
Journal of Computing and Information Technology - CIT 21, 2013, 2, 125–135
doi:10.2498/cit.1002186

125

A Derivative-free Algorithm for
Finding Least Squares Solutions of
Quasi-linear and Linear Systems

Nikica Hlupić1, Ivo Beroš2 and Danko Basch3

1 Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
2 Department of Applied Mathematics and Computer Science, VERN’ University of Applied Sciences, Zagreb, Croatia
3 Department of Control and Computer Engineering, Faculty of Electrical Engineering and Computing,

University of Zagreb, Croatia

A novel derivative-free algorithm for solving quasi-
linear systems is presented. It resembles “classical”
optimization approach but greatly simplifies computa-
tion, resulting in fast execution and numerical stability.
Though the global convergence cannot be guaranteed, it
turns out that the presented algorithm finds a solution
as successfully as other commonly accepted methods.
The algorithm is clearly developed and mathematically
founded, and its properties are examined by comparisons
with other methods.

Keywords: derivative-free algorithm,optimization, quasi-
linear systems, linear systems

1. Introduction

Quasi-linear systems are important because they
are common in various fields of science, like
mechanical and civil engineering or robotics
and control theory, to mention a few of them.
Although there are few theoretical results, like
Bezout theorem [12], that provide some know-
ledge about existence and number of solutions
of such systems, there is no known analytical
procedure to find them. Therefore, we try to
compute solutions numerically and in practice
we do not know in advance whether an exact
solution exists at all, so we wish to find the best
possible solution. Thus, we set the problem like
the problem of minimization of residual sum of
squares (rss) in the system and apply an opti-
mization method to find solution according to
least squares (LS). Because equations in quasi-
linear system are easily differentiable, practi-
cally all optimization methods can be tried and

the choice depends on the insight into the prob-
lem and prior knowledge about possible solu-
tions. So-called line search methods like gradi-
ent, Newton’s (Levenberg-Marquardt variant),
Quasi-Newton and possibly conjugate gradient
[1],[13] will be good choice if we can find start-
ing point not too distant from solution for other-
wise they will likely find just a local optimum or
not converge at all. If we do not have any clue
about solution (i.e., we cannot even estimate it),
the alternative is to apply derivative-free meth-
ods like Nelder-Mead [1],[7],[13]. Finally, if the
feasible set (possible values of unknowns) is
closed (see, for example, [1]) or if we have some
prior knowledge about the feasible set, we can
assign probabilities to candidate points. This
opens the possibility for using various heuris-
tics (simulated annealing, particle swarm, ant
colony etc.; also called stochastic algorithms)
and genetic algorithms, which can be effective
as well [3],[7].

The main drawback of all these methods is
that they search for better point only locally
in some limited area around the current point
(limited either by the boundaries of feasible set
or by knowledge about probability distribution
of candidate points). In this paper we present
an algorithm that overcomes this limitation [6]
and finds the best point on the whole line of
search direction, that is, it finds the global min-
imizer along search direction. Having set the
search direction, the computation is easy and
straightforward, and the only cost paid for this

126 A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems

benefit is a restricted set of search directions.
This is quite a weak restriction because suit-
able search directions are directions of coordi-
nate axes, which are exactly the ones we would
probably try as the first choice if we could freely
choose direction. In the case that some other
direction is unconditionally required, there is
always the possibility to rotate the coordinate
system so that one of coordinate axes becomes
coincident with the desired direction. This is,
in fact, what happens in so-called adaptive co-
ordinate descent method [9]. Hence, arbitrary
search directions are possible, but with a more
involved computation. On the other hand, sim-
plicity, numerical stability and success-fulness
in solving systems of up to moderate complex-
ity, indicated by simulations in the later sec-
tions of the paper, confirm considerable practi-
cal value of the proposed algorithm, even in its
simplest form.

2. Mathematical Background and
Formulation of the Algorithm

Quasi-linear systems are systems of nonlinear
equations in which equations can consist not
only of sums of unknowns multiplied by coeffi-
cients, but also of mutual products of unknowns
in all combinations. Formally, with vector of
unknowns x = [x1x2 . . . xn]T ∈ Rn, quasi-linear
system is a system

F1(x)=f 11(x)+f 12(x)+. . .+f 1q(x)=b1

F2(x)=f 21(x)+f 22(x)+. . .+f 2q(x)=b2

...
Fm(x)=f m1(x)+f m2(x)+...+f mq(x)=bm

(1)

in which all f(x) are of the form [12]

f(x) = a · xp1
1 xp2

2 . . . xpn
n , (2)

where a are real numbers and powers pi are ei-
ther zero or one (pi = 0 means that variable
xi does not figure in f). Introducing notation
F : Rn → Rm, F(x) = [F1(x)F2(x) . . .Fm(x)]T

and b = [b1 b2 . . . bm]T ∈ Rm, we write the
problem to be solved as

F(x) = b. (3)

The measure of the balance of each equation in
the system is the difference ri = bi − Fi be-
tween its left and right sides, called residual.
For convenience, we collect all residuals in a
vector of residuals r = [r1 r2 . . . rm]T ∈ Rm.
To solve the system means to find vector x for
which all residuals will be zero. Since we do
not know in advance whether such an x exists
at all, the objective is to balance the system as
well as possible, that is, to minimize residual
sum of squares (rss)

rss =
∑

(bi − Fi)2 = ||r||2 ≥ 0, (4)

where the exact solution is found when rss = 0.

Minimization of rss is common optimization
approach, but from here on, we continue in a
different direction. While other methods try
to determine all unknowns simultaneously, i.e.,
they search in all n dimensions, we compute
only one variable at a time. This simplifies the
problem by reducing its dimensionality at the
cost of getting a better value of only one vari-
able in the system, instead of all of them.

The idea of the algorithm is to update one by
one variable and the key for this idea to be
useful is a special computation which, as we
shall see shortly, guarantees that updating any
of the variables will improve the solution or, in
the worst case, it will remain the same. The
computation is based on considering all but one
variable known and fixed in each step of the
algorithm. Because the variable considered un-
known changes, let us denote it by . To explain
the computation, let x1, for example, be consid-
ered the only unknown and x2, . . . , xn known
and fixed at their current values. Substituting
known values into the system (1) and writting
 instead of x1 we get a system of the form

a11 ·  + a12 ·  + . . . + a1q ·  = b1

a21 ·  + a22 ·  + . . . + a2q ·  = b2

...
am1 ·  + am2 ·  + . . . + amq ·  = bm.

(5)

Coefficients aij in (5) contain contributions of
all known variables x2, . . . , xn as well as of orig-
inal coefficients in the system. Reduced system

A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems 127

(5) is nothing but

(a11 + a12 + ... + a1q) · =v1 · =b1

(a21 + a22 + ... + a2q) · =v2 · =b2

...
(am1 + am2 + ... + amq) · =vm · =bm

(6)

or, with v = [v1 v2 . . . vn]T ∈ Rn, simply

v ·  = b. (7)

System (6), i.e., (7) is a linear system ofm equa-
tions in one unknown  and its LS solution can
be relatively simply computed as [5],[10],[14]

LS = (vTv)−1vTb =

m∑
i=1

vibi

m∑
i=1

v2
i

=

m∑
i=1

vibi

|v|2 . (8)

Formula (8) yields the best possible value (in
the whole set R) of the variable considered un-
known,with other variables fixed at their current
values. The new value of the selected variable
will certainly be better than the previous one
because by Gauss-Markov theorem [5],[10],[14]
it is guaranteed that new rss will necessarily
be less or, in the worst case, equal to the one
obtained by the old value of the selected vari-
able. The explained procedure is an efficient
computational engine for minimizing rss in a
single dimension that we shall use in higher-
level algorithms, so let us call it quasi-linear
computational engine (QLCE) and summarize
here for convenience.

Algorithm 1: QLCE

1. Given the current point x and one of coor-
dinate axes as search direction (let it be jth

axis), consider the corresponding variable xj
unknown.

2. In system (1) substitute current values for all
variables considered known and denote xj as
 . This will render the system into a linear
system in  of the form (6), i.e., (7).

3. If ||v|| �= 0, solve (7) for  according to (8).
Let us denote the result as LS. If ||v|| = 0,
just return some indication of failure to the
calling routine.

4. Compose new point xnew by replacing xj in
x by LS. This xnew minimizes the rss of the

original system (1) in selected dimension
(i.e., along the line of selected coordinate
axis).

Having QLCE computation at disposal, we im-
mediately arrive to a natural extension of its
underlying idea. The approach is to consider
one by one variable unknown, with all other
variables fixed at their current values, and to
update them sequentially in order to gradually
approach the solution, i.e., rss minimizer. Such
an algorithm certainly exhibits descent property
[1] because rss is necessarily reduced in each
step (in the worst case it remains the same).
Let us name it quasy-linear solver (QLS) and
formulate it precisely.

Algorithm 2: quasi-linear solver (QLS)

1. Set x =starting point x0.

2. for j = 1 to n

• Consider xj unknown and apply QLCE to
find its better value. In the case of QLCE
failure just return to the incremental part
of the loop, i.e., take another variable as
unknown and repeat QLCE computation.

• Here QLCE returned xnew. To use it in
further computation, set x = xnew.

3. Check stopping conditions and if none is sat-
isfied, continue from the step 2.

Remark: in step 2b, it is sufficient to take only
jth component of xnew, that is, QLCE can be
stopped as soon as LS is obtained and only this
LS has to be substituted for xj to construct new
x in step 2b of QLS.

Unfortunately, improving one by one dimension
does not guarantee convergence to a stationary
point. Moreover, simulations show that occa-
sionally even the order of axes taken as search
directions has a major impact on the final re-
sult. Sometimes just the change of the order
means the difference between falling into a lo-
cal optimum and finding an exact solution. In
the worst case, the algorithm can enter an infi-
nite loop in which updating one (let us say, the
first) variable causes such changes of the other
ones that the next update of the first variable
yields its previous value with which the cycle
begun. There is not much we can do about it,
but such difficulties motivate somewhat differ-
ent variant of the algorithm. Namely, instead of

128 A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems

sequential updating of unknowns in some fixed
order, we apply greedy [2] strategy. This means
that in each iteration we check all dimensions
(every variable is once taken as the unknown
and resulting rss is computed), but eventually
we update only the variable for which achiev-
able rss reduction is maximal. This is the un-
derlying logic of the algorithm we call greedy
quasi-linear solver (QLSG).

Algorithm3: greedy quasi-linear solver (QLSG)

1. Given the current point x, compute referen-
tial rss, that is, set rssref = rss(x). Also, set
rssmin = rssref and xbest = x.

2. for j = 1 to n

• Consider xj unknown and apply QLCE to
find its better value. In the case of QLCE
failure just return to the incremental part
of the loop, i.e., take another variable as
unknown and repeat QLCE computation.

• Here QLCE returned xnew so
compute rssnew = rss(xnew).

• If rssnew < rssmin
set rssmin = rssnew and xbest = xnew.

3. Set x = xbest.

4. Check stopping conditions and if none is sat-
isfied, continue from the beginning.

Remark: in steps 2a and 2b again we only need
to work with LS, rather than with the whole x.

There are several possible stopping conditions
and we discuss those that we use in the section
on comparative study. Most of them are com-
mon to the majority of optimization methods,
but QLSG algorithm, specifically, has to care
about ||v|| and prevent potential problem that
||v|| = 0 in (8), which is the task of step 3 in
QLCE. In the early stages of QLSG this is a very
unlikely situation because zero norm of v (with
nonzero b) means that the problem is not well
defined and this, in turn, means that in the se-
lected dimension improvement is not possible
at all. However, as we approach the solution
or a stationary point, numerical limitations can
cause inability to solve (8) in any dimension,
which is then indication for stopping the exe-
cution. In fact, in that case x will not change
at all so this can be detected by watching x, as
is done routinely in other methods as well. In
practice, such situations are relatively rare and

in the next sectionwe present comparative study
that confirms the merit of QLSG.

3. Comparative Study

We shall compare QLSG with two commonly
accepted methods. Specifically, with New-
ton’s method (Levenberg-Marquardt modifica-
tion) that uses simple backtracking for line-
search and with Nelder-Mead method as a rep-
resentative of derivative-free methods. Because
solving quasi-linear systems is challenging only
for systems with three or more equations and
unknowns, visualization of algorithms advance
is not feasible. Therefore, the main criterion
for comparison will be successfulness of the al-
gorithms in finding a solution, i.e., the quantity
of interest in our work is the number of solved
systems out of systems tried, that is, proportion
of solved systems which we denote by  .

Reliable establishment of differences among
the algorithms (i.e., proportions of solved sys-
tems) requires some kind of analysis of variance
(ANOVA) [4],[11],[14], but to facilitate analy-
sis of results, we construct confidence intervals
for estimates of proportions and present them
graphically. In experiments like ours, where we
work with so-called count data [11], proportion
is a variable having the binomial distribution.
However, for large number of samples (more
than 30, and we always have many more than
that) we can use the normal approximation to
the binomial distribution so we may compute
confidence intervals according to [11]

̂−z/2

√
̂(1−̂)

n
<<̂+z/2

√
̂(1−̂)

n
,

(9)
where ̂ is the observed proportion of successes
in n trials (n systems) and z/2 is the value
of a standard normal variable corresponding to
the degree (level) of confidence (1 − ). We
use  = 0, 05, which means that there is 95%
probability that true proportion lies within the
confidence interval.

In all simulations we randomly generate quasi-
linear systems with at least one known solution
(also randomly generated) and try to solve them
by all three compared algorithms. Coefficients
in the system and components (variables) of

A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems 129

the known solution are random integers in the
range [−10, 10]. Nelder-Mead simplex method
is identical to Matlab variant implemented in
fminsearch function, while QLSG and New-
ton’s method (Levenberg-Marquardt) are the
authors’ custom routines. Stopping conditions
are the same for both:

1. sufficiently small gradient components
(smaller than 10−6)

2. insufficient change of solution compo-nents
(relative change smaller than 10−15)

3. insufficient reduction of rss (relative reduc-
tion smaller than 10−14)

4. maximal number of iterations exceeded.

Starting point in all simulations is always the
origin of coordinate system (zero-vector) and
the system is considered solved if the final rss
drops below 10−6. This is an absolute thresh-
old, though “the optimal” threshold might be
expected to be related to initial rss and the struc-
ture of the system. However, absolute tresholds
are justified and common in optimization be-
cause in the case that we find “the right search
path”, the algorithm can reduce rss arbitrarily,
down to numerical precision of computer, so we
can freely use any absolute threshold. On the
other hand, if we take wrong direction, rss re-
duction will be minor and even after thousands
of iterations it would remain far above any rea-
sonable threshold anyway. In such sitations it is
much better to restart the algorithm (from some
other starting point).

First we consider small systems of three equa-
tions in three unknowns. We use notation
e3x3q4, which means “equations 3”, “xes 3”
and maximally 4 combinatorial terms (with
products of unknowns) in an equation. Max-
imal number of iterations is 20000 and we gen-
erate 500 systems. Result of comparison is in
Figure 1. We see that with these small systems
QLSG is as successful as “classical” Levenberg-
Marquardt (LM) algorithm, while both are bet-
ter than Nelder-Mead method. Successfulness
of QLSG and LM algorithm is about 75%, but
insight into simulation output reveals that LM
algorithm on average needs just 40 and QLSG
about 3600 iterations. If we take into account
the fact that LM in each iteration updates all
unknowns and QLSG updates only one, fair

comparison requires that we divide total num-
ber of QLSG iterations by the number of vari-
ables. With this correction, the average num-
ber of QLSG iterations is 1200, which is still
much more than LM needs. This is a typical
outcome because LM search direction follows
from the second-order Taylor approximation of
the objective function, which is quite a good ap-
proximation, while QLSG search directions are
merely directions of coordinate axes so QLSG
cannot take “shortcuts” on its way to the solu-
tion. On the other hand, QLSG does not need
derivatives and, more important, it does not re-
quire equal number of equations and unknowns
in the system, which is its second major advan-
tage over Newton’s and similar methods.

Figure 1. Proportions of successes with systems e3x3q4
and 95% confidence intervals of proportions.

In real life applications, we usually encounter
overdetermined systems [5],[10] (systems with
more equations than unknowns) and they rarely
have exact solution. Nevertheless, it is usually
desirable to obtain the best possible, i.e., least
squares, solution, even when we know that an
exact one does not exist. QLSG (orQLS) is very
usefully in such situations because it is designed
to reduce rss asmuch as possible and in thatway,
in effect, it tries to find least squares solution.
There is, of course, no guarantee that QLSG
will yield true least squares solution because it
can finish in a local optimum or fail for some
other reason. Also, there is no known closed
form formula or algorithm that is guaranteed
to yield least squares solution of a quasi-linear
system, so it is not possible to verify QLSG re-
sult anyway. Nonetheless, the fact is that QLSG
reduces rss and thereby it approaches true least
squares solution, whatever it be.

Increasing complexity of the system quickly de-
teriorates all methods, which is apparent in Fig-

130 A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems

ure 2 and Figure 3 that show results for 500
systems e5x5q4 and e10x10q4, respectively.

Figure 2. Proportions of successes with systems e5x5q4
and 95% confidence intervals of proportions.

Figure 3. Proportions of successes with systems
e10x10q4 and 95% confidence intervals of proportions.

We see that proportion of success (values on ab-
scissa) rapidly decreases as complexity of sys-
tem increases. Observing these figures, it could
be concluded that QLSG continually becomes
worse than LM as complexity of systems in-
creases. This would, however, be a hasty con-
clusion because the simulations allowed lim-
ited number of iterations, which caused QLSG
to end before it exhausted all its capabilities.
When QLSG is let running until some other
stopping condition (not number of iterations)
breaks the execution, it becomes as success-
ful as LM, if not better. Unfortunately, in bad
circumstances it can easily reach a few tens
of thousands iterations before it finds solution,
but it mostly does find it. This is illustrated
in Figure 4, which shows QLSG performance
for one of the systems e5x5q4 which has not
been solved in previous simulation due to lim-
ited number of iterations. The limit was 25000
iterations and, as before, the end point (the last
x vector) was considered a solution if the final

rss was less than 10−6. As we see in the fig-
ure, for the system under consideration this rss
value is reached at 26330th iteration and though
QLSG can solve it, in the previous simulation it
was counted as unsolved.

Figure 4. Log-log graph of typical course of solving
e5x5q4 system, i.e., rss reduction by QLSG algorithm.

The “trajectory” of rss in Figure 4 shows a typi-
cal course of advance ofQLSG. In the beginning
it quickly reduces rss for few orders of magni-
tude, but then it usually needs many iterations to
make many small movements until it comes into
“the basin of attraction” of a solution. Eventu-
ally, once it gets close enough to the solution,
the algorithm rapidly descends to it. Thus, if it
is important to solve the system and time is not
a limiting factor, QLSG might be the best algo-
rithm for this task. This follows from the fact
that QLCE computation yields the best point on
the whole line of search direction, while other
methods can search only locally in some limited
area around the current point. Due to this prop-
erty, QLSG has good chances to get out of local
optimums and purely accidentally find solution,
even when this is apparently not likely.

4. QLS Applied to Linear Systems

Because linear systems are a subclass of quasi-
linear systems defined by the constraint that
each term of the form (2) can contain only one
unknown, it is clear that QLSG algorithm can
also be used for solving linear systems. There is
nothing to be changed in the algorithm formula-
tion and all its properties observed in the section

A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems 131

on comparative study remain in effect when it is
applied to linear systems as well. However, ap-
plying the basic (non-greedy) variant, i.e. QLS
algorithm, to a linear system reveals a surprising
connection between QLS algorithm and Gauss-
Seidel method [5],[8] for solving linear systems.
Namely, it turns out that, when applied to a
pure linear system Ax = b, the QLS algorithm
is nothing but another form of Gauss-Seidel
method applied to the system ATAx = ATb.
Thus, we can establish the following result.

Proposition: When applied to a linear sys-
tem Ax = b, QLS algorithm is equivalent
to Gauss-Seidel method applied to the system
ATAx = ATb. �

Proof: We prove the statement by showing that
QLCE computation of new value of a single
unknown, when applied to a linear system and
sequentially to all unknowns, is algebraically
equivalent to Gauss-Seidel computation.

In each iteration, QLS algorithm applied to
Ax = b tries to reduce rss(x) = r(x)Tr(x) =
||b − Ax||2 by changing only one xk. To this
aim, it fixes all other unknowns and solves
d/dxk[rss(xk)] = 0. Expanded, the condition
d/dxk[rss(xk)] = 0 is

2(b−x1 ·a1−. . .−xk ·ak−. . .−xn ·an)T ·ak = 0,

where aj means jth column of matrix A. By
isolating xk it follows that new xk by QLS is

xk =
(b − x1a1 − . . . − xk−1ak−1

(ak)Tak

+
−xk+1ak+1 − . . .− xnan)Tak

(ak)Tak
.

(10)

If we introduce notation C = ATA and
d = ATb and have in mind that matrix C is
symmetric, formula (10) can be written as

xk =
dk − x1ck1 − . . .− xk−1ck,k−1

ckk

+
−xk+1ck,k+1 − . . .− xnckn

ckk
.

(11)

On the other hand, new value of yk yielded by
Gauss-Seidel method, when applied to the sys-
tem Cy = d, is given by

k−1∑
i=1

yicki + ykckk +
n∑

i=k+1

yicki = dk (12)

wherefrom we get

yk =
dk

ckk
−

k−1∑
i=1

yicki −
n∑

i=k+1

yicki

=
dk − y1ck1 − . . .− yk−1ck,k−1

ckk

+
−yk+1ck,k+1 − . . .− ynckn

ckk
.

(13)

Comparing new xk by QLS in (11) with new
yk by Gauss-Seidel method in (13), we see
that they are identical, so for any starting point
x(0) = y(0) the sequence of new values of un-
knowns produced by either methodwill be iden-
tical.

The equivalence of QLS and Gauss-Seidel me-
thod sheds a new light on Gauss-Seidel method,
but more importantly, it enables transferring
of all theoretical results developed for Gauss-
Seidel to QLS. Hence, because the conver-
gence of Gauss-Seidel method, when applied
to positive definite systems [5],[10], is proven
[5],[8], and ATA certainly is positive definite
[5],[8],[10], we may assert that convergence of
QLS algorithm applied to any linear system is
guaranteed as well. In the case that system has
no solution at all, QLS algorithm will converge
to a least squares solution x = (ATA)−1ATb,
which is a desired property.

Guaranteed convergence motivates further opti-
mization of the algorithmwith respect to specifics
of linear systems in order to accelerate the algo-
rithm as much as possible. Indeed, it is possible
to reduce the number of operations by taking
a deeper insight into a two consecutive steps,
so let us follow what QLS does with system
Ax = b, whichwe expand here for convenience.
We have m equations in n unknowns

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm.

(14)

QLS takes one unknown, let us say x1, and con-
structs overdetermined system with m equations
in a single unknown x1 by subtracting all terms

132 A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems

that do not contain x1 from the right sides in all
equations. Hence, QLS constructs the system

a11x1 = b1 − a12x2 − . . . − a1nxn

a21x1 = b2 − a22x2 − . . . − a2nxn

...
am1x1 = bm − am2x2 − . . . − amnxn

(15)

or in common matrix-vector notation

a1x1 = b −
n∑

j=2

ajxj. (16)

New x1 is obtained by solving (16) according
to (8), where a1 from (16) has the role of v in
(7) and the right side of (16) has the role of b
in (7). In the next step QLS takes x2 as the only
unknown and constructs

a2x2 = b −
n∑

j=1
j�=2

ajxj, (17)

where it uses new x1 obtained in the previous
step. Looking at (16) and (17), we notice that
by switching from x1 to x2, the right sides of the
systems to be solved contain mainly the same
terms. The difference is only that in (16) we
subtract a2x2, while in (17) this term does not
contribute to the right side and in (17) we sub-
stract a1x1 (new x1), which was not subtracted
in (16). Hence, once we compute the right side
in (16), computing the right side in (17) does
not require all calculations as given by the for-
mula. It is sufficient to add a2x2 to the right side
obtained by (16) in order to cancel subtraction
of a2x2 in the previous step, and to subtract a1x1
(with new x1) from the result. If we denote the
right sides of these systems when computing
xi as ti, we can write all calculations needed to
transform the right side in two consecutive steps
as a recursive formula

ti = ti−1 + aixi − ai−1xi−1. (18)

Relation (18), along with the fact that the left
sides of systems of the form (16) and (17) are
simply ith columns of system matrix A, enables
significant reduction of the number of needed
operations and leads to a highly optimized vari-
ant of the algorithm designed specifically for
solving linear systems. Of course, because (18)
is a recursive formula, the algorithm has to be

started properly as specified in the following
list.

Algorithm 4: optimized linear solver

1. Set x =starting point x0.

2. Compute all possible denominators in (8)
that can appear (there will be n of them) and
store them appropriately, let us say in array
den.

3. Compute the right side of (16) taking xn as
the unknown, that is, compute

tn = b −
n−1∑
j=1

ajxj.

4. for i = 1 to n

• Use recursive formula (18) to compute the
right side of (16) for xi as the unknown,
that is, compute

ti = ti−1 + aixi − ai−1xi−1.

If i = 1, use n instead of i − 1 to prop-
erly handle the circularity of sequence of
variables.

• Solve aixi = ti for xi according to (8),
whereas the value of denominator is den[i].
Denote new xi as LS.

• Replace xi in the current x by LS.

5. Check stopping conditions and, if none is
satisfied, start new sequence of updates, i.e.,
continue from step 4.

Step 2 is not necessary, but it accelerates cal-
culation (8) in step 4b at the negligible cost
of some extra storage. Step 3 is the required
initialization of recursion as it simulates the
non-existing previous state of recursion (state
as would be before repeated arrival to x1).

To illustrate the practical value of QLS and its
properties when applied to a linear system, let
us consider a simple example. System

x1 + x2 + x3 = 3
x1 − x2 + x3 = 3
x1 − x2 − x3 = 1

(19)

is neither diagonally dominant nor positive def-
inite and Gauss-Seidel method fails to solve it,
though the solution x = [2 0 1]T exists and can

A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems 133

be easily found. In contrast, QLS (all variants)
does not have any problem with this system and
the course of the algorithm’s advance (i.e., re-
duction of rss) is shown in Figure 5.

Figure 5. The course of rss reduction when solving
system (19) by QLS algorithm.

The equivalence of QLS and Gauss-Seidel me-
thod applied to normalized systemhas been pro-
ven algebraically and illustration, either graph-
ical or tabular, cannot show anything but the
same curves or numbers because both algo-
rithms yield identical estimates of unknowns up
to the numerical precision of the computer. Un-
fortunately, precise calculation in the next sec-
tion reveals that even optimized QLS algorithm
requires about three timesmore basic operations
(additions, multiplications) than Gauss-Seidel
method to solve system Ax = b, so there is
not much reason to use it in practice. It is true
that QLS can be directly applied to any sys-
tem, while Gauss-Seidel method imposes cer-
tain constraints, but if we wish LS solution
of a system, there are other methods (like QR
or SVD, see [5],[10]) at disposal and they will
likely be faster than QLS when applied to full
systems. With sparse systems QLS algorithm
might be competitive, but this strongly depends
on implementation and is subject to additional
examination out of the scope of this paper.

5. Complexity Analysis

Because all presented algorithms are iterative
routines for which required number of iterations
is not known in advance, the appropriate mea-
sure of complexity is the number of operations
in a single iteration.

Obviously, the complexity of the basic QLS
variant (Algorithm 2) is n times the complex-
ity of its computational engine QLCE and the
number of operations in QLCE depends on the
structure of equations and their terms. We know
the largest number q of terms in a single equa-
tion in the system, but to facilitate the analysis
and get the worse possible situation, we assume
that all equations have q terms and that all terms
contain all unknowns. Then, when we fix all ex-
cept one variable and substitute their values in
a term like (2), calculation of the resulting co-
efficient ars in (5) takes exactly (n − 1) − 1
multiplications (M) for multiplying variables
plus one multiplication with coefficient, which
yields the total of n−1multiplications. Process-
ing all q terms in an equation requires q(n − 1)
multiplications and collecting the resulting co-
efficients according to (6) requires q − 1 addi-
tions (A). Hence, processing a single equation is
q(n−1)M+(q−1)A operation and processing
the whole system to complete step 2 of QLCE
requires m[q(n− 1)M + (q− 1)A] basic opera-
tions. Solving (8) in the third step of QLCE will
take additionalmmultiplications andm−1 addi-
tions in both nominator and denominator, and fi-
nally one division, which we shall (for simplic-
ity) account for as multiplication. Thus, solving
(8) requires totally 2[mM+(m−1)A]+M basic
operations. All in all, one QLCE iteration takes

[mq(n − 1) + 2(m + 1)] multiplications

and

[m(q − 1) + 2(m − 1)] additions. (20)

In “big Oh” notation [2] this becomes O(mqn)
multiplications and O(mq) additions, so it fol-
lows that QLCE has linear complexity with re-
spect to all relevant parameters. Consequently,
one iteration of QLS is

O(n[O(mqn)M + O(mq)A])
= O(mqn2)M + O(mqn)A.

(21)

For m = n and q � n, this becomes

O(n3)M + O(n2)A. (22)

Thus, it can be declared that in common situa-
tions QLS is roughly O(n3) algorithm.

Since linear systems are much simpler than
quasi-linear, QLS solves them in an order of

134 A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems

magnitude smaller number of operations. This
is easy to obtain by the analysis analogous to
the preceding one. The only difference is that
q = n and there will be only one multiplica-
tion per term during construction of system (5).
However, with linear systems we should use the
optimized linear solver. Though its bigOh com-
plexity is of the same order as that of general
QLS when applied to linear systems, the asymp-
totic complexity is smaller and can be important
for large size problems. Let us now calculate it
precisely.

Algorithm 4 has preprocessing phase (steps 2
and 3) and iterative phase (steps 4 and 5). In
step 2 all denominators in (8) are computed
and we have already found that this will take
mM + (m − 1)A per variable, that is, step 2 is
n[mM + (m − 1)A]. Initialization of recursion
in step 3 requires (n− 1)nM for n− 1 products
ajxj, then [(n − 1) − 1]A for their summation
and finally nA for subtraction of the sum from
b or totally (n − 1)nM + 2(n − 1)A. On the
whole, the preprocessing phase requires

n[mM+(m−1)A]+(n−1)nM+2(n−1)A
=(nm+n2−n)M+[(m−1)+2(n−1)]A.

(23)

Complexity of iterative phase depends on steps
4a and 4b. Clearly, recursion (18) in step
4a is 2nM + 2nA. In step 4b we only have
to compute nominator, which takes mM and
(m − 1)A. Denominator is looked-up from
the storage prepared in advance, so step 4b is
completed by just one additional division (ac-
counted for as multiplication). Thus, step 4b
is (m + 1)M + (m − 1)A and it follows that
the total complexity of one pass through the for
loop is 2nM + 2nA + (m + 1)M + (m− 1)A or
(2n + m + 1)M + (2n + m− 1)A. Updating all
n variables is, consequently,

(2n2 + nm + n)M + (2n2 + nm − n)A. (24)

According to (23) and (24), the complexity
of preprocessing and iterative phase is simi-
lar, determined by terms (nm + n2 − n)M and
(2n2+nm+n)M, respectively, but iterative term
is a little larger. Of course, the more iterations,
the more important iterative term so in practice
it will be dominant. Therefore, in a common
situation, when m = n, the complexity of linear
solver is roughly 3n2 and it can be declared to
be O(n2) algorithm.

For comparison, the update of a single variable
by Gauss-Seidel method, according to (13), is
precisely (n−1)M+[(n−1)−1]A+M+2A =
nM + nA, so the update of all n variables, i.e.,
one iteration, is n2M + n2A. Because multipli-
cation is much more time consuming than addi-
tion, we can neglect addition term and it follows
that complexity of Gauss-Seidel method is n2 or
about three times less than of the optimized lin-
ear solver.

6. Conclusion

Quasi-linear solver presented in the paper is
computationally one of the simplest algorithms
for solving systems of quasi-linear equations ap-
plying optimization approach but, at the same
time, it shows to be one of the most robust and
effective ones as well. Conceptually, the idea
of the presented algorithm resembles coordinate
descent method [9], but determining only one
variable at a time is all that is common to these
two algorithms. The main difference follows
from the fact that QLS benefits from the spe-
cial form of equations, which eventually leads
to completely different computation. Compar-
isons show that it is as successful as Levenberg-
Marquardt variant of Newton’s method and they
are both more successful than Nelder-Mead al-
gorithm, when dealing with quasi-linear sys-
tems. However, QLSG has three major advan-
tages over Newton’s method when we deal with
quasi-linear systems.

First, it is derivative-free algorithm and as such
it is much simpler (though computing deriva-
tives of quasi-linear equations is not problem-
atic). As the consequence, its second major
advantage is that it can work with systems that
do not have equal number of equations and un-
knowns, which significantly widens its appli-
cability compared to Newton’s method. Fi-
nally, its third advantage is that its computa-
tional engine QLCE “sees” along the whole
line of search direction whereby it can discover
very distant points that reduce rss. This im-
proves the algorithm’s ability to “jump out” of
local optimums and makes it less dependent on
starting point. Moreover, QLCE computes new
point by direct calculation, i.e., it does not need
line-search, which greatly simplifies program

A Derivative-free Algorithm for Finding Least Squares Solutions of Quasi-linear and Linear Systems 135

implementation and, together with simple and
well defined computation of LS solution, re-
duces numerical requirements.

All these advantages have been gained at a rel-
atively low cost that search directions are re-
stricted to directions of coordinate axes and that
we update only one dimension in a single it-
eration. Mutual effect of these restrictions is
prolonged execution compared to LM, but there
is a possible modification that might reduce the
average required number of iterations. Namely,
we can apply some kind of coordinate adapta-
tion, like in adaptive coordinate descent method
[9], and this is certainly one of the main direc-
tions for further development of the QLSG al-
gorithm. However, the presented results show
that, even in its simplest form, QLSG is robust
and effective, which makes it a good choice for
practical purposes.

References

[1] E. K. P. CHONG, S. H. ZAK, An Introduction to
Optimization. Wiley, 3rd Edition, 2008.

[2] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, C.
STEIN, Introduction to Algorithms. McGraw-Hill,
2nd edition, 2003.

[3] Y. DOĞAN, F. ÖRÜCÜ, A. KUT, V. RADEVSKI, Op-
timizing the Equation for a Dataset with Corre-
sponding Attributes by Hybrid Genetic Algorithm.
Proceedings of the ITI 2011 33rd International
Conference on Information Technology Interfaces,
(June 27–30, 2011), Cavtat, Croatia.

[4] N. R. DRAPER, H. SMITH, Applied Regression Anal-
ysis. 3rd Edition, John Wiley & Sons, 1998.

[5] G. H. GOLUB, C. F. VAN VAN LOAN, Matrix Com-
putations. The Johns Hopkins University Press, 3rd
edition, 1996.

[6] N. HLUPIĆ, I. BEROŠ, D. BASCH, A Derivative-free
Algorithm for Solving Quasi-linear Systems. Pro-
ceedings of the ITI 2013 35th International Confer-
ence on Information Technology Interfaces, (June
2013), Cavtat, Croatia.

[7] E.M.T. HENDRIX, B. G.-TOTH, Introduction to Non-
linear and Global Optimization. Springer Science
+ Business Media, LLC 2010.

[8] I. IVANŠIĆ, Numerička matematika. Element, Za-
greb (in Croatian), 1998.

[9] I. LOSHCHILOV, M. SCHOENAUER, M. SEBAG, Adap-
tive Coordinate Descent. Proceedings of the 13th
Annual Conference on Genetic and Evolutionary
Computation GECCO’11, (July 12–16, 2011),
Dublin, Ireland.

[10] C. D. MEYER, Matrix Analysis and Applied Linear
Algebra, SIAM 2000

[11] I. MILLER, M. MILLER, JohnE. Freund’s Mathemat-
ical Statistics with Applications. 7th ed., Prentice
Hall, 2004.

[12] A. MORGAN, Solving Polynomial Systems Using
Continuation for Engineering and Scientific Prob-
lems, SIAM 2009

[13] J. NOCEDAL, S. J. WRIGHT, Numerical Optimiza-
tion. 2nd edition, Springer Science and Business
Media, 2006.

[14] G. A. F. SEBER, A. J. LEE, Linear Regression Anal-
ysis. 2nd edition, Wiley, 2003.

Received: July, 2013
Revised: September, 2013

Accepted: September, 2013

Contact addresses:

Nikica Hlupić
Department of Applied Computing

Faculty of Electrical Engineering and Computing
University of Zagreb

Unska 3
Zagreb 10000

Croatia
e-mail: nikica.hlupic@fer.hr

Ivo Beroš
VERN’ University of Applied Sciences

Trg bana J. Jelačića 3
Zagreb 10000

Croatia
e-mail: ivo.beros@vern.hr

Danko Basch
Department of Control and Computer Engineering
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3

Zagreb 10000
Croatia

e-mail: danko.basch@fer.hr

NIKICA HLUPIĆ received his Ph.D. degree in 2001 from the Faculty of
Electrical Engineering and Computing, Zagreb, Croatia, where he is at
present associate professor at the Department of Applied Computing.
He lectures several undergraduate and graduate courses and his sci-
entific interests include optimization, estimation theory, statistics and
algorithm design.

IVO BEROŠ received his M.Sc. degree in 2001 from the Department
of Mathematics, Faculty of Science, Zagreb, Croatia. At present, he
is a senior lecturer at the VERN’ University of Applied Sciences, Za-
greb, Croatia. His scientific interests include numerical mathematics,
optimization and statistics.

DANKO BASCH is a full time professor in the Department of Control and
Computer Engineering at the Univeristy of Zagreb Faculty of Electrical
Engineering and Computing. He received his PhD and MSc in com-
puter science from the same faculty in 1991 and 2000 respectively. His
research areas include modelling and simulation, modelling languages,
and programming language design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

