows the outline from Section 2, i.e. itis roughly
the same as shown in Figure 1. The initial popu-
lation P [0] is created by producing random per-
mutations according to the uniform probability
distribution. A series of generations P [t] is pro-
duced by applying the crossover operator OX
and six mutation variants RARMG, RARML,
SMG, SML, IMG, IML. Evaluation of chromo-
somes is done directly by using the objective
function of the CVRP, i.e. the fitness of a chro-
mosome is equal to the total transportation cost
of the corresponding solution. The algorithm
stops when no further improvement is possible
or when a prescribed time limit is reached.

As already mentioned, our algorithm uses muta-
tions in a special way called repeated mutations.
It means that mutation operators are never ap-
plied directly or separately. Instead, they are
grouped within special procedures. Such a pro-
cedure considers some (or even all) possible
mutations of a given chromosome, and finally
applies only the best one among considered, i.e.
the one that maximally increases the fitness of
that chromosome. A separate procedure is built
for each of the six variants of mutations.

If the number of considered mutations within
a repeated-mutations procedure is small, then
those mutations are chosen randomly, and the
whole procedure is still randomized. However,
in the extreme case when all possible mutations
are considered, the procedure becomes deter-
ministic and equivalent to a local search proce-
dure.

Now follows a detailed description of the way
how our algorithm transforms one generation of
chromosomes P[t-1] into the next generation
P[t]. Selection of P[t] at the beginning of iter-
ation t is done trivially: all chromosomes from
P[t-1] are inherited. A little bit more compli-
cated is the step of altering P [t] during iteration
t, which is accomplished in the following way.

e Two “good” chromosomes are chosen from
the current population, by using the so-called
tournament selection [17]. The chosen chro-
mosomes serve as parents for crossover. A
prescribed number of children is generated
from the same parents with different ran-
domly generated cut points in the OX opera-

tor. Only the most fit child is retained, while
the others are discarded.

e The only remaining child is improved by
repeated mutations. First, the child is im-
proved by applying for instance the RARMG
procedure; then the improved child (mutant)
is further improved by the same procedure;
then the further improved child (mutant’s
mutant) is even further improved again by
the same procedure, etc. When there is no
further improvement, we switch to the next
procedure, e.g. RARML, . .. and so on until
all procedures are tried.

e The final improved child is inserted into the
current population so that it replaces a ““sim-
ilar” chromosome. Two chromosomes be-
ing similar means that relative difference of
their fitness measures is below a prescribed
threshold. If there is no similar chromo-
some, then the improved child replaces a
“bad” chromosome chosen by a form of tour-
nament selection with elitism [17].

As we see, two consecutive generations differ
in only one chromosome. Diversity of solutions
within one generation is maintained by avoiding
to store similar chromosomes.

Note that our algorithm relies on many parame-
ters, which are left free to be adjusted for certain
problem instances. Such parameters are: popu-
lation size, number of children generated from
the same parents within one iteration, number of
mutations considered by a repeated-mutations
procedure, percent of population to be consid-
ered by tournament selection, similarity thresh-
old, time limit, etc.

5. Experiments and Results

To enable experimenting, we have developed a
C++ implementation of our algorithm. The
implementation consists of three C++ classes,
whose objects correspond to CVRP instances,
chromosomes and populations, respectively. Var-
ious components of the algorithm have been re-
alized as methods of those classes, for instance
crossovers and mutations are methods of the
chromosome class, while tournament selections
are methods of the population class. Repeated-
mutation procedures have been implemented in
a flexible way, so that they can consider either

An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem

55

all possible mutations of a given chromosome,
or only a specified number of randomly chosen
mutations.

The implemented algorithm has been experi-
mentally evaluated on seven benchmark ES-
CVRP instances from the so-called Christofides-
Mingozzi-Toth library. The whole library is
available at the on-line repository [9]. Table 1
gives some basic properties of the considered
test examples, including the costs of their opti-
mal solutions or best solutions known so far.

During a preliminary part of experimenting, we
first determined acceptable values for some of
the free parameters in our algorithm. Thus the
population size was fixed to 30. Similarly, the
percentage of population to be considered by
tournament selection of good and bad chromo-
somes was set to 70% and 15%, respectively.
The execution time limit was chosen as 10 min-
utes, 45 minutes or 3 hours, depending on the
problem instance size. The similarity threshold
was lowered, so that only equal integer fitness
measures are treated as similar. On the other
hand, the number of mutations considered by a
repeated-mutations procedure and the number
of children of the same parents were left over
for dynamic adjustment.

To accomplish the above mentioned dynamic
adjustment, we have implemented an additional
procedure, which measures the progress of evo-
lution and changes the two parameters accord-
ingly. The present version of the procedure
is quite simple. When the fitness of the best
chromosome improves during few iterations,
then the number of mutations considered by a
repeated-mutations procedure is decreased to
enable faster execution of the forthcoming it-
erations. Otherwise, the number of mutations

is increased, thus giving more chance for find-
ing better solutions in the following iterations.
The number of children of the same parents is
always changed in the opposite direction, in or-
der to partially compensate side-effects of the
first change.

Of course, the two dynamic parameters can
range only within certain prescribed limits. Thus
the number of mutations is always kept between
1% and 20% of the total number of all possible
mutations, and it is changed with offsets +1%
and -10%, respectively. Similarly, the number
of children of the same parents may vary from
1 to 100 with steps 45 and -1. Note that we ex-
plore only up to 20% of all possible mutations,
so that mutation always remains a randomized
process. Consequently, within the presented
experiments we actually do not use the possi-
bility of transforming repeated mutations into
something equivalent to local search.

The main part of experimenting has been ac-
complished with the parameters already ad-
justed as described above. The obtained re-
sults are summarized again in Table 1. Each
row presents our solutions for one particular
problem instance. The shown values can easily
be compared with the results obtained by other
authors with other metaheuristics. Since our
algorithm still relies on random numbers, dif-
ferent runs with the same data and parameters
can produce different solutions. Table 1 there-
fore presents statistical values computed over
exactly 10 runs.

As we can see from Table 1, our algorithm
solves smaller problem instances to optimality.
The obtained best solutions to medium test ex-
amples are up to 1.2% worse than the best from

CVRP | Number of | Number of | Cost of the best Costs of our solutions:
instance | customers vehicles known solution Avg Min Max StdDev
CMTO1 50 5 521 5217 521 528 2.2
CMTO02 75 10 830 848.0 830 839 9.5
CMTO03 100 8 815 841.7 817 860 13.5
CMT04 150 12 1015 1124.6 1028 1198 49.2
CMTO5 199 16 1289 1390.7 1349 1422 20.5
CMTI11 120 9 1034 1140.7 1034 1181 50.0
CMT12 100 10 820 869.4 829 884 16.0

Table 1. Summary of experimental results.

56 An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem

literature. The algorithm is slightly less suc-
cessful in solving larger instances, where the
relative errors range from 1.2% to 4.7%.

Our best result for CMTO03, being only 0.25%
above the optimum, is visualized in Figure 2.
Similarly, Figure 3 depicts the obtained best
solution to CMT12 that is 1.1% worse than the
corresponding optimal solution. In both figures,

80 |

60 [

40 [

the customers and the depot are shown as points
of the plane with given coordinates. Also, the
vehicle routes forming the solution are plotted
by solid lines.

In the course of experimenting, we have also
gained some rough impressions about comput-
ing times required by our algorithm. On a PC
with a 2.4 GHz Pentium processor, the solution

20 |

10 20 30 40 50 60 70
Figure 2. Our best solution to CMTO03 (cost: 817).
y
16 14 12 100 97 93 92
80
60
40 817876 71
5148454440/ | 6864 6172 77 7370
20 ¢ 59 | |57
55
54
‘ 60 58 56 53 ‘ ‘ ‘
x
20 40 60 80 100

Figure 3. Our best solution to CMT12 (cost: 829).

An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem 57

is usually reached in 5-10 minutes. Smaller
problem instances are often solved faster, i.e. in
less than 1 minute. For larger instances, it can
happen that the algorithm converges only after
1-2 hours.

It is important to note that our experiments al-
ways start from completely random populations
of chromosomes, and finish with nearly-optimal
solutions. This must be taken into account
when comparing our results, specially comput-
ing times, with other papers. Namely, the other
authors usually start with already good solu-
tions obtained by some simpler heuristics, and
use evolution only to improve such solutions.
Therefore their computations, sometimes run-
ning only a few seconds, may seem at the first
sight to be more efficient. Still, we believe that
our way of measuring performance of an evo-
lutionary algorithm is more accurate, since it
excludes influences of other algorithms. Start-
ing with random chromosomes certainly puts
the evolutionary process to a more rigorous test
of robustness and efficiency.

6. Conclusion

The most distinguished feature of our evolu-
tionary algorithm for solving the vehicle routing
problem is its use of repeated mutations. One
can say that this feature is very similar to local
search. Indeed, through repeated mutations the
algorithm in fact explores the neighbourhood
of a chosen chromosome consisting of all its
mutants.

In spite of this similarity, we believe that our al-
gorithm is still different from hybrid algorithms
where the mutation operator is replaced by a
local-search procedure. Namely, the presented
approach is in a way opposite: we do not aban-
don mutation, but use it extensively in a manner
which is only similar to local search. Thanks
to genuine genetic operators and relatively low
percentage of mutations considered, our mu-
tation process still bears a large dose of non-
determinism as it is expected from mutation.

The presented results clearly indicate that our
evolutionary algorithm is competitive compared
to the other metaheuristics, and that our ap-
proach based on repeated mutations can as-
sure similar performance results as the approach
based on local search. Indeed, on the chosen

set of benchmark problem instances, we have
obtained nearly-optimal solutions at tolerable
computational costs.

Our future plan is to further improve the algo-
rithm by developing a more sophisticated pro-
cedure for dynamic adjustment of parameters.
Also, we plan to try more appropriate chromo-
somes or better ways to decode a solution from
a chromosome.

References

[1] E. ALBA, B. DORRONSORO , “Solving the vehicle
routing problem by using cellular genetic algo-
rithms”, in: J. Gottlieb, G. R. Raidl (editors),
Proceedings of the 4th European Conference on
Evolutionary Computation in Combinatorial Opti-
mization — EvoCOP 2004, Coimbra, Portugal, April
5-7, 2004, LNCS Vol 3004, Springer Verlag, Berlin,
11-20, 2004.

[2] E. ALBA, B. DORRONSORO , “Computing nine new
best-so-far solutions for capacitated VRP with a
cellular genetic algorithm”, Information Processing
Letters, Vol 98, 225-230, (2006).

[3] C. ALABAS-USLU, B. DENGIZ, “A self-adaptive lo-
cal search algorithm for the classical vehicle routing
problem”, Expert Systems with Applications, Vol 38
(7), 8990-8998,2011.

[4] B. M. BAKER, M. A. AYECHEW, “A genetic algo-
rithm for the vehicle routing problem”, Computers
and Operations Research, Vol 30, 787-800, (2003).

[5] J. BERGER, M. BARKAOUI, “A new hybrid genetic
algorithm for the capacitated vehicle routing prob-

lem”, Journal of the Operational Research Society,
Vol 54, 1254-1262, (2003).

[6] P. BEULLENS, L. MUYLDERMANS, D. CATTRYSSE,
D. VAN OUDHEUSDEN , “A guided local search
heuristic for the capacitated arc routing problem”,
European Journal of Operational Research, Vol
147, 629-643, (2003).

[7] A. BORTFELDT , “A hybrid algorithm for the
capacitated vehicle routing problem with three-
dimensional loading constraints”, Computers and
Operations Research, online 2011.

[8] O. BRAYSY, G. HASLE, W. DULLAERT , “A multi-
start local search algorithm for the vehicle routing
problem with time windows”, European Journal of
Operational Research, Vol 159, 586-605, (2004).

[9] B. D. DiaAzZ, The VRP Web, Languages and
Computation Sciences Department, University of
Malaga, 2011, http://neo.lcc.uma.es/radi-
aeb/WebVRP

58 An Evolutionary Algorithm based on Repeated Mutations for Solving the Capacitated Vehicle Routing Problem

[10] C. DUHAMEL, P. LACOMME, C. PRODHON , “A hy-
brid evolutionary local search with depth first search
split procedure for the heterogeneous vehicle routing
problems”, Engineering Applications of Artificial
Intelligence, online 2011.

[11] H-S. HWANG, “An improved model for vehicle rout-
ing problem with time constraint based on genetic
algorithm”, Computers and Industrial Engineering,
Vol 42, 361-369, (2002).

[12] A.JASZKIEWICZ, P. KOMINEK, “Genetic local search
with distance preserving recombination operator for

a vehicle routing problem”, European Journal of

Operational Research Vol 151, 352-364, (2003).

[13] N.JOZEFOWIEZ, F. SEMET, E. TALBI, “An evolution-
ary algorithm for the vehicle routing problem with
route balancing”, European Journal of Operational
Research, Vol 195 (3), 761-769, 20009.

[14] P. LARRANAGA, C. M. H. KUDPERS, R. H. MURGA,
I. INzA, S. DIZDAREVIC, “Genetic algorithms for
the travelling salesman problem: a review of rep-
resentations and operators”, Artificial Intelligence
Review, Vol 13, 129-170, (1999).

[15] S. Liu, W. HUANG, H. MA, “An effective genetic
algorithm for the fleet size and mix vehicle rout-
ing problems”, Transportation Research Part E:
Logistics and Transportation Review, Vol 45, (3),
434-445,2009.

[16] MESTER D., BRAYSY O., “Active guided evolution
strategies for large—scale capacitated vehicle routing

problems”, Computers and Operations Research,
Vol. 34, 2964-2975, (2007).

[17] MICHALEWICZ Z., Genetic Algorithms + Data

Structures = Evolution Programs, Third Edition,
Springer, New York, 1995.

[18] M. J. W. MORGAN, C. L. MUMFORD, “Capacitated
vehicle routing — perturbing the landscape to fool an
algorithm”, in: D. Corne, Z. Michalewicz (editors),
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), Edinburgh, Scotland, Septem-
ber 2-5, 2005, IEEE Press, Piscataway, New Jersey,
2271-22717,2005.

[19] NazIF H., LEE L.S., “Optimised crossover genetic
algorithm for capacitated vehicle routing problem”,
Applied Mathematical Modelling, online 2011

[20] ULRICH NGUEVEU S., PRINS C., CALVO R., “An
effective memetic algorithm for the cumulative ca-
pacitated vehicle routing problem”, Computers and
Operations Research, Vol 37 (11), 1877-1885,
2010.

[21] PAPADIMITRIOU C.H., STEIGLITZ K., Combinatorial
Optimization — Algorithms and Complexity, Dover,
Mineola, New York, 1998.

[22] F. B. PEREIRA, J. TAVARES, P. MACHADO, E. COSTA,
“GVR - anew genetic representation for the vehicle
routing problem”, in: O’Neil M. et al. (editors),
Proceedings of the 13th Irish International Confer-
ence on Artificial Intelligence and Cognitive Science
— AICS 2002, Limerick, Ireland, September 12—13,
2002, LNAI Vol 2464, Springer Verlag, Berlin,
95-102,2002.

[23] P. PONGCHAROEN, D. J. STEWARDSON, C. HICKS,
P. M. BRAIDEN, “Applying designed experiments
to optimize the performance of genetic algorithms
used for scheduling complex products in the capital
goods industry”, Journal of Applied Statistics, Vol
28, No 3&4, 441-455, (2001).

[24] C. PrINS, “A simple and effective evolutionary
algorithm for the vehicle routing problem”, Com-
puters and Operations Research, Vol 31 (2004),
1985-2002.

[25] C. PRINS, “Two memetic algorithms for heteroge-
neous fleet vehicle routing problems”, Engineering
Applications of Artificial Intelligence, Vol 22 (6),
916-928, 20009.

[26] K. C.TaN, L. H. LEE, K. Ou, “Artificial intelligence
heuristics in solving the vehicle routing problems
with time window constraints”, Engineering Appli-
cations of Artificial Intelligence Vol 14, 825-837,
(2001).

[27] J. TAVARES, F. B. PEREIRA, P. MACHADO, E. COSTA,
“Crossover and diversity — a study about GVR”, in:
Barry A.M. (editor), Proceedings of the Bird of a
Feather Workshops, 2002 Genetic and Evolutionary
Computation Conference — GECCO 2003, Chicago,
Lllinois, USA, July 12—16, 2003, AAAI Press, Menlo
Park, California, 27-33, 2003.

[28] P. TOTH, D. VIGO (EDITORS), The Vehicle Routing
Problem, SIAM Monographs on Discrete Mathe-
matics and Applications, STAM, Philadelphia, 2002.

[29] Z.URsANI, D. EssaM, D. CORNFORTH, R. STOCKER,
“Localized genetic algorithm for vehicle routing
problem with time windows”, Applied Soft Com-
puting, Vol 11 (8), 5375-5390, 2011.

[30] ZHU K.Q., “A diversity-controlling adaptive genetic
algorithm for the vehicle routing problem with time
windows”, in: Chen LR. (editor), Proceedings of
15-th IEEE International Conference on Tools with
Artificial Intelligence — ICTAI'03, Sacramento, Cal-
ifornia, USA, November 3-5, 2003, IEEE Computer
Society, Washington, 176-183,2003.

Received: December, 2011
Accepted: February, 2012

Contact address:

Krunoslav Pulji¢
Department of Mathematics
University of Zagreb
Bijenicka cesta 30

10000 Zagreb, Croatia
e-mail: nuno@math.hr

KRUNOSLAV PULJIC graduated from the Department of Mathematics,
Faculty of Natural Sciences, University of Zagreb in 1999. He has
been working as a research assistant at the same Department since
2000. He obtained the M.Sc. degree in 2004 with the work on “The
evolutionary algorithms for the vehicle routing problem”. Within the
”DataGrid” project of the EU he spent some time at the CERN Institute
in Geneva. In 2009 he received his Ph.D. degree with the work on ”The
distributed evolutionary algorithms for the vehicle routing problem”.
His professional and scientific interest is in combinatorial optimization,
parallel and distributed algorithms, metaheuristics, web programming
and database systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

