
Journal of Computing and Information Technology - CIT 20, 2012, 2, 95–111
doi:10.2498/cit.1002046

95

An ETL Metadata Model
for Data Warehousing

Nayem Rahman1, Jessica Marz1 and Shameem Akhter2

1 Intel Corporation, USA
2 Western Oregon University, USA

Metadata is essential for understanding information
stored in data warehouses. It helps increase levels of
adoption and usage of data warehouse data by knowledge
workers and decision makers. A metadata model is
important to the implementation of a data warehouse; the
lack of a metadata model can lead to quality concerns
about the data warehouse. A highly successful data ware-
house implementation depends on consistent metadata.
This article proposes adoption of an ETL (extract-
transform-load) metadata model for the data warehouse
that makes subject area refreshes metadata-driven, loads
observation timestamps and other useful parameters, and
minimizes consumption of database systems resources.
The ETL metadata model provides developers with a set
of ETL development tools and delivers a user-friendly
batch cycle refresh monitoring tool for the production
support team.

Keywords: ETL metadata, metadata model, data ware-
house, EDW, observation timestamp

1. Introduction

The data warehouse is a collection of deci-
sion support technologies, aimed at enabling
the knowledge worker (executive, manager, and
analyst) to make better and faster decisions
[5]. A data warehouse is defined as a “subject-
oriented, integrated, non-volatile and time vari-
ant collection of data in support of manage-
ment’s decisions” [17]. It is considered as a key
platform for the integrated management of deci-
sion support data in organizations [31]. One of
the primary goals in building data warehouses
is to improve information quality in order to
achieve certain business objectives such as com-
petitive advantage or enhanced decision making
capabilities [2, 3].

An enterprise data warehouse (EDW) gets data
from different heterogeneous sources. Since
operational data source and target data ware-
house reside in separate places, a continuous
flow of data from source to target is critical to
maintain data freshness in the data warehouse.
Information about the data-journey from source
to target needs to be tracked in terms of load
timestamps and other load parameters for the
sake of data consistency and integrity. This
information is captured in a metadata model.
Given the increased frequency of data ware-
house refresh cycles, the increased importance
of data warehouse in business organization, and
the increasing complexity of data warehouses,
a centralized management of metadata is essen-
tial for data warehouse administration, mainte-
nance and usage [33]. From the standpoint of a
data warehouse refresh process, metadata sup-
port is crucial to data warehouse maintenance
team such as ETL developers, database admin-
istrators, and the production support team.

An efficient, flexible, robust, and state of the art
data warehousing architecture requires a num-
ber of technical advances [36]. A metadata
model-driven cycle refresh is one such impor-
tant advancement. Metadata is essential in data
warehouse environments since it enables activ-
ities such as data integration, data transforma-
tion, on-line analytical processing (OLAP) and
data mining [10]. Lately, in data warehouses,
batch cycles run several times a day to load data
from operational data source to the data ware-
house. A metadata model could be used for dif-
ferent purposes such as extract-transform-load,
cycle runs, and cycle refresh monitoring.

96 An ETL Metadata Model for Data Warehousing

Metadata has been identified as one of the key
success factors of data warehousing projects
[34]. It captures information about data ware-
house data that is useful to business users and
back-end support personnel. Metadata helps
data warehouse end users to understand the var-
ious types of information resources available
from a data warehouse environment [11]. Meta-
data enables decision makers to measure data
quality [30]. The empirical evidence from the
study suggests that end-user metadata quality
has a positive impact on end-user attitude about
data warehouse data quality [11]. Metadata is
important not only from end user perspective
standpoint, but also from the standpoint of data
acquisition, transformation, load and the analy-
sis of warehouse data [38]. It is essential in de-
signing, building, maintaining data warehouses.
In a data warehouse there are two main kinds
of metadata to be collected: business (or log-
ical) metadata and technical (aka, ETL) meta-
data [38]. The ETL metadata is linked to the
back-end processes that extract, transform, and
load the data [30]. The ETL metadata is most
often used by the technical analysts for devel-
opment and maintenance of the data warehouse
[18]. In this article, we will focus mainly on
ETL metadata that is critical for ETL develop-
ment, batch cycle refreshes, and maintenance of
a data warehouse.

In data warehouses, data from external sources
is first loaded into staging subject areas. Then,
analytical subject area tables – built in such a
way that they fulfill the needs of reports – are
refreshed for use by report users. These tables
are refreshed multiple times a day by pulling
data from staging area tables. However, not
all tables in data warehouses get changed data
during every cycle refresh: the more frequently
the batch cycle runs, the lower the percentage
of tables that gets changed in any given cycle.
Refreshing all tables without first checking for
source data changes causes unnecessary loads
at the expense of resource usage of database
systems. The development of a metadata model
that enables some utility stored procedures to
identify source data changes means that load
jobs can be run only when needed. By control-
ling batch job runs, the metadata model is also
designed to minimize use of database systems
resources. The model makes analytical subject
area loads metadata-driven.

The model is also designed to provide the pro-
duction support team with a user-friendly tool.
This allows them to monitor the cycle refresh
and look for issues relating to a job failure of
a table and load discrepancy in the error and
message log table. The metadata model pro-
vides the capability to setup subsequent cycle
run behavior followed by the one-time full re-
fresh. This works towards enabling tables to be
truly metadata-driven. The model also provides
developers with a set of objects to perform ETL
development work. This enables them to fol-
low standards in ETL development across the
enterprise data warehouse.

In themetadatamodel architecture, the load jobs
are skipped when source data has not changed.
Metadata provides information to decide whe-
ther to run full or delta load stored procedures.
It also has the capability to force a full load if
needed. The model also controls collect statis-
tics jobs running them after a certain interval or
on an on-demand basis, which helps minimize
resource utilization. The metadata model has
several audit tables to archive critical metadata
for three months to two years or more.

In Section 2 we discuss related work. In Section
3 we give a detailed description of an ETL meta-
data model and its essence. In Section 4, we
cover metadata-driven batch processing, batch
cycle flow, and an algorithm for wrapper stored
procedures. The main contribution of this work
is presented in Sections 3 and 4. In Section 5
we discuss use of metadata in data warehouse
subject area refreshes. We conclude in Sec-
tion 6 by summarizing the contribution made
by this work, providing a review of the meta-
data model’s benefits and proposing the future
works.

2. Literature Research

Research in the field of data warehousing is fo-
cused on data warehouse design issues [13, 15,
7, and 25], ETL tools [20, 32, 27, and 19], data
warehouse maintenance [24, 12], performance
optimization or relational view materialization
[37, 1, and 23] and implementation issues [8,
29]. Limited research has been done on the
metadata model aspects of data warehousing.
Golfarelli et al. [14] provide a model for mul-
tidimensional data which is based on business

An ETL Metadata Model for Data Warehousing 97

aspects of OLAP data. Huynh et al. [16] pro-
pose the use of metadata to map between object-
oriented and relational environment within the
metadata layer of an object-oriented data ware-
house. Eder et al. [9] propose the COMET
model that registers all changes to the schema
and structure of data warehouses. They con-
sider the COMET model as the basis for OLAP
tools and transformation operations with the
goal to reduce incorrect OLAP results. Stohr
et al. [33] have introduced a model which uses
a uniform representation approach based on the
Uniform Modeling Language (UML) to inte-
grate technical and semantic metadata and their
interdependencies. Katic et al. [21] propose a
model that covers the security-relevant aspects
of existing OLAP/ data warehouse solutions.
They assert that this particular aspect of meta-
data has seen rather little interest from product
developers and is only beginning to be discussed
in the research community. Shankaranarayanan
& Even [30] and Foshay et al. [11] provide a
good description of business metadata and asso-
ciated data quality. They argue that managerial
decision-making stands to benefit from busi-
ness metadata. Kim et al. [22] provide a gen-
eral overview of a metadata-oriented methodol-
ogy for building data warehouses that includes
legacy, extraction, operational data store, data
warehouse, data mart, application, and meta-
data.

The ETL (aka, technical) metadata is not ad-
dressed in the research work noted above. In
this article, we provide a comprehensive ETL
metadata model from the standpoint of data
warehouse refresh, metadata-driven batch cycle
monitoring, and data warehouse maintenance.
Our work covers a broad range of ETL meta-
data aspects. We provide a means to manage
data warehouse refresh observation timestamps,
capturingmessage logs to detect any load or data
issues. We also discuss in detail how to control
individual job run behavior of subsequent batch
cycles runs. Numerous commercial ETL tools
with associated metadata model are available
today [35]. However, they are proprietary mod-
els only. We propose an ETL metadata model
that is independent of any ETL tool and can
be implemented in any database system. Our
model takes care of metadata-driven refreshes
in both staging and analytical [26] subject areas
in a data warehouse.

Under our ETL metadata model, platform inde-
pendent database specific utility tools are used
to load the tables from external sources to the
staging areas of the data warehouse. The pro-
posed metadata model also enables database
specific software, such as stored procedures,
to perform transformation and load analytical
subject areas of the data warehouse. The intent
of the software is not to compete with exist-
ing ETL tools. Instead, we focus on utilizing
the capabilities of current commercial database
engines (given their enormous power to do com-
plex transformation and their scalability) while
using this metadata model. We first present the
ETL metadata model followed by detailed de-
scriptions of each table. We also provide exper-
imental results (via Table: 2 to 6 in Section 5)
based on our application of the metadata model
in a real-world, production data warehouse.

3. The Metadata Model

Metadata is “data about data”. A metadata
model is critical for the successful implementa-
tion of a data warehouse [22] and integrating the
data warehouse with its metadata offers a new
opportunity to create a reliable management and
information system. Metadata is essential for
understanding information stored in data ware-
houses [16]. It helps increase levels of adop-
tion and use of data warehouse data by know-
ledge workers and managers. The proposed
ETL metadata model allows for the storage of
all kinds of load parameters and metrics to make
data warehouse refreshes metadata-driven. It
also holds error and message logs for trouble
shooting purposes. It enables tracing the his-
torical information of batch loads. Metadata
ensures that data content possesses sufficient
quality for users to use it for a specific purpose
[6, 11].

In data warehouse, batch job runs are automated
given that they run periodically, several times a
day, for efficiency reasons. In order to run thou-
sands of jobs via batch cycles in different subject
areas, the jobs are governed by an ETLmetadata
model to determine the load type, and to cap-
ture different load metrics, errors and messages.
A wrapper stored procedure is a procedure that
executes several utility procedures to make load
type decisions and, based on that, it runs full or
delta stored procedure or skips the load.

98 An ETL Metadata Model for Data Warehousing

Figure 1. ETL metadata model for data warehousing (derived from [26]).

In Figure 1, we provide a metadata model that
is used to capture metadata for all kinds of
datawarehouse refresh activities related to ETL.
The model consists of metadata tables, wrapper
stored procedures and utility stored procedures.
The wrapper stored procedure for individual
jobs first inspects the latest observation times-
tamp in a metadata data table for each of the
source tables referenced in the load stored pro-
cedures, to detect the arrival of fresh data. The
load procedures are bypassed if the source data
has not changed. If source data changes are de-
tected, the wrapper stored procedures call full
or delta (aka, incremental) stored procedures
based on load condition of each table load.

In the data warehouse, a staging or analytical
subject area batch cycle refresh kicks off based
on a notification that upstream source subject
area refreshes are completed. After a subject
area batch cycle begins, a pre-load job is run via
utility procedure which updates the table with
a cycle-begin-timestamp. A post-load proce-
dure updates the table with a cycle-end times-
tamp immediately after the actual table loads

are completed. The cycle-begin and cycle-end
timestamps stored in this table are used by full
and delta stored procedures during an actual ta-
ble load and to capture load information in other
metadata tables during the cycle refresh process.

In a data warehouse, each subject area normally
gets refreshed several times a day. In order to
keep track of refresh information for each batch
cycle, refresh begin and end timestamps are im-
portant to capture. The table ‘cyc log’ is used
to hold subject area refresh timestamps. This
lets users know the timeliness of the data a par-
ticular table holds. The cycle-begin timestamp
is used while capturing load metrics for each
table load.

Table ‘load chk log’ holds one row per target
table in each subject area. After a job kicks off
for the first time, a utility procedure checks to
see whether a metadata row exists for the table.
If no row is found, a default row with several
parameters will be inserted on the fly to do a full
refresh. After the cycle refresh is completed the
column load type ind will be set to ‘D’ so that a
delta load is performed in the subsequent cycles.

An ETL Metadata Model for Data Warehousing 99

Table 1. Metadata model entity description.

Table ‘src tbl file info’ holds a load timestamp
for each staging table. Table ‘src load log’
stores an observation timestamp that is depen-
dent on a source table’s last update timestamp.
If a target table is loadedwith data from multiple
source tables, this table will store an observa-
tion timestamp for each of the source tables.
The observation timestamp is the date and time
at which the consistent set of triggered data was
loaded into the target table. The trigger time-
stamp is always less-than or equal-to (<=) the
observation timestamp.

Table ‘load mtric’ stores vital load statistics
(cyc bgn ts, load strt dt, load strt ts, load stp
ts, load row cnt, and load msg txt, and run-
time) for each target table. Statistics are also
used for report-outs of runtimes. This table
provides information about whether the table
is loaded (with a full or delta) or the load is
disabled, and the reason for the no load. The
load mtric enables monitoring progress of a
batch cycle while it is running. Table ‘msg log’
stores load errors andmessages for trouble shoot-
ing and information purposes. This provides
useful data to ETL programmers and produc-
tion support team to trace the root cause of job
failure, incorrect load or no load.

Table ‘load chk opt’ stores job information
(subj area nm, trgt tbl nm, load enable ind,
load type cd). For each job, one entry is re-
quired to exist in this table. The entries are
inserted into this table via a utility stored pro-
cedure call from within the wrapper stored pro-
cedure. The load type cd field holds the value
of ‘Full’ or ‘Delta’. Based on this information,
a post-load utility stored procedure will update
the ‘load chk log’ table to prepare it for the next
cycle refresh. The column ‘load enable ind’
holds the value of ‘Y’ or ‘N’. Based on this in-
formation, the post-load stored procedure will
update the ‘load chk log’ table to prepare it for
the next cycle refresh.

In a data warehouse, hundreds of jobs run un-
der different subject areas as part of multiple
cycle refreshes every day. A job description for
each table needs to be conveyed to production
support along with job details. Each job has
certain key descriptions such as job identifier,
box, table name, full, delta, and wrapper stored
procedures names; the ‘job desc’ table holds
this information (subj area nm, trgt tbl nm, au-
tosys box nbr, job id, wrapper proc nm, full
proc nm, dlta proc nm, debug mode ind). The
entries are inserted into this table via a utility

100 An ETL Metadata Model for Data Warehousing

stored procedure call. This table is used by the
production support team to get detailed infor-
mation about each job run.

The load type of each table in a particular sub-
ject area varies; some tables are refreshed full
some are refreshed incrementally; some others
are loaded on a weekly or monthly basis or on
the first or last day of themonth. In order to con-
trol the load behavior of each target table, each
source table’s load observation timestamp need
to be captured. The ‘load config’ table holds all
of this information to enable each target table’s
refresh according to its specific schedule.

4. Metadata-driven Batch Processing

An efficient, flexible and general data ware-
housing architecture requires a number of tech-
nical advances [36]. A metadata-driven batch
cycle refresh of a data warehouse is one of these
technical advances. Successful data warehous-
ing is dependent on maintaining data integrity
and quality in table refreshes. Metadata-driven
refreshes play a prominent role in this regard.
Loading inconsistent data negatively impacts
data quality if an inefficient metadata model is
not devised. In this article, we attempt to pro-
vide a comprehensive ETL metadata model for
data warehouses.

In data warehouses, each subject area is re-
freshed through a batch cycle. Under the batch
cycle, jobs are run in different boxes to load the
target tables in order of dependency on other
tables in the subject area. Jobs in a subject area
run under different conditions: some jobs load
tables with full refreshes while other jobs re-
fresh the tables incrementally; some other jobs
in the cycle skip performing incremental loads
if source data has not changed; some jobs are
set to do incremental loads, but end up doing
full refreshes when the source has a large num-
ber of new records or the source or target table
row count does not match after an incremental
refresh is performed. Our proposed ETL meta-
data model controls the table load to satisfy the
said load conditions.

The metadata model is based on several meta-
data tables, utility stored procedures, wrap-
per stored procedure, and full and delta load
stored procedures for individual table loads.
The model introduces a new paradigm for batch

processing by loading only those tables for
which there are new records in the source ta-
bles. Inspection of the latest observation times-
tamp in a metadata data table for each of the
source tables referenced in the incremental load
stored procedures detects the arrival of fresh
data. The full and incremental load proce-
dures are bypassed if the source data has not
changed. The ETL metadata model allows for
storing table-level detailed load metrics (time-
stamp, row count, and errors and messages for
trouble shooting). By providing the source and
the target table last load timestamp, row count,
and load threshold information, the model al-
lows accurate incremental load processing and
enables a decision about whether to perform full
or incremental refresh.

4.1. Batch Cycle Process Flow

In most cases during the last decade, data ware-
houses were refreshed on a monthly or weekly
or daily basis. Now-a-days, refreshes occur
more than once per day. A batch cycle that
runs based on subject areas in a data warehouse
may run several times a day. A batch cycle
holds several boxes which run in order of de-
pendency. The very first box (Figure 2: edwx-
dungcr100) holds a gatekeeper job that looks
for a notification file from one or more upstream
(source) subject areas. The second box (Figure
2: edwxdungcr300) in a cycle usually holds a
job that runs a pre-load job (Figure 2: edwc-
dungcr10x) to execute a metadata utility proce-
dure (pr utl pre load) to prepare for the current
cycle refresh by doing clean-up, insert, and up-
date of metadata tables. It deletes ‘asof dt’ and
‘asof ts’ from the last cycle and inserts new dt
and ts for the current cycle. It writes an entry
to the msg log table to log that the new cycle
has started. The pre-load procedure updates the
table with the cycle-begin date and timestamp
after the gatekeeper job successfully runs. A
post-load procedure updates the table with cy-
cle finish timestamp soon after the refresh is
completed.

The subsequent boxes (Figure 2: boxes ed-
wxdungcr310 to edwxdungcr380) hold actual
jobs to load the target tables in the subject area.
These jobs are placed in different boxes to run
them in sequence and in order of dependency. A

An ETL Metadata Model for Data Warehousing 101

Figure 2. Batch cycle flow.

downstream-box job in the cycle might have de-
pendencies on tables in one or more upstream
boxes in the subject area. Each job calls the
wrapper stored procedure for a target table to
execute a full or delta stored procedure.

After all load-jobs under different boxes run
to success, the last box in the cycle (Figure
2: edwxdungcr390) executes a job (Figure 2:
edwcdungcr029x) to run a utility procedure
(pr utl refresh status) which updates a meta-
data table (Table 1: #5 – load config) with
source data latest timestamp and target cycle
refresh finish timestamp. The analytical com-
munity has visibility into the latest data avail-
ability timestamp via a web tool. The batch cy-
cle also executes another job (Figure 2: edwc-
dungcr019x) to run a metadata post-load utility
procedure. The utility procedure (pr utl post
load) archives all load metrics for the current
cycle refresh into several history or audit ta-
bles (Table 1: #2, #4, #8, #11) to retain
them for a specified period of time. The post-
load stored procedure is called by a batch cy-
cle job. It archives the current cycle meta-
data (from load metric, cyc log, msg log) to

historical tables (load metric hist, cyc log hist,
msg log hist). It updates the cyc end ts field
of cyc log table with current timestamp to log
that the cycle load has completed. It trims the
historical tables (load metric hist, cyc log hist,
msg log hist) of their least recent cycle records
on a rolling basis. One quarter’s worth of
records is normally preserved for investigation
and research. This procedure also makes sure
that the ‘load chk log’ table is reverted to the
default settings. If during a particular cycle
refresh we want to do a ‘Full’ refresh of a par-
ticular job and then if for the subsequent runs
we want to do ‘Delta’, we use this post-load
procedure to set loadtype = Delta (default).

4.2. Algorithm for Wrapper Stored
Procedures

The data warehouse subject area refresh is done
via batch cycle runs. Each job in a batch cy-
cle calls a wrapper stored procedure to execute
a full or delta stored procedure for a full or
incremental refresh. The wrapper procedure
makes the decision whether to perform a full

102 An ETL Metadata Model for Data Warehousing

refresh or delta refresh or to skip the refresh
altogether through a few utility stored proce-
dures that are governed by the metadata model.
The load is skipped if the model finds that the
source table’s last observation timestamp has
not changed. The full or delta refresh is done
based on individual threshold values set for each
target table. If the new delta counts found in the
source table are within the threshold percentage
the model runs a delta stored procedure; other-
wise, it turns on the full load procedure.

Figure 3 shows that the wrapper procedure
checks the metadata table to see if the source
load current observation timestamp is greater
than the observation timestamp of the last tar-
get table load. The next step of the decision
flow is to check if the load type indicator is full
or delta. The default is full load if no load type
value is provided.

Figure 4 provides a template consisting of the
wrapper stored procedure algorithm. First, it
calls a utility procedure to get the current cycle
begin timestamp. The cycle begin timestamp
(Table 1: #1) is used while capturing metadata
for target table load. The next utility proce-
dure (Figure 4, pr utl chk tbl changed) in the
wrapper is used to check whether the source
table has new records. This is done by compar-
ing the latest observation timestamp in meta-
data tables, src tbl fl info (Table 1: #10) and
src load log (Table 1: #7) for the target table
load. The wrapper stored procedure runs the
next utility procedure (Figure 4: pr utl Get
LoadCheck Info) to pull the load parameters
(force load, load type, load enabled, etc) from
the load chk log table (Table 1: #6). These pa-
rameter values provide information about load
type such as full or delta load or no load.

Figure 3. High level software architecture for full and delta load.

An ETL Metadata Model for Data Warehousing 103

REPLACE PROCEDURE Procurement DRV MET.pr Wpurch ord line()

BEGIN
DECLARE subj ara VARCHAR(30) DEFAULT ’Procurement DRV’;
DECLARE trgt tbl VARCHAR(30) DEFAULT ’purch ord line’;
DECLARE load type CHAR(5) DEFAULT ’Full’;
DECLARE cycle dt DATE;
DECLARE cycle ts, src cur ts, src lst ts, DECLARE last cycle ts TIMESTAMP(0);
DECLARE trgt row exists,row exists,load thrhld,msg nbr INTEGER DEFAULT 0;
DECLARE forc load,load enable,copy back CHAR(1) DEFAULT ’Y’;
DECLARE msg txt1, msg txt2 VARCHAR(100) DEFAULT ’ ’;
DECLARE dummy msg1,dummy msg2 VARCHAR(20) DEFAULT ’ ’;

– **
** Get the time and date for current cycle refresh from the DWmgr Xfrm MET.v cyc log table.
CALL DWmgr Xfrm MET.pr utl Get Cycle TS(:cycle dt,:cycle ts,:subj ara) ;

– **
** First find out how many source tables have changed for this target table since last cycle refresh
CALL DWmgr Xfrm MET.pr utl chk tbl changed(:subj ara,:trgt tbl,:src cur ts,:src lst ts,:trgt row exists);

– **

** Get load parameters from the DWmgr Xfrm MET.v load chk log table.
** The entries in this table will be used to decide the processing strategy for this object.
CALL DWmgr Xfrm MET.pr utl Get LoadCheck Info(:subj ara,:trgt tbl,:row exists,:forc load,:load type,

:load enable,:load thrhld,:copy back,:last cycle ts,:src cur ts,:src lst ts,:trgt row exists);

– **
** Next choose the load procedure execution strategy
** Strategy could be one of the following Full, Delta, or Skip the load if there are no changes in source tables.
** Note: some of the parameters are inout, and may be changed by the stored procedure during the call.
CALLDWmgr Xfrm MET.pr utl choose load strat(:subj ara,:trgt tbl,:forc load,:load type,:load enable,:load thrhld);

** Here we execute the main data stored proc: delta or full

IF (load type = ’Full’ AND load enable = ’Y’) THEN

CALL appl Procurement DRV 01.pr Fpurch ord line() ;

ELSEIF (load type = ’Delta’ AND load enable = ’Y’) THEN

CALL appl Procurement DRV 01.pr Dpurch ord line() ;

** This next line is here so that the SP will compile if there is not a call
** To the delta SP (many tables do not have deltas), and the SQL

SET dummy msg1 = ’Running Delta’;

ELSEIF (load type = ’S’ AND load enable = ’S’) THEN

SET dummy msg2 = ’Skipping the load’;

ELSE

** Here we insert an entry to the MessageLog table
CALL DWmgr Xfrm MET.pr utl write msg log(:subj ara,:trgt tbl,51,’Wrapper Stored Procedure’,’No load performed’,

’Check values for forc load ind, load type cd or load enable ind in load chk log table’);

END IF;
– **
** Here we Update the DWmgr Xfrm MET.v load chk log and
** DWmgr Xfrm MET.v src load log tables with new timestamp as the load is successful
CALLDWmgr Xfrm MET.pr utl upd LoadCheck(:subj ara,:trgt tbl,:last cycle ts,:load type,:load enable,:src cur ts);

– **
END;

Figure 4. Wrapper stored procedure template for full or incremental load.

104 An ETL Metadata Model for Data Warehousing

The next utility procedure (Figure 4, pr utl cho-
ose load strat) in the wrapper is used to pass
out values mainly for load type and load enable
to the wrapper stored procedures. Based on
that information, the wrapper procedure exe-
cutes ’Full’ or ’Delta’ load stored procedures
to load the target table. It might also skip
the target table load if source tables have no
new records. This procedure also captures er-
rors and messages regarding load-skip, load-
disabled, bad parameter values, etc (if any of
these are detected) into the msg log (Table 1:
#9) and load mtric (Table 1: #12) tables.

If the wrapper procedure decides to execute
the full load stored procedure, the target table
is emptied before being re-loaded. In many
cases, the target table load consists of data pulls
from multiple source tables and via several in-
sert/select SQL blocks. The full stored pro-
cedure uses a utility procedure to capture load
information into the metadata table. The utility
procedure pr utl write ent msg log is used to
capture source table, timestamp, and row count
information into the message log table (Table
1: #9) followed by each SQL block execution
in the full procedure. This information is ex-
tremely helpful because it enables an ETL de-
veloper or production support person to easily
and quickly determine which particular SQL
block failed. This information is also useful to
the investigation of any data issue in the target
table.

When the wrapper procedure decides to execute
the delta stored procedure for an incremental
load (for instance, if the delta load threshold
is exceeded or if the target table is empty, for
some reason), certain steps are followed. A
delta refresh is performed when small amount
of new data (normally, less than 20% of the tar-
get rows) arrives in the source table during each
cycle refresh [27]. A delta stored procedure per-
forms two specific operations against the target
table: one is an update against the target table to
update any non-key columns with changed data
from the source and the other is the insertion of
any brand new records from the source.

There are several other conditions that affect
load decisions [27]: (i) if the delta count ex-
ceeds a certain threshold percentage of target
table row counts, then the load condition is
switched to full refresh. The delta refresh in
a populated table is slower because transient
journaling is needed for a table that already
contains some data. The delta load requires

data manipulation language (DML) operations
such as ‘delete’ and ‘update’ which causes more
resources consumption. Hence, if a larger num-
ber of new rows arrive from source, it is more
efficient to do a full refresh than an incremental
refresh. Normally, a full refresh is performed
when the target table needs to be loaded with
more than one million rows (ii) If for some
reason the target table is found to be empty, a
full refresh is needed and the delta stored pro-
cedure will call the full load stored procedure
(iii) If the delta count is within a predetermined
threshold percentage, then the delta load will be
performed. Also, delta refreshes are performed
when full refreshes perform badly and can’t be
practically optimized any further.

Once the target table load is successful using full
or delta stored procedures, the wrapper proce-
dure calls one last utility procedure to update the
metadata table to capture the observation times-
tamp for each source table against the target
table. Thus, under an ETL metadata model, the
cycle refresh is done completely based on ETL
metadata information. The wrapper procedure
and its associated utility procedure, the full and
delta load procedures and associated utility pro-
cedures as well as metadata tables, provide ETL
developers across the enterprise with a complete
set of objects for extract-transform-load. It is
important to mention that the stored procedures
and tables are DBMS (database management
system) -based as opposed to any commercial
ETL tools. This ETL metadata model and asso-
ciated utility procedures are useful to those data
warehouses that do not use any ETL tool. This
metadata model is independent of any commer-
cial DBMS system.

5. Using Metadata in Load Process

The initial refresh of analytical tables is a full
load. Subsequent refreshes are done via incre-
mental load. During a full refresh, the existing
data is truncated and a new copy of all rows
of data is reloaded into the target table from
the source. An incremental refresh only loads
the delta changes that have occurred since last
time the target table was loaded. In incremen-
tal refresh, only the delta or difference between
target and source data is loaded at regular in-
tervals. For incremental load, the observation
timestamp for the previous delta load has to be
maintained in an ETL metadata model. The
data warehouse refresh is performed via batch

An ETL Metadata Model for Data Warehousing 105

cycles, so that the degree of information in a
data warehouse is “predictable” [4].
In real world situations, there is a tendency by
ETL programmers to design delta stored pro-
cedures to run ‘stand-alone’ - that is, without
taking advantage of an ETL metadata model.
We suggest design techniques utilizing a meta-
data model. The assumption is that instead of
relying on conventional ETL tools, the full and
incremental loads could be done via database
specific stored procedures and with the help of
a metadata model.

From the data warehouse side, updating large
tables and related structures (such as indexes,
materialized views and other integrated com-
ponents) presents problems executing OLAP
query workloads simultaneously with contin-
uous data integration [28]. Our methodology
minimizes the processing time and systems re-
sources required for these update processes, as
stored procedures give ample opportunity to
manipulate the SQL blocks and influence the
optimizer to execute queries with parallel effi-
ciency.

5.1. Checking Source Data Change

The wrapper procedure first calls a utility proce-
dure to get the last source table load timestamp
from the metadata table. It also checks the tar-
get table last load observation timestamp. By

comparing both timestamps it becomes aware
whether the source data has changed.

In Figure 5, the code block gets the last load
timestamp of each of the source tables (primary,
secondary, dimension, lookup, etc.) under one
or several different business subject areas that
are referenced in the stored procedures to load
the target table. Based on that information, the
source table load timestamps are pulled.

The utility stored procedure also pulls the last
load timestamp for the last target table. If any
of the source table load timestamps are found
to be greater than the corresponding target ta-
ble last load timestamps, that means new data
has arrived in some source tables and a full or
delta stored procedure should be executed (de-
pending on load type code) to load the target
table.

If the source load-timestamp is equal to last load
timestamp of the target table, that means source
data has not changed; therefore the table load is
skipped and the stored procedure execution is
bypassed. If the source load current timestamp
is greater than the target table last load times-
tamp, an attempt is made to load the target table
via full or delta stored procedure depending on
the load indicator information in the metadata
table. The default load is delta if no indicator
value is provided.

Figure 5. Code block that detects source data change.

Table 2. Last observation timestamp for target table refresh.

106 An ETL Metadata Model for Data Warehousing

5.2. Getting the Parameters to Determine
Load Strategy

The wrapper stored procedure calls a utility
stored procedure to get the target table load
parameters from the ’load chk log’ table. For
each individual target table load within a sub-
ject area, a default metadata entry consisting
of load conditions is inserted (Table 3) by this
utility procedure during the first cycle refresh
(one time entry). The default entry consists of
several conditions such as ’force load indica-
tor’ (’Y’ or ’N’; default ’N’), ’load type code’
(’Full’ or ’Delta’; default ’Full’), ’load enabled
indicator’ (’Y’ or ’N’; default ’Y’), ’delta load
threshold’ (10% - 20%; default 10%), ’collect
statistics’ (’Y’ or ’N’; default ’N’), and ’copy-
back indicators (’Y’ or ’N’; default ’N’). These
parameters are passed to another utility proce-
dure to prepare for target table loading.

The column forc load ind holds the value of
‘Y’ or ‘N.’ A value of ‘Y’ would allow the job
to load the target table, irrespective of whether
a source tables data has changed or not. A
value of ‘N’ would let the wrapper stored proce-
dures determine if the source data had changed
and thus to decide whether or not to load the
target table. The load type cd field holds the
value of ‘Full’ or ‘Delta.’ Based on this infor-
mation, the wrapper stored procedure executes
the full or delta stored procedure. The column
load enable ind holds the value of ‘Y’ or ‘N.’
A value of ‘Y’ allows the job to load the target

table. A value of ‘N’ would prevent the wrapper
stored procedure from loading the target table.
The load thrhld nbr field holds the threshold
value for ‘Delta’ load. The wrapper procedure
will first determine the load type. If it is ‘Full’,
then a full load will be performed, no matter
what the threshold value is. If it is ‘Delta’, then
the delta procedure will kick-off. The delta pro-
cedure will first determine the source row count.
If the source count is within the load threshold
number, the delta load will be performed. If
the row count is greater than the load thresh-
old number, then it will turn on the full load
procedure.

Based on the load conditions the wrapper pro-
cedure either executes a ’Full’ or ’Delta’ stored
procedure to load the target table, or skips the
target table-load if the source table has no new
records. It also generates and logs load mes-
sages into ’msg log’ and ’load mtric’ tables re-
garding load type, load skip, load enabled or
disabled, and any unknown parameter values.

5.3. Capturing Error/ Message Logs while
Loading

The table ‘msg log’ stores troubleshooting in-
formation. A utility stored procedure is used
to write error messages and information to the
msg log table during target table load. The util-
ity procedure, pr utl write msg log() is called
to capture error message.

Table 3. Load parameters used to determine load condition.

Table 4. Message log.

An ETL Metadata Model for Data Warehousing 107

Once the cycle refresh is complete, the load
metrics for the current cycle will be archived
into the msg log hist table for future reference
or investigation.

5.4. Capturing load metrics

The table ‘load mtric’ (Table 1) stores vital load
statistics (cyc bgn ts, load strt dt, load strt ts,
load stp ts, load row cnt, and load msg txt, and
runtime) for each target table. Statistics are also
used for report outs of runtimes. This table pro-
vides information about whether the load is full
or delta, if the load was disabled, and the reason
for zero row count (in most cases). It enables
the monitoring of a cycle while it is running.

The utility stored procedure ‘pr utl Load Me-
trics()’ is called from ’Full’ and ’Delta’ data
load stored procedures to insert entries into the
‘load mtric’ table during each target table load.
Both full and delta stored procedures call this
utility procedure to insert load metrics about
each target table load into the ‘load mtric’meta-
data table. The row count of greater than zero
and load timestamp are used as vital information
for the downstream table refresh. This informa-
tion is also useful to monitor cycle refreshes.

The full stored procedure contains transforma-
tion logic to first empty the target table before
reloading the table with all data from the source
tables. The delta refresh is done for the tables

that are loaded with greater than one million
rows or when full refreshes perform badly, and
can’t be practically optimized any further. The
delta stored procedure first pulls the last obser-
vation timestamp of the target table from the
metadata table and loads the target table with
new delta records that have arrived after the tar-
get table was last refreshed. Once the cycle
refresh is done the load metrics for the current
cycle will be archived into load mtric hist table
for future reference, investigation, and research.

5.5. Subsequent Cycle Run Behavior

In order to automate the set-up of each target ta-
ble’s default load behavior, the metadata model
needs to hold load parameters to be reset af-
ter each cycle refresh. The table, load chk opt
(Figure 1: # 13) stores job information (subj
area nm, trgt tbl nm, load enable ind, load
type cd). For each job one entry is required
to exist in this table. The entries are inserted
into this table via a utility stored procedure call
by wrapper stored procedures.

The load type cd field holds the value of ‘Full’
or ‘Delta’. Based on this information, the post-
load stored procedure will update the load chk
log table to prepare it for the next cycle refresh.
The column load enable ind holds the value of
‘Y’ or ‘N.’ Based on this info, the post-load
stored procedure will update the load chk log

Table 5. Metrics showing load skipped since source data has not changed (sample rows).

Table 6. Table with load type code to control load behavior.

108 An ETL Metadata Model for Data Warehousing

table to prepare it for the next cycle refresh.
Once the cycle refresh is done, the load chk log
tablewill be updated based on information (load
type cd, load enable ind) in the ‘load chk opt’
table via the post load utility stored procedure.
The next cycle refresh will occur based on up-
dated information in the load chk table.

If a particular target table under a subject area
needs to be loaded with ‘Delta’ refresh (by de-
fault ’Full’ refresh occurs), one entry for that
target table needs to be inserted into this table.

5.6. Load Configurations

To retain the cycle refresh information for a
particular subject area in the metadata archive
tables (cyc log hist, load chk log hist, load
mtric hist and msg log hist), one entry against
each hist table must be inserted into the meta-
data table (Table 7) – ‘load config’ (Figure 1:
#5). This table is used for multiple purposes.
For example, if we decide to retain historyworth
90 days, entries need to be inserted into this ta-
ble accordingly in order to enable the post-load
procedure to retain records for the last 90 days
and delete on a rolling basis any records that are
older than 90 days.

The table ‘load config’ (subj area nm, trgt tbl
nm, obj type, config thrhld nbr, config txt) pro-
vides space to hold any staging data or input in
order to prepare for a full or delta load. This is
also used to trim the history tables on a rolling
basis. The config thrhld nbr field holds the
threshold value for history tables. The post-load

procedure will delete least recent data from the
history tables based threshold number.

The config txt column will give ETL develop-
ers the opportunity to stage any value wanted
in order to prepare for and load a target table.
This field can also be used to prepare report outs
of a particular table refresh, which can then be
viewed by global report users via any web tool.

Table 7 shows information kept to track target
table load conditions. For example, in a given
subject area, certain tables could be loaded on
the first day of month, while other tables could
be loaded on the last day of month. Another set
of tables could be loaded on a particular day of
the last week of month. Another set of tables
could be loaded once per day instead of sev-
eral times per day. To enable this kind of load
behavior, the load timestamp each of the tar-
get tables need to be tracked. This information
could be used to control and determine the next
load time.

6. Conclusions and Future Work

In this article, we showed that by using an
ETL metadata model, data warehouse refreshes
can be made standardized, while load behav-
ior can be made predictable and efficient. The
model can help identify source tables that do not
have new data. Performing refreshes through
a metadata-driven approach enables resource
savings in the data warehouse. It helps avoid
unnecessary loads when source data has not

Table 7. Table that keeps track of load conditions for different load types.

An ETL Metadata Model for Data Warehousing 109

changed. The model captures all source obser-
vations timestamps as well as target table load
timestamps. The model helps make it possible
to run batch cycles unattended because it en-
ables load behavior for each table for the next
cycle refresh.

We presented an approach for refreshing data
warehouses based on an ETL metadata model.
Our approach has clear benefits as it allows for
skipping table refreshes when source data has
not changed. It helps to improve load perfor-
mance in terms of response time and database
system’s CPU and IO resource consumption.
The ETL metadata model, along with utility
procedure and wrapper procedures, provides
ETL programmers with a powerful tool for
building a data warehouse by following certain
rules. We further provided a template of the
wrapper stored procedure.

Our ETL metadata model achieves several key
objectives. It enables the capture of seman-
tic metadata. It makes batch cycle refreshes
metadata-driven. It helps to reset the load be-
havior of each table for the next cycle run. It
enables load consistency across the data ware-
house. It provides ETL programmers with a
set of standard objects that makes their devel-
opment work easier. The model provides the
production support team with resources to mon-
itor the data warehouse subject area refreshes.
By introducing an ETL metadata model, we are
able to automate data warehouse batch cycle
refresh processes. Each of these achievements
helps improve day-to-day maintenance of data
warehouses. The use of this ETL metadata
model in a production data warehouse environ-
ment reveals that the model runs efficiently in
batch processing, cycle monitoring, and data
warehouse maintenance. In a future endeavor
we intend to develop macros to generate auto-
mated views as well as full and delta stored pro-
cedure templates with the help of this metadata
model.

Acknowledgments

We would like to thank Julian Emmerson, for-
merly Senior ApplicationDeveloper at Intel, for
assisting and guiding us in designing the initial
version of this metadata model. We are also
grateful to Wally Haven, a Senior Application

Developer at Intel, and the anonymous review-
ers whose comments have improved the quality
of the paper substantially.

References

[1] D. AGRAWAL, A. ABBADI, A. SINGH, & T. YUREK,
Efficient View Maintenance at Data Warehouse,
ACM SIGMOD Record, 26(2), pp. 417–427, 1997.

[2] F. BENSBERG, Controlling the Data Warehouse – a
Balanced Scorecard Approach, in Proceedings of
the 25th International Conference on Information
Technology Interfaces ITI 2003, June 16–19, 2003,
Cavtat, Croatia.

[3] S. BROBST, M. MCINTIRE AND E. RADO, (2008),
Agile Data Warehousing with Integrated Sandbox-
ing, Business Intelligence Journal, Vol. 13, No. 1,
2008.

[4] M. CHAN, H. V. LEONG AND A. SI, Incremental
Update to Aggregated Information for Data Ware-
houses over Internet, in Proceedings of the 3rd ACM
International Workshop on Data Warehousing and
OLAP (DOLAP’00), November 2000, McLean, VA,
USA.

[5] S. CHAUDHURI AND U. DAYAL, An Overview of
Data Warehousing and OLAP Technology, SIG-
MOD Record, 26(1), March 1997.

[6] I. CHENGAIUR-SMITH, D. BALIOU AND H. PAZER,
The Impact of Data Quality Information on De-
cision Making: An Exploratory Analysis, IEEE
Transactions on Knowledge and Data Engineering,
Vol. 11, No. 6, November–December, 1999.

[7] T. CHENOWETH, K. CORRAL AND H. DEMIRKAN,
Seven Key Interventions for Data Warehouses Suc-
cess, Communications of the ACM, January 2006,
Vol. 49, No. 1.

[8] B. CZEJDO, J. EDER, T. MORZY AND R. WREMBEL,
Design of a Data Warehouse over Object-Oriented
and Dynamically Evolving Data Sources, in Pro-
ceedings of the 12th International Workshop on
Database and Expert Systems Applications, 2001.

[9] J. EDER, C. KONCILIA AND T. MORZY, The COMET
Metamodel for Temporal Data Warehouses, in Pro-
ceedings of the 14th International Conference on
Advanced Information System Engineering (Caise
2002), Toronto, Canada, LNCS 2348, pp. 83–99.

[10] H. FAN AND A. POULOVASSILIS, Using AutoMed
Metadata in Data Warehousing Environments, in
Proceedings of the 6th ACM international work-
shop on Data warehousing and OLAP, New Or-
leans, Louisiana, USA, pp. 86–93.

[11] N. FOSHAY, A. MUKHERJEE AND A. TAYLOR, Does
Data Warehouse End-User Metadata Add Value?,
Communications of the ACM, November 2007, Vol.
50, No. 2.

110 An ETL Metadata Model for Data Warehousing

[12] C. GARCÍA, Real Time Self-Maintainable Data
Warehouse, in Proceedings of the 44th Annual
Southeast Regional Conference (ACM SE’06),
March, 10–12, 2006, Melbourne, Florida, USA.

[13] S. R. GARDNER, Building the Data Warehouse,
Communications of the ACM, 41(9).

[14] M.GOLFARELLI,D.MAIO AND S.RIZZI, TheDimen-
sional Fact Model: a Conceptual Model for Data
Warehouses, International Journal of Cooperative
Information Systems, Vol. 7(2&3), pp. 215–247.

[15] J. H. HANSON AND M. J. WILLSHIRE, Modeling
a faster data warehouse, International Database
Engineering and Applications Symposium (IDEAS
1997).

[16] T. N. HUYNH, O. MANGISENGI AND A. M. TJOA,
Metadata for Object-Relational Data Warehouse,
in Proceedings of the International Workshop on
Design and Management of Data Warehouses
(DMDW’2000), Stockholm, Sweden, June 5–6,
2000.

[17] W. H. INMON, Building the Data Warehouse, 3rd
Edition, John Wiley, 2002.

[18] M. JENNINGS, Use of Operational Meta Data in
the Data Warehouse, (2003), Last Accessed on
12/12/2011: http://businessintelligence
.com/article/13

[19] T. JÖRG AND S. DESSLOCH, Towards Generating
ETL Processes for Incremental Loading, in Pro-
ceedings of the 2008 International Symposium on
Database Engineering & Applications (IDEAS’08),
September 10–12, 2008, Coimbra, Portugal.

[20] A. KARAKASIDIS, P. VASSILIADIS AND E. PITOURA,
ETL Queues for Active Data Warehousing, in Pro-
ceedings of the 2nd International Workshop on
Information Quality in Information Systems, IQIS
2005, Baltimore, MD, USA.

[21] N. KATIC, J. QUIRCHMAYR, S. M. STOLBA AND A.
M. TJOA, A Prototype Model for Data Warehouse
Security Based on Metadata, IEEE Xplore, 1998.

[22] T. KIM, J. KIM AND H. LEE, A Metadata-Oriented
Methodology for Building Data Warehouse: A
Medical Center Case, Informs & Korms – 928,
Seoul 2000 (Korea).

[23] W. J. LABIO, R. YERNENI AND H. GARCIA-MOLINA,
Shrinking the Warehouse Update Window, in Pro-
ceedings of the 1999 ACM SIGMOD International
Conference on Management of data (SIGMOD‘99),
Philadelphia, PA.

[24] B. LIU, S. CHEN AND E. A. RUNDENSTEINER,Batch
Data Warehouse Maintenance in Dynamic Environ-
ments, in Proceedings of the CIKM’02, pp. 68–75,
2002.

[25] S. LUJAN-MORA AND M. PALOMAR, Reducing In-
consistency in Integrating Data from Different
Sources, International Database Engineering &
Applications Symposium (IDEAS ’01), 2001.

[26] N. RAHMAN, Refreshing Data Warehouses with
Near Real-Time Updates, Journal of Computer In-
formation Systems, Vol. 47, Part 3, 2007, pp. 71–80.

[27] N. RAHMAN, P. W. BURKHARDT AND K. W. HIBRAY,
Object Migration Tool for Data Warehouses, Inter-
national Journal of Strategic Information Technol-
ogy and Applications (IJSITA), 2010, Vol. 1, Issue
4, 2010, pp. 55–73.

[28] R. J. SANTOS AND J. BERNARDINO, Real-Time Data
Warehouse Loading Methodology, in Proceedings
of the 2008 International Symposium on Database
Engineering & Applications (IDEAS’08), Septem-
ber 10–12, 2008, Coimbra, Portugal.

[29] A. SEN AND A. P. SINHA, A Comparison of Data
Warehousing Methodologies, Communications of
the ACM, Vol. 48, Issue 3, March 2005.

[30] G. SHANKARANARAYANAN AND A. EVEN, TheMeta-
data Enigma, Communications of the ACM, Vol. 49,
Issue 2, 2006, pp. 88–94.

[31] B. SHIN, An Exploratory Investigation of System
Success Factors in Data Warehousing, Journal of
the Association for Information Systems, Vol. 4,
2003.

[32] A. SIMITSIS, P. VASSILIADIS AND T. SELLIS, Op-
timizing ETL Processes in Data Warehouses, in
Proceedings of the 21st International Conference
on Data Engineering (ICDE’05), 5–8 April 2005,
Tokyo, Japan.

[33] T. STOHR, R. MULLER AND E. RAHM, An Integra-
tive and Uniform Model for Metadata Management
in Data Warehousing Environments, in Proceed-
ings for the International Workshop on Design
and Management of Data Warehouses (DMDW’99),
Heidelberg, Germany, June 14–16, 1999.

[34] T. VETTERLI, A.VADUVA AND M. STAUDT, Metadata
Standards for Data Warehousing: Open Informa-
tion Model vs. CommonWarehouseMetadata, ACM
SIGMOD Record, Vol. 29, Issue 3, September 2000.

[35] C. WHITE, Data Integration: Using ETL, EAI, and
EII Tools to Create an Integrated Enterprise, The
Data Warehousing Institute, October, 2005.

[36] J. WIDOM, Research Problems in Data Warehous-
ing, in Proceedings of the 4th International Confer-
ence on Information and Knowledge Management
(CIKM’95), November 1995, Baltimore, MD, USA.

[37] Y. ZHUGE, J. L. WIENER AND H. GARCIA-MOLINA,
Multiple View Consistency for Data Warehousing,
in Proceedings of the Thirteenth International Con-
ference on Data Engineering, April 7–11, 1997,
Birmingham, U.K.

[38] J. V. ZYL, M. VINCENT AND M. MOHANIA, Repre-
sentation of Metadata in a Data Warehouses, in
Proceedings of IEEE’98, IEEE Xplore, 1998.

An ETL Metadata Model for Data Warehousing 111

Received: March, 2012
Revised: May, 2012

Accepted: May, 2012

Contact addresses:

Nayem Rahman
IT Business Intelligence (BI)

Intel Corporation
Mail Stop: AL3-85

5200 NE Elam Young Pkwy
Hillsboro, OR 97124-6497, USA

e-mail: nayem.rahman@intel.com

Jessica Marz
Intel Software Quality

Intel Corporation
RNB – Robert Noyce Building

2200 Mission College Blvd,
Santa Clara, CA 95054, USA

e-mail: jessica.marz@intel.com

Shameem Akhter
Department of Computer Science

Western Oregon University
345 N. Monmouth Ave.

Monmouth, OR 97361, USA
e-mail: sakhter09@mail.wou.edu

NAYEM RAHMAN is a Senior Application Developer in IT Business In-
telligence (BI), Intel Corporation. He has implemented several large
projects using data warehousing technology for Intel’s mission critical
enterprise DSS platforms and solutions. He holds an MBA in Manage-
ment Information Systems (MIS), Project Management, and Marketing
from Wright State University, Ohio, USA. He is a Teradata Certified
Master. He is also an Oracle Certified Developer and DBA. His most
recent publications appeared in the International Journal of Strategic
Information Technology and Applications (IJSITA) and the Interna-
tional Journal of Technology Management & Sustainable Development
(IJTMSD). His principal research areas are active data warehousing,
changed data capture and management in temporal data warehouses,
change management and process improvement for data warehousing
projects, decision support system, data mining for business analysts,
and sustainability of information technology.

JESSICA MARZ has worked in Intel’s IT division Enterprise Data Ware-
house Engineering Group as both a Business Intelligence application
developer and program manager. She holds a BA in English from
UCLA, an MBA from San Jose State University, and a JD from Santa
Clara University.

SHAMEEM AKHTER has a Master of Social Science (MSS) degree in
Economics from the University of Dhaka, Bangladesh. Currently, she
is pursuing her MS. inManagement and Information Systems atWestern
Oregon University, USA. Her most recent publications on IT sustain-
ability and data warehousing appeared in the International Journal of
Technology Management & Sustainable Development (IJTMSD) and
International Journal of Business Intelligence Research (IJBIR) respec-
tively. Her research interest includes database systems, data warehous-
ing, decision support system, and information systems implementation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

