Journal of Computing and Information Technology - CIT 21, 2013, 2, 71-84 71

doi:10.2498/cit.1002135

Specifying Access Policies for
Secure Content Dissemination
of XML: A Technique Inspired
by DNA Cryptography

Rajni Mohana and Deepak Dahiya

CSE Department, Jaypee University of Information Technology, Wakhnaghat, Solan, India

SOA helps to provide business agility by configuring
entities to maximize loose coupling and reuse. XML
is the most relevant means to provide interoperatablity
among various entities. When in network, a XML
file can be prone to hacking and unauthorized access,
thus data integrity and confidentiality are the important
issues of communication. Secure dissemination of an
XML file is one of the techniques to ensure data in-
tegrity and confidentiality. This paper presents a secure
dissemination technique such that extraneous data not
meant for a legitimate consumer is inaccessible, there
will be no information leak. The technique applies
DNA cryptography due to its feature of compactness and
simplicity. The technique encrypts the data and hides
it in a garbage file; such that only legitimate consumer
can see only the subscribed amount of data according to
the access policies using the restriction enzymes. The
paper also presents multicast dissemination interface that
implements the proposed technique at the server level.
The interface is built dynamically and asynchronously
using a publish—subscribe methodology. The results
indicate that the proposed technique not only satisfies the
requirement specification of secure dissemination, but
also points out its robustness in terms of time required to
break the key. The technique is computationally secure
as the time to crack the key is quite long and increases
with increase in key length.

Keywords: secure dissemination, XML, DNA cryptog-
raphy, restriction enzymes

1. Introduction

Service Oriented Architecture (SOA) [1] is de-
fined as a deployment infrastructure on which
new applications can be built quickly and eas-
ily. It helps to provide business agility in a

Business to Business (B2B)/ Business to Con-
sumer (B2C) applications by configuring enti-
ties (services, registries, contracts, and proxies)
to maximize loose coupling and reuse[2]. In-
teroperatablity is a major issue in SOA as one
has to tie heterogeneous business systems. Ex-
tensible Markup Language (XML) is the most
relevant means to provide interoperatability [3].
XML structure has a tree structure nested to any
level and depth. As per the definition given be-
low, XML consists of an outer tree which can
contain inner subtrees.

Def 1: A tree is formally defined as a finite set
T of one or more nodes such that

1. There is one designated node called the root
node of the tree, root (T)

2. The remaining nodes are partitioned into
m > 0 disjoint sets Ty, T»,...,T,,, and each
of these sets in turn is a tree. T{,Ts,...,T;,
are called as subtrees of the root. [4]

To simplify, An XML is a text file transported
through network to enable communication
among various webservices constructed over
heterogeneous environment. When in network,
it will be prone to hacking and unauthorized
access. The integrity and confidentiality needs
to be preserved as it may carry vital business
information. Hence it becomes mandatory to
find a solution for both out-house and in-house
intrusions, such that transmitting data through
network channels becomes secure. Security of
the data is an important issue as having better
QOS (Quality of Service) [5] is all in vain if data

72 Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

integrity cannot be treasured. The requirement
specification is to design models and mecha-
nisms (encoding of data) to avoid out-house in-
trusion, as well as in-house intrusions (by spec-
ifying and enforcing access control policies for
secure dissemination of XML documents) [2].

In this paper we propose a technique to encrypt
the data and an algorithm for secure dissemi-
nation of content in inter-enterprise and intra-
enterprise networks. This novel technique ex-
plores the tree structure of XML and specifies
the access policies of the various consumer such
that only that part of data which is required by
the consumer is visible to it, thus providing data
integrity, privacy and access control.

1.1. Motivation

Consider a scenario where large documents at
the source end called producer can be accessed
by large number of service requesters called
consumers as shown in Figure 1. Even a le-
gitimate consumer can exploit the knowledge
of context from the data elements it has access
to [2]. The consumer should be able to view
only relevant data which he has been autho-
rized to view. Extraneous data not meant for a
consumer should be inaccessible as flow of ex-
traneous data may leak information, even when
the data is encrypted. These access policies
should be specified by the producer. In par-
ticular, the extraneous data is prone to off-line
dictionary attacks even by legitimate consumer
that can exploit contextual knowledge from the
data elements it has access to [4]. Controlling
the access through policies will improve sense
of security inside the system, thus resisting to in-
house attacks. The data is only visible to those
consumers who have requested for it and are au-
thorized to access it. Any secure dissemination
approach should not only take care of data in-
tegrity, but also control the access to the data by
the consumer. The approach should be scalable,
efficient and able to handle many consumers for
a single data. This problem gets complicated as
the hierarchical organization of the content, dif-
ferent confidentiality and integrity requirements
may exist for different portions of the same con-
tent [3].

The n-ary tree T represents the tree structure of
a XML generated by the producer or the service

provider. The access policy for the scenario
shown in Figure 1.

Compactness, simplicity in implementation and
time required to decode the data without having
the right information is only the basic criteria
for choosing an algorithm. Our proposal is in-
spired by DNA cryptography [8] as it provides
high complexity at decoding end without right
information.

nry

Figure 1. Tree structure of an XML data.

Il For Consumer 1
I For Consumer 2
[For Consumer 3

The XML data will be encrypted in a DNA
strand. We describe a method of publish/sub-
scribe approach where a user can subscribe for
a data. The publisher will assign a Starting
Restriction Enzyme (SRE) and Ending Restric-
tion Enzyme (ERE). Restriction enzymes are
molecular scissors that cut DNA into fragments
at specific sites in their sequence.

The restriction enzymes will act as a flag to
identify the subscriber of the message. Restric-
tion enzymes will be added as a predecessor
and successor of data. The dissemination in-
terface routes the mapped XML content to the
user whenever there is a new document pub-
lished. The interface can check out that if the
data is meant for a particular consumer, then it
will route only that portion of data which will
have the starting and ending restriction enzymes
as mentioned by the subscriber or consumer.

The main contribution of the paper can be sum-
marized as follows:

1. Securing the data in a DNA strand, thus se-
curing the data and providing data integrity.

2. Specifying access policies of various con-
sumers using the restriction enzymes.

3. Designing an interface for routing that can
be used in non trusted domains for dissemi-
nation of sensitive content.

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . . 73

1.2. Outline of the Paper

The remainder of this paper is organized as
follows: Section 2 initially provides a brief
overview of the background knowledge required
while Section 3 discusses the related study and
the working of the secure dissemination tech-
nique is discussed in Section 4; further, Sec-
tion 5 presents the algorithm and Section 6
presents an interface that implements the pro-
posed technique. Section 7 presents a discus-
sion of the technique based on various aspects;
finally, Sections 8 and 9 summarize the conclu-
sion and the list of references.

2. Background

The background knowledge contains informa-
tion about various technologies used and details
of their features which have been used.

2.1. XML

XML is a declarative and narrative language
and needs parser of type DOM (The Document
Type Object) to fetch out useful information
described therein at processing end. One of the
sequential techniques and a compact represen-
tation of tree structure is to represent tree in
memory using linear list [3]. It is the most com-
mon representation of the tree states that the
nodes can be stored by consecutive addressing.
The tree in Figure 2 can be represented in the
memory as (A (B (E),C (F,G),D (H, L, J)).

Figure 2. Linear list representation of the tree in
memory.

The root A will have a link to all of its children
from left to right; the children will further link
to their children. Thus, if the producer wants
to transmit the data which the consumer 3 has
subscribed for, only the address of D should be
known to the consumer and the whole subtree
can be traced easily. Thus, any subtree is acces-
sible if a consumer is able to locate the address
of the root of the subtree. We are trying to ex-
ploit the above property of the tree, for securely
disseminating the tree.

To ensure security of data, the linear list can fur-
ther be encoded in a DNA strand. The properties
of DNA are its compact nature and simplicity in
implementation which makes it an ideal choice
to encrypt the tree structure of XML data. DNA
also provides high complexity at decoding end
without right information.

2.2. DNA Cryptography

DNA cryptography has been proposed by Gehani
et al. [10], Kartalopoulos [11] and Tanaka et al.

[12] as a new born cryptography field. It’s also

called as DNA stenography, where we tend to

hide data in a DNA strand with compactness

and simplicity.

As we know, the DNA strand is composed
of (A+C+T+G)*, thus possible patterns for
this encoding format are 4! = 24. Accord-
ing to Watson-Crick complementary rule [19]
nucleotide base A is complement to T and C is
complement to G. Take DNA digital coding into
account, it should reflect the biological charac-
teristics of 4 nucleotide bases, the complemen-
tary rule that (~ 0) = 1, and (~ 1 = 0) is
proposed in this DNA digital coding. Accord-
ing to the complementary rule, the complement
of 0(00) is 3(11) and 1(01) is 2(10) and vice
versa.

So among these 24 patterns, only 8 kinds of pat-
terns (0123 /CTAG, 0123 /CATG, 0123 /GTAC,
0123 /GATC,0123/TCGA, 0123 /TGCA, 0123/
ACGT, and 0123/AGCT) which are topologi-
cally identical fit the complementary rule of the
nucleotide bases [19].

74 Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

2.3. Restriction Enzymes

Restriction enzymes are molecular scissors that
cut DNA into fragments at specific sites in their
sequence. The enzymes degrade the foreign
DNA by cutting the area that contains specific
sequences of nucleotides. Since discovering
the function of these enzymes, molecular bi-
ologists have isolated them from a variety of
single-celled organisms for cutting DNA into
fragments [13].

Haelll, isolated from Haemophilus aegyptius, is
an example of a restriction enzyme. Its recog-
nition sequence is:

Wherever in the DNA strand, it will find the
sequence shown above and it will cut the strand
between G and C.

There is a large set of database of available re-
striction enzymes [16, 17]. The RBASE database
registers 4000 restriction enzymes. We are not
focusing on the scissor property of the enzyme,
but are concerned about their property of iden-
tifying the recognition site as shown in above
example. This property of the restriction en-
zyme is used to specify the access policy. The
novelty lies in the scheme of specifying the ac-
cess policies of various consumers, which is a
computationally secure method, as proved in
the Section 6.

The idea is to assign a SRE and ERE to a spe-
cific consumer so that when a data is prefixed
and suffixed by the respective enzyme, the cor-
responding consumer can be located.

We have encountered that in the real world there
are 4000 types of restriction enzymes, this will
limit the number of combinations to 4000(SRE)
* 4000(ERE). Any normal computer can easily
crack the right combination of SRE and ERE
as it would take at max 16000000 iterations.
Hence we have not picked up real restriction
enzymes, but our SRE and ERE consists of the
sequence of bits {A,T,C,G} of length n, where
n € {1,2,3,...} making it a variable length
key.

3. Related Study

Earlier researchers [2, 4], implemented secure
dissemination using structural based routing.
The routing model presented by them is based
on multi-casting of document portions from an
intermediate router to the subscribers. Essen-
tially, the router may send the same document
portion multiple times to the subscriber. In [21]
a centralized publish/subscribe middleware is
presented which is able to perform selective
XML content delivery based on a shared on-
tology. It suggests semantic queries over do-
mains concepts to compute a set of candidate
concepts and over publisher’s policies to check
evolving policies for a subscriber the requestor
asks for a set of concepts and therefore requires
knowledge of the ontological structure. In [22-
26| the work as a request response paradigm in
client-server architecture is presented. The pa-
per [27] integrates the XACML attribute model
with OWL ontology and describes practical pri-
vacy filtering. The application is able to filter
out information from XML documents, accord-
ing to a set of XACML semantic privacy poli-
cies. It highlighted the need of a set of XACML
facilities to evaluate decisions on hierarchic re-
sources.

4. Working of the Proposed Secure
Dissemination Technique

The dissemination follows a multicast based ap-
proach. A multicast tree exists in real network,
particularly the internet. Reliability, security
and congestion control are the bottlenecks for
designing an efficient multicast topology-based
protocol [15]. Our interface takes care of the
security by ensuring encoding and secure dis-
semination as explained in Sections 3 and 4.

The interface ensures secure dissemination of
sub trees of the XML data by using an interface
for routing. A structure-based routing strategy
builds and maintains a routing structure, such
as a spanning tree, a routing table, or one or
multiple paths, but it’s static. If a change is re-
quired, it has to be changed in the entire router
in the network. Hence we are implementing the
dissemination through an interface as shown in
Figure 3; the interface will encrypt the data and

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . . 75

transmit it to all the consumers subscribed for
the data. If any change is required, it can be
implemented at the application level i.e., the in-
terface, but not at the router’s level. The admin-
istrator at the server end should mention the ac-
cess policies of the consumer depending on the
trust it has, it will then customize at the server
end which user can access which part of data.
Thus the administrator will handle secure com-
munication and load balance. The technique
consists of three things, three actors namely:

e Producer, who prepares an encrypted XML
document to transmit through the network

e N number of consumer who has to read the
message from the XML document

e An interface, which acts as disseminator
which customizes the access policies for
each customer by assigning a flag to the cus-
tomer, such that the customer can extract the
message meant for him through the XML
file and decode it to get the message.

The secure dissemination technique encompas-
ses the following procedure:

At the producer end the procedural flow in-
volves:

e [tprepares atemporary XML file to be trans-
ported to the consumer by prefixing the data
with a tag called ‘for consumer

1.
subscribe

Secure
disseminat

e Later, the temporary file is picked and wher-
ever a ‘for* tag file is located, it’s replaced
by SRE and the data is suffixed by ERE of
the concerned consumer number.

e The producer encrypts the content of all the
XML elements in a DNA strand.

e Later, it transports it to various consumers.

At the consumer end when the data is received,
the procedural flow involves:

e The consumer receives the encrypted file

e Later, it searches for the data that will fall
between its specifies restriction enzymes.

e Consumer obtains data access to Root node
and children address

e Data of the child nodes can be extracted from
the addresses obtained from step 2. This ex-
traction continues till all the leaf nodes are
obtained.

The working of the interface to encode the data
in the DNA stand is presented in Sections 3.1,
3.2,3.3,3.4.

4.1. XML File Encryption in a DNA Strand

That content of XML is encoded in a way that
will avoid malicious attacks. As stated in the

2.publish

= 1.subscribe

Consumer 2

ion

3.data

| 2.publish

......

2.publish

Figure 3. Architecture diagram of the secure dissemination interface.

76 Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

introduction, DNA encryption has been chosen
for encoding the data. The DNA molecule is
composed of four basic groups of A, C, G and
T.

The encoding problem can be described as fol-
lows:

> {A, T, C,G} is a set defined as Z, the length
isn Z = Zn = {< bi,by,b3,...,b, >
bied i=1,2,...,n}(|Z]| = 4") [11].

Thus each XML node’s content is treated as a
text; each character of the text is parsed and
encoded using computer-mapped character en-
coding like UTF, ASCII.

Ilustration: Encoding of a character in the
text in the form of DNA strand

Here, we illustrate encoding for the charac-
ter ‘A’. The ASCII value is considered and its
equivalent binary number equivalent is gener-
ated.

The procedure is outlined below:

ASCII value is considered and its equivalent
binary number is generated. Let’s take an ex-
ample

A = its ASCII value is 65

We now convert the ASCII value into its equiva-
lent binary number 100001. This binary number
is encoded in the form of DNA strand.

Among the eight kinds of patterns, we have
chosen a representation as shown in Table 1 to
explain the method of encryption:

| Binary number || DNA encoding |

00 A
01 C
10 T
11 G

Table 1. Representation to map DNA nitrogenous
bases to binary number.

Using Table 1, the encoded DNA strand looks
like the following:

Original form

llO 00 00 (1
T G

Thus the nucleotide TAAG is the encrypted
form of A.

—_

A A

Following the above explained procedure of en-
cryption the word “document” is encoded:

01000100 01001111 01000011 01010101
01001101 01000101 01001110 01010100

CACACAGGCAAGCCCCCAGCCACCCAGTCCCA

Thus after encryption every data of node will
look like: > {A, T, C, G}.

To add an additional level of encryption, we
recommend XORing the data with a key. Each
character can be XORed with an 8 bit key, which
will be known to all the consumers.

An out-house intruder has to try 2% apart from
knowing SRE and ERE to decode a data.

The same word “document” if XORed by a key
10011011 as shown above becomes The DNA
strand after encryption now appears to be

GCGGGCCA GCTAGATAGCCAGCGT GCAC GAGG

4.2. Assigning a Starting and Restriction
Enzyme to each Consumer

As referred in Section 2, the property of restric-
tion enzyme to identify the recognition site is
used to specify the access policy. Thus two re-
striction enzymes are randomly assigned from
the database of 4000 restriction enzymes to each
consumer subscribed for the XML data. This re-
striction enzyme is prefixed and suffixed to data
as an annotation specifying which consumer is
authorized to access the data.One which is pre-
fixed is called SRE and the other one is called
ERE.

01000100 01001111 01000011 01010101 01001101 01000101 01001110 01010100

Key 10011011 10011011 10011011 10011011 10011011 10011011 10011011 10011011

XOR

11011111 11010100 11011000 11001000 11010100 11011110 11010001 11001111

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . . 77

N SRE ERE
ame ., . o,
cocr)lfs ltlt}reler Name Recc;;gtréltlon Name Recc;%trémon
EcoRI-| GAATTC ||[EcoRII| CCWGG
Smal | CCCGGG ||Sau3A| GATC
Z EcoRV| GATATC || Kpnl | GGTACC

Table 2. SRE and ERE assigned to the various
consumers.

Considering Figure 1, there are three consumers
subscribed to the document. x, y, z are the names
assigned to them and their respective SRE and
ERE are shown in Table 2.

SRE and ERE of consumers x and y are math-
ematically represented as (SRE,, ERE,) and
(SRE,, ERE,) respectively. When a data is
hidden in a DNA strand, it’s actually annoted
with the consumer’s SRE and ERE to signify
that consumer x has the authorization to access
the node and the subtree. If consumer x is autho-
rized to access the root node, the strand appears
to be

GAATTC GCGGGCCA GCTAGATAGCCAGCGT
GCAC GAGG CCWGG

If there are more than one subscriber of a node,
for example x and y have subscribed for the root
node, then any one pair of the SRE and ERE is
used for annotation and the other consumer is
informed about the new pair of SRE and ERE.

4.3. Scattering of Data in the Garbage File

A garbage file F can be defined as a large text
file consisting of random combinations of A,
C, T, G. DNA cryptography has an advantage
that it provides four options for each bit as it in
Quaternary. Thus the numbers of combinations
are 4 for each bit. Thus for n bits the number of
comparisons can be shown as

The total number of combination is as follows

C(1) = 4; the enzyme with length 1 only
c2) = (‘1‘) ¥ (‘1‘) —4xd =16

o= (1)« (1)« (1) (1) =

Now the terms
44" 1)

A+ P 4P 42414854 44" = 3

Thus if n is 128 bits, the number of combina-
tions is 9.88E-+78.

And in comparison to binary the number of
combinations would have been

C(1) = 2; the enzyme with length 1 only
2 2

c@)=(7)+(7)=2+2=4

e~ (1) () (1) -
=) () (e () -2

Now the terms

2422423422425 4. 42" =2(2"—1)
The number of comparisons would have been
6.806E+38

Figure 4 shows a graphical representation of the
number of bits versus the number of combina-
tions in terms of exponentiation. It can be seen
that the values of binary is lower than quater-
nary. Table 3 shows number of combinations
versus number of bits for both quaternary and
binary number system.

90
k]
Ny 80
2 70
g 2 60
c
< S
c B
85 W= ... uaternar
£E 30 4 ¥
;E, © 90 binary
c
s 10+
5 0 - T T T T T T 1
1 50 100 128
number of bits

Figure 4. Number of bits versus number of
combinations in terms of exponentiation.

The data is embedded into the garbage file at
random locations. A table Tab is also main-
tained to store the information of the address
of the node in the file. The location is calcu-
lated as number of words from starting of the
file (length of each word is 3 characters). The

78

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

| Noofbits | 1 [25 50 75 100 125 128
quaternary [| 20 | 6E+15 [6.76E+30 [7.61E+45 [8.57E+60 | 9.65E+75 | 6.18E+77
binary 2 | 67108862 | 2.25E+15 | 7.56E+22 | 2.54E+30 | 8.51E+37 | 6.8E+38

Table 3. Number of combination versus number combinations in quaternary and binary number systems.

attributes of table Tab are (name of the node N,
address addr of the node, length L of the data
in the node) when encrypted using the method
mentioned in Section 3.1.

The address addry is assigned randomly such
that

addresss addry = {addr|addr < addr;
addr > addr; + [;}

where 1 <i<n-—1.
l; is the string length of the data at node i.

The node is stored in the file and the address of
the node is appended beside data of the parent,
so that, while traversing, if one knows the node,
he can find all the children of the node in the
garbage file. The location is also encrypted in
the format as mentioned in Section 3.1.

Data in the | Address Address of
SRE | encrypted |of leftmost | . | rightmost | ERE
form child child

Figure 5. Diagrammatic representation of the node.

Now the strands will have a representation as
shown in Figure 5, stating that the whole sub-
tree T starting from the node is visible to the
client X.

GAATTC GCGGGCCA GCTAGATAGCCAGCGT
GCAC GAGG ACTGGGTACCATG CCWGG

SRE DATA of the node ADDRESS of the child ERE

If T2 is the subset of T; and it has to be sent
to consumer y, then head of sub tree T, will be
prefixed and suffixed with (SRE,, ERE,) , thus
signifying that consumer y will only be able to
locate the head of T, and its children, but will
not be able to search the address of its parent
node in the file. The proposed secure dissemi-
nation technique is based on publish /subscribe.
Whenever a consumer subscribes for the data,
the required file F’ is sent to him.

The consumer will first locate the data starting
with SRE and ERE. Then he will try to extract
the data and child’s addresses and unfold the
rest of the tree till a leaf is encountered.

5. Proposed Algorithm of the
Secure Dissemination

The working of the algorithm for secure dis-
semination which implements the technique ex-
plained in Section 4 involves the following two
tasks:

e Execution at the server end as producer of
the file

e Execution at the consumer end to construct
the sub tree

The requirements of this approach are that the
consumers should subscribe to the interface, and
the administrator at the server end should men-
tion the access policies of the consumer. De-
pending on the trust it has, it will then customize
at the server end, which user can access which
part of data. The XML file to be transmitted
is then prepared according to the algorithm and
sent over the network.

5.1. The Algorithm Followed at Server End
who is the Producer of the File

1. Initialization:

e Generate a garbage file F = > {A,T,C,G} is pre-
pared

2. XML FILE is parsed and each tag is traversed using
preorder traversal

e r=preorder(T)
For each node r
an entry is maintained in the table T
Ayn =randomaddress()

/* randomly assign an address to each node to be
inserted in the garbage file F in the garbage file,
so that it doesn’t match with any earlier assigned
address or any earlier assigned address + length of
the data.

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . . 79

Add ((T, Name of the node r, Address assigned to
the node Ay, Length of the data of the traversed
node) */

3. D=r = info //D is the info at node

4. E, (Dy) =encrypt(D) // Perform DNA encryption
as explained in the paper

5. List=ADD(E,(Dy)// maintain a list of data ele-
ments and its encrypted value

6. GetSubscribedConsumer()//For each client

e LIST 1=add(SRE,ERE,n) in the table Enzymes
// SRE and ERE to each consumer x so that the
recognition site doesn’t exit in the data.

n number of bits of SRE and ERE.

7. X’=prepXMLTemp() //Parse the XML file and ac-
cording to access policy prefixing and postfixing for
the XML tags which the consumer is authorized.

8. F’=Modify(X’) //The server then parses temporary
XML file X’ checks out if an tag is prefixed with for
then SRE is picked from the table LIST1 and prefixes
to E, (Dy). The data now transforms into SRE,
E (Dy), where X is the consumer number. Then
the address location of the children is suffixed after
looking into the table T. The data now becomes

SRE, E (Dy) Alefimostchild of X5 - - -

At the end the data is suffixed with ERE, to show
the reading of the data to end here. The data now
becomes SREX E (DN) Aleftmostchild of X5+« vy
Aightmostehild of X EREy. The data is now embedded
into the location which was entered in table T.

9. Transmit the prepared file F’ to all the consumers

) Arightmostchild of X-

5.2. The Algorithm Followed at
Consumer End to Construct
the Subtree

1. loc=Search(F’, SRE) //Scan the SRE allocated to
the consumer by the Server in the received garbage
file F’. The position of last bit of SRE in F’ is called
loc

2. locl=Search(F’, SRE) //Scan the ERE allocated to
the consumer by the Server in the received garbage
file F’. The position of last bit of ERE is called loc1

3. stringl= readcontent(loc, locl,F’) //Read all the
characters between loc and locl in stringl. Stringl
contains

E(Dy) Alefimostchild of N - - - » Arightmostchild of N

4. E (Dy) =Extractdata (stringl) //Extract encrypted
data from stringl. Where N is the root of the subtree
which the consumer is authorized to access.

5. Data= Decrypt(E (Dy)) //Decrypt the encoded data

T=Root(data) //insert data as root node in subtree

7. Repeat till all leafnodes are reached
A=Extractaddresses(string1)

/ /For each address (Ajefimostchild of X - - - 5
A rightmostchild of X

stringl=readcontent(loc,loc1,F")

a

E (Dx =Extractdata (stringl)

//Where X is the node extracted
Data=Decrypt(E (Dx))
Insert(T,data,X)

//insert data as a child under the node X

8. Return (T)

6. Interface for Dissemination

The multicast dissemination interface is built
dynamically and asynchronously using a pub-
lish-subscribe methodology. Once the con-
sumer subscribes with the interface, it will be
assigned a SRE and ERE.

A temporary XML document is prepared by pre-
fixing and postfixing the XML tags which the
consumer is authorized as shown in Figure 6. If
a consumer is allowed to visit a top level tag,
then he/she is eligible to see all the child tags.
If there are more than one subscriber of a node,
for example x and y have subscribed for the root
node, then any one pair of the SRE and ERE is
used for annotation and the other consumer is
informed about the new pair of SRE and ERE.

The interface starts processing this temporary
XML document and later provides the follow-
ing two options:

e Produces one single file to send to all clients.

In this case the interface chooses as many SRE
and ERE as there are “for” attribute in the tem-
porary XML file. Now before the start tag of
each tag having “for” attribute the software will
append both information.

<document>

<last_updated for="consumer3">July 28, 2012
</last_updated>

<copyright for="consumer2">ABC company
</copyright>

<maintainer email="ras @juitcom"
url="http://www.juit.com/">

<name for="consumer1">
<first_name>marko</first_name>
<middle_name>D</middle_name>
<last_name>Harold</last name>

</name>

</maintainer>

</document>

Figure 6. Temporary XML file prepared.

e Produces separate file for each set of clients

80 Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

The interfaces will produce as many encoded
files as there are “for” attributes in the tempo-
rary file. In this example there will be three
output files. Each encoding is done with dif-
ferent set of SRE and ERE. The interface will
give the name of SRE and ERE used for that
particular file.

7. Security Analysis of Proposed Secure
Dissemination Technique

The security analysis of secure dissemination
technique and the algorithm are discussed based
on three points of views

e Probability of getting the right SRE and ERE
e Time taken to find the right SRE and ERE
e Requirement satisfaction

7.1. Probability of Getting the Right SRE
and ERE

If we consider the classical DNA encryption

then there is a dataset of 4000 restriction en-

zyme. The number of options is (40100)

4000. We can have at most 4000 * 4000 num-
ber of combinations for choosing both SRE
and ERE from a dataset of restriction enzymes.
Hence the probability of getting the right set of
enzymes is

1
p(A) = (4000)2

This limits the power of DNA encryption as it is
easy to find the right set of restriction enzymes.
Thus the probability of finding the restriction
enzymes is high. Therefore, it is important to
increase the number of combinations. Hence
we are not constraining the choice of restric-
tion enzymes to classical dataset of restriction
enzymes. We are customizing an enzyme in
the following fashion to lower the probability
to guess the right set of enzymes. The enzyme
can be any combination of A, C, T, G which can
span up to any length.

In the light of the above definition, let us com-
pute the probability of guessing the right set of
enzyme:

The total number of combinations is as follows:
4482484424484+ 4"

So if the length enzyme is taken up to n length
then the probability is
1

P(A) =
() G+ +8+4824+48+ ... +47)

Hence the probability becomes

3
A=— "
Takin = 5 we get p(A) = & =

0.0001831.

Figure 7 shows the probability of getting the
right combination with respect to number of
bits. It can be seen that the expression is highly
convergent to zero.

0.0002 -
0.00018
0.00016 -
0.00014
0.00012

0.0001 -
0.00008 -
0.00006 -
0.00004 -
0.00002

o -

0.00018315

probability of finding the right combination

DNA

1 2 3 4 5 6 7
number of bits

Figure 7. The number of bits versus the probability to find the right combination.

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . . 81

7.2. Time Taken to Find the Right SRE and
ERE

Time taken to find the right SRE or ERE de-
pends on checking all possible key combina-
tions until the correct key is found. This is also
called Brute-force attack where systematically
all possible key combinations are checked [20].
The calculation of the time taken is as follows:

Let’s assume Faster supercomputer: 10.51
Pentaflops= 10.51E+15Flops (Floating point
operations per second)

Assume that Number of Flops required per com-
bination check is 1000

No. of combination checks per second=
(10.51E+15)/1000 = 10.51E+12

No. of seconds in one year= 365 x 24 x 60 x

60 = 31536000. If o is the number of combi-

nations of a technique then number of the years
X

Substituting the value of o for different sym-
metric cryptosystem is shown in Table 4.

It can be observed from the Table 4 and Fig-
ure 8 that the time taken to crack the right
key /restriction enzyme is high in comparison
to other symmetric cryptosystems. Other sym-
metric approaches will have scalability issues
unless key distribution and key strength are sys-
tematically enforced.

But the proposed algorithm will have no scala-
bility issues as the number of files created for
various consumers is only one and the key id
also assigned once when the consumer sub-
scribes to the interface.

The length of the key is also variable, making it
more difficult to decrypt as the number of com-
bination is equal to 9.881E+78, which shows

to crack = . the robustness of the proposed technique.
(10.51E + 12) x 31536000 prop 1
Kev size DES DES AES AES AES DNA 128bits
y (128 bits) | (168 bits) | (128 bits) | (192 bits) | (256 bits) | (Proposed)
Possible
comtzmz)mons 72E+16 3.7E+50 | 3.403E+38 | 6.2E+57 1.1E+77 9.881E+78
X
Time to
(crack) 6850secs | 1.11E+30 | 1.02E+18 | 1.87E+37 | 3.31E+37 2.98E+58
years

Table 4. Time required cracking the combination in various types of symmetric cryptosystem.

90

80

70

60
50

40

30 +
20 -
10 A

get the right enzyme

O_

—H Possible combination

— Time to crack in yrs

-10
AES with

128 bits

AES with
192 bits

AES with
256 bits

time taken to crack the right combination in
terms exponential term of years taken to

DES with DES with DNA with
128 bits 168 bits 128bits
(proposed)

various symmetric cryptosystems

Figure 8. Possible combination and year to crack the right combination with respect
to the various symmetric cryptosystem.

82 Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

7.3. Requirement Satisfaction

The requirement of the problem was to ensure
integrity, confidentiality and access control. In-
tegrity is obtained as the probability of cracking
the data is low, as shown in the above section.
Confidentiality and access control are also ob-
tained as the consumer will be able to access
data which he has subscribed to by the inter-
face.

The proposed technique support underlying n-
ary tree structure of the XML document and
hides the data in the form of linked list in a
garbage file. The overhead is less as a single file
is sent to all the consumers. The disadvantage
of the solutions given by [2, 4] is that if the Local
XML structure changes, it requires associated
routing topology to be changed. Thus a sub-
scriber needs to have a prior knowledge of the
routing structure as the router cannot fetch any
content which is not hosted currently. We have
implemented at server level, thus any change is
just mentioned at the interface level, reducing
the cost and time required for a change in the
system. This approach will not have scalabil-
ity issues as other symmetric crypto systems.
In [21, 27] the requestor asks for a set of con-
cepts and therefore requires knowledge of the
ontological structure while in our work the on-
tological part is transparent for the requestor as
the focus is on general access control.

Finally, our work is related to the secure XML
broadcasting problem where the focus is the
secure dissemination of XML documents to au-
thorized users. In our approach we will be spec-
ifying access policies using variable length key
inspired from real world restriction enzymes,
which is a computationally secure technique.

8. Conclusion

Finally, to summarize, secure dissemination tech-
nique presented in this paper ensures that the
consumers of the data are the legitimate ones ac-
cording to the access policies. It presents acom-
putationally secure technique in which there is a
possibility to break the system theoretically, but
it’s infeasible to do so by any known practical
means. A multicast dissemination interface at
the server/producer end is proposed to imple-
ment the secure dissemination technique. Each

client/consumer will subscribe in the interface
and then automatically will be assigned a pair of
randomly generated restriction enzymes called
as SRE and ERE. The data will be appended
with the SRE and ERE to signify that the data is
meant for the respective consumer who has been
assigned a particular SRE and ERE. Later the
data is encrypted according to the technique and
scattered in the garbage file. The garbage file
is then transported to all the consumers where
they will be able to view only the data as per the
access control policies.

In particular, this paper explains how to secure
the data in a DNA strand and provide data in-
tegrity. It has been also proved that due to the
quaternary number system followed in the tech-
nique, it has very low probability of cracking
the key. The number of years to crack the com-
bination is also very high in comparison to var-
ious pre-existing symmetric cryptosystems like
DES and AES. The results indicate that the pro-
posed technique not only satisfies the require-
ment specification of secure dissemination, but
also points out its robustness in terms of time
required to break the key. The time to crack the
key is quite long and increases with the increase
in key length thus proving it to be computa-
tionally hard to crack by any known practical
means.

We plan to further investigate and find out how
other access control policies and integrity mod-
els can be implemented using the proposed se-
cure dissemination technique.

References

[1] N. GRUSCHKA, M. JENSEN, L. L0 IACONO, N. LUT-
TENBERGER, Server-Side Streaming Processing of
WS-security. IEEE Transactions on Services Com-
puting Issue 99 (06 January 2011), pp. 1-14. Digital
Object Identifier: 10.1109/TSC.2010.61

[2] E. BERTINO, E. FERRARI, Secure and selective dis-
semination of XML documents. ACM Transactions
on Information and System Security - TISSEC, 5(3)
(2002), pp. 290-331.

[3] http://www.w3schools.com/dtd/dtd-
intro.asp as on july 2012

4] A. KUNDU, E. BERTINO, A New Model for Secure
Dissemination of XML Content. /[EEE Transac-
tions on Systems, Man, and Cybernetics — part C:
Applications and Reviews, 38(3) (May 2008).

Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

83

[5]

L. O’BRIEN, P. MERSON, L. BASS, Quality Attributes
for Service-Oriented Architectures. International
Workshop on Systems Development in SOA En-
vironments (SDSOA’07: ICSE Workshops 2007),
2007, pp. 3.

D. E. KNUTH, Art of Computer Programming, Vol-
ume 1: Fundamental Algorithms. (3rd Edition)

http://dosattack.net/ as on july 2012

A. ADHIKARI, DNA Secret Sharing. IEEE Congress
on Evolutionary Computation, (July 16-21, 2006)
Sheraton Vancouver Wall Centre Hotel, Vancouver,
BC, Canada, pp. 1407-1411.

B. ROy, G. RAKSHIT, P. SINGHA, A. MAJUMDER, D.
DATTA, An improved Symmetric key cryptogra-
phy with DNA based strong cipher. International
Conference on Devices and Communications —
ICDeCom, (2011) pp. 1-5.

A. GEHANI, T. LABEAN, J. REIF, DNA-based cryp-
tography. Lecture Notes in Computer Science, vol.
2950, pp. 167-188, 2002.

S. V. KARTALOPOULOS, DNA-inspired crypto-
graphic method in optical communications, au-
thentication and data mimicking. Proc. of the IEEE
on Military Communications Conference, (2005)
vol. 2, pp. 772-779.

K. TANAKA, A. OKAMOTO, 1. SAITO, Public-key
system using DNA as a one-way function for key
distribution. Biosystems, 81(1) (2005), pp. 25-29.

M. SAEB, E. EL-ABD, M. E. EL-ZANATY, On
Covert Data Communication Channels Employ-
ing DNA Recombinant and Mutagenesis-based
Steganographic Techniques. International Confer-
ence on Computer Engineering and Applications,
World Scientific and Engineering Academy and
Society (WSEAS) Stevens Point, Wisconsin, USA,
pp- 200-206.

G. Cuy, L. QIN, Y. WANG, X. ZHANG, Information
Security Technology Based on DNA Computing.
International Workshop on Anti-counterfeiting, Se-
curity, Identification, IEEE, (2007) Xiamen, Fujian,
pp- 288-291.

X. WANG, Q. ZHANG, DNA computing-based cryp-
tography. Fourth International Conference on Bio-
Inspired Computing, (2009) BIC-TA °09. Publica-
tion Year: 2009, pp. 1-3.

http://rebase.neb.com/rebase/rebase.
enz.html as on august 2012

http://www.neb.com/nebecomm/products/
categoryl.asp as on august 2012

R. C. CHALMERS, K. C. ALMEROTH, On the Topol-
ogy of Multicast Trees. IEEE/ACM Transactions on
Networking, 11(1) (2003), pp. 153-165.

G. Cur, L. QIN, Y. WANG, X. ZHANG, An Encryption
Scheme Using DNA Technology. 3rd International
Conference on Bio-Inspired Computing: Theories
and Applications, (2008), BICTA 2008. Publication
Year: 2008, pp. 37-42.

20]

23]

24]

27]

http://www.eetimes.com/design/embedded-
internet-design/4372428/How-secure-
is-AES-against-brute-force-attacks-ason
august 2012

M. A. RAHAMAN, Y. ROUDIER, P. MISELDINE, A.
SCHAAD, Ontology-based Secure XML Content
Distribution. Proceedings of the 24th International
Information Security Conference, (May 2009)
Pafos, Cyprus, pp. 294-306.

W.-C.L.Bo Luo, D. LEE, P. L1U, A Flexible Frame-
work for Architecting XML Access Control Enforce-
ment Mechanisms. Vol. 3178 /2004 of Lecture Notes
in Computer Science. Springer Berlin/Heidelberg,
December 2004.

E. DAMIANI, S. D. C. DI VIMERCATI, S. PARABOSCHI,
P. SAMARATI, Fine Grained Access Control for
SOAP Eservices. In Proceedings of the 10th Inter-
national Conference on World Wide Web, (2001)
New York, NY, USA, pp. 504-513.

W. FAN, C.-Y. CHAN, M. GAROFALAKIS, Secure
XML Querying With Security Views. In Proceed-
ings of the 2004 ACM SIGMOD International Con-
ference on Management of Data, (2004) New York,
USA, pp. 587-598.

G. KUPER, F. MASSACCI, N. RASSADKO, General-
ized XML Security Views. In Proceedings of the
Tenth ACM symposium on Access Control Models
and Technologies, (2005) New York, NY, USA, pp.
77-84.

M. MURATA, A. TozZAWA, M. KUDO, S. HADA, XML
Access Control Using Static Analysis. Proceedings
of the 10th ACM conference on Computer and Com-
munications Security, (2003) New York, USA, pp.
73-84.

A. ROTA, S. SHORT, M. A. RAHAMAN, XML secure
views using semantic access control. Proceedings
of the 2010 EDBT/ICDT Workshops.

Received: January, 2013
Revised: August, 2013
Accepted: September, 2013

Contact addresses:

Rajni Mohana

Department of CSE and ICT

Jaypee University of Information Technology
‘Wakhnaghat

India

e-mail: rajnivimalpaul@gmail.com

Deepak Dahiya

Department of CSE and ICT

Jaypee University of Information Technology
Wakhnaghat

India

e-mail: deepak.dahiya@juit.ac.in

84 Specifying Access Policies for Secure Content Dissemination of XML: A Technique Inspired. . .

RAJNI MOHANA is working as Assistant Professor in the Department of
CSE and ICT at Jaypee University of Information Technology (JUIT),
Waknaghat, India. She is persuing her Ph.D from Jaypee University of
Information Technology (JUIT), Waknaghat, India under the guidance
of Dr. Dahiya. Her area of interest is service oriented architecture,
cloud computing and she has over 10yrs of experience in teaching.

DEEPAK DAHIYA is currently working as Professor in the Department of
CSE and ICT at Jaypee University of Information Technology (JUIT),
Waknaghat, India. Deepak has over 20 years of extensive experience in
IT Industry and Academics in India, Australia, US, UK and Oman. He
is also a reviewer for various renowned journals from Elsevier, IET and
Wiley. Deepak is a Visiting Researcher to RMIT University, Australia,
Guest Faculty to FMS Delhi, IIM Rohtak, [IM Kozhikode and LNMIIT
Jaipur. He has conducted senior executive training programmes for
both private and government sectors. In the IT Industry, he has been
consulted by corporate clients in UK, US and India. He is a senior
member of IEEE and life member of the Computer Society of India.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

