
Journal of Computing and Information Technology - CIT 21, 2013, 3, 185–194
doi:10.2498/cit.1002193

185

A New Model for Semiautomatic
Student Source Code Assessment

Emil Stankov, Mile Jovanov, Ana Madevska Bogdanova and Marjan Gusev
Faculty of Computer Science and Engineering, University Ss. Cyril and Methodius, Skopje, Macedonia

Programming courses at university and high school level,
and competitions in informatics (programming), often
require fast assessment of the received programming
tasks solutions. This problem is usually solved by the
use of automated systems that check the produced output
for some test cases for every solution.

In this paper, we present a new model for semiautomatic
student source codes assessment for a given program-
ming task, based on our approach of representation of
the program codes as vectors. It represents a human and
computer collaborative effort. Our research on the use
of these vectors in data mining analysis of the source
codes, with the achieved excellent results on the number
of correctly clustered items, is a solid foundation for the
proposed model. At the end, we present the results of
the preliminary testing of the model.

Keywords: programming code, source code assessment,
code similarity, clustering, human – computer collabora-
tion

1. Introduction

Programming courses at university and high
school level (especially introductory ones) of-
ten include lots of exercises in order to ease the
adoption of the programming language syntax,
and also to help the students develop algorith-
mic way of thinking. Since programming is a
compulsory course in every computer science
educational curriculum, usually lots of com-
puter science students enroll in these courses.
This leads the course lecturers to the problem of
mass number of solutions to exercises that have
to be graded – the assessment can no longer be
done manually in a reasonable amount of time.
For example, at our institution, Faculty of Com-
puter Science and Engineering in Skopje, in
2012, around 600 students enrolled in the first-
year introductory programming course. During

the 12 lecture weeks in the semester, every stu-
dent was required to solve 3 to 5 exercises on a
weekly basis. Cumulatively, this means that ap-
proximately 30000 solutions to exercises have
to be assessed during the semester. Moreover,
it is highly desirable that every set of 3 to 5
exercises is assessed by the end of each week
in which it is presented to the students, in or-
der for the students to be able to continually
keep track of the progress they make in learning
programming.

The need for fast assessment has been perceived
even earlier, in the organization of competitions
in informatics. These competitions were in-
troduced for the first time approximately 40
years ago, with the idea to attract talented young
people to the art of algorithmic thinking and
computer programming. The term “competi-
tion in informatics” usually represents a syn-
onym for competition in algorithmic program-
ming (other types of competitions include ar-
chitecture, design, development, specification,
assembly, testing scenarios, etc.). Nowadays,
the international programming competitions re-
quire submission of program codes – solutions
to specific algorithmic problems, from the par-
ticipants. The main focus of the competitions
is on the design of appropriate algorithms for
solving the problems at hand.

In this paper we present a new model for a semi-
automatic student source codes assessment for a
given programming task. The model represents
a human and computer collaborative effort. The
intention is to offer a better assessment of pro-
gramming solutions than the traditional auto-
mated assessment typically employed at com-
petitions in informatics and in educational en-
vironment.



186 A New Model for Semiautomatic Student Source Code Assessment

The rest of the paper is organized as follows:
in Section 2 we describe the automated source
code assessment performed commonly by the
contemporary grading systems and emphasize
the main problem with this type of assessment.
In Section 3 there is a description of the related
work on source code analysis. In Section 4 we
review our hybrid approach for source code sim-
ilarity detection, presented in [11]. In Section 5
we describe the new model for semiautomatic
source code assessment, and in Section 6 we
elaborate the evaluation of this model and ana-
lyze the obtained results. Finally, in Section 7,
we give a conclusion and some directions for
future work.

2. Contemporary Systems for Automated
Source Code Assessment

In most cases, the competitions in informatics
are based on automated assessment of the sub-
mitted solutions. The automation of the assess-
ment is necessary not only because of the large
amount of solutions, but also in order to have the
results in reasonable time. This is accomplished
by running them on batches of input test cases
and testing correctness of the output by compar-
ing it to the expected output. Additionally, time
and memory limits are usually enforced during
this evaluation process, which allows obtaining
an assessment not only in terms of the correct-
ness of the solutions, but also in terms of their
time and space complexity [8]. Thus, the effi-
ciency of the used algorithms is also taken into
consideration.

The same or slightly similar method can be used
as a solution to the previously mentioned prob-
lem of fast program codes assessment in the
educational environment. There are many ex-
isting systems that are used for this purpose [1],
and the benefits are numerous, as described in
[12].

Automated assessment using test cases can also
provide an environment in which a contestant
(student) can receive feedback during the con-
test (training, exam, etc.). The contestant can
be informed if his/her solution passes the given
tests, or on how many of the test cases it pro-
duces a correct result.

At our institution, we have developed an auto-
mated assessment system that is currently being

used in some courses, called MENDO [5]. It
employs the previously described type of grad-
ing and represents a modern online contest man-
agement system. It has also been successfully
used for organization of the Macedonian na-
tional competitions in informatics for the last 4
years [3]. Similar types of automated grading
systems are used at the International Olympiad
in Informatics [2], [7].

The automated grading of the programming so-
lutions is quite rough and strict. The grade (usu-
ally expressed in terms of number of gained
points) assigned to a particular program may
give a completely wrong impression about how
good (and efficient) is the algorithm that it im-
plements. As an illustration, one possible situ-
ation where this type of automatic assessment
would assign zero points is with a program that,
in essence, represents an implementation of a
complete and 100% correct algorithm for solv-
ing the problem at hand, but uses awrong format
when printing the output data.

The question that we address is: is there an au-
tomated way to determine similarity of a code
(the one that scored low or zero points on the
grading system) to another code (that scored
full score), in order to reconsider the grading
of the first one? Our idea is to use data min-
ing techniques to construct a model that will
lead to better and more equitable evaluation of
programming codes in the future.

3. Related Work on Source Code Analysis

The submissions of the students (solutions to
practice or exam exercises) for a given uni-
versity or high school programming course, or
the submissions of the participants at a partic-
ular programming competition, can be viewed
as pools of program source codes, where each
pool contains source codes that represent so-
lutions to the same algorithmic problem. In
order to be able to apply data mining methods
for the problem under consideration, we have
to extract some knowledge from the input data
(source codes).

Source code analysis is the process of extracting
knowledge about a program from its own source
code. This paradigm has many applications into



A New Model for Semiautomatic Student Source Code Assessment 187

a variety of software engineering tasks, includ-
ing: clone detection, debugging, source code
optimization, source code comparison, reverse
engineering, performance analysis, and many
others. There are many existing software tools
that are used for source code analysis. Most of
them have been designed to make the analysis
for the major purpose of discovering software
plagiarism.

Commonly, the first step of a typical source code
analysis is a construction of an abstract model
of the program that is not programming lan-
guage specific. In many cases, the first model
that is created is the abstract syntax tree (AST)
– a tree where each node is a construct in the
source code. AST is usually used as a base for
creating more complex graph structures (mod-
els) representing various aspects of the source
code. Therefore, different models are used by
different source code analysis algorithms [4].

According to Roy and Cordy [9], source code
similarity detection algorithms can be classified
as algorithms based on:

• Strings: this approach involves searching
for exact textual matches, for example five-
word runs. This is a fast procedure, but has
the disadvantage that it can be easily dis-
turbed (e.g., by renaming identifiers).

• Tokens: this is a similar approach to the one
based on strings, but with the difference that
it uses a lexer to convert the program into to-
kens first. Here, whitespaces, comments and
identifier names are discarded, so the proce-
dure is more robust to simple text replace-
ments. Most academic plagiarism detection
systems are based on this approach, using
different algorithms to measure the similar-
ity between token sequences.

• Parse trees: this approach includes build-
ing and comparing parse trees, which al-
lows detection of higher-level similarities.
For example, tree comparison can normal-
ize conditional statements, and detect equiv-
alent constructs as similar to each other.

• Program dependency graphs (PDGs): in
this approach, a structure called program de-
pendency graph is built. This structure cap-
tures the actual flow of control in a program
and allows much higher-level equivalences
to be detected, but at greater expense in com-
plexity and calculation time.

• Metrics: here, numerical parameters called
metrics are recorded for each program. These
parameters capture “scores” of source codes
according to different criteria, like “number
of for loops” or “number of if statements”.

• Hybrid approaches: combinations of some
of the previously mentioned approaches.

Wehave proposed a newhybrid approach for de-
termining similarity between source codes that
includes the use of data mining methods.

4. Description of Our Hybrid Approach for
Source Code Similarity Detection and
Results of Its Use

Wepresented our newhybrid approach for source
code similarity detection in [11]. Here, we will
give a short overview.

Given a set (pool) of source codes that represent
solutions to the same algorithmic problem, we
perform the following three main steps:

1. We build a parse tree for each of the source
codes under consideration;

2. We extract attributes that represent key char-
acteristics of the source codes by calculating
metrics from the constructed parse trees. We
obtain attribute representations that describe
each source code’s structure numerically;

3. We apply data mining clustering methods on
the dataset formed by these attribute repre-
sentations in order to discover the existence
of similarities among them.

4.1. Determination of the attribute
representation of the source codes

First step of our approach is to describe each
program’s source code by a vector of attribute
values. We have done meticulous analysis, and
proposed large number of attributes that can rep-
resent some of the source code features. We fol-
lowed the principle that the selected attributes
should: (1) be as abstract as possible; (2) ac-
curately describe the original source code. In
order to select the most descriptive vector at-
tributes, we applied a greedy search process.
More precisely, we conducted the experiments



188 A New Model for Semiautomatic Student Source Code Assessment

outlined in the following section using the cho-
sen set and processed the obtained results. In
each of the following iterations, we tentatively
removed a single attribute in the current attribute
set and did the experiments again, this time us-
ing the resulting set. Each evaluation of the
current attribute set produced a numeric mea-
sure (average percentage of correctly clustered
vectors) of the expected performance of that
set. We quantified the effect of removing each
attribute in turn by this measure; we chose the
best candidate for removing, and continuedwith
the next iteration. The entire process was re-
peated until no attribute produced an improve-
ment when removed from the current attribute
set.

The final attribute set contains 62 attributes
and is presented in Table 1. The attributes
are grouped together according to the aspect

of source code’s structure they describe, and
a short description of each respective group is
given.

4.2. The EMAx tool

We’ve created a software tool called EMAx for
the purpose of conducting the first two steps of
the proposed procedure for source code similar-
ity detection (building parse trees and attribute
extraction) [10].

EMAx has been designed to be used as a tool
that provides vector representations of source
codes further used in solving the problem of
source code comparison. The tool has been
tested with real sets of source codes taken from
programming competitions and has proved as

Attributes Description of attribute values

“for”, “ranged for”, “while” Total number of loops (for, while)
“if”, “switch”, “case” Total number of conditional statements (if, switch)
“not nested for”, “nested for 2”,
. . . , “not nested while”,
“nested while 2”,. . .

Number of nested loops on different levels
(for loops nested only inside for loops,
while loops nested only inside while loops)

“not nested if”, “nested if 2”,. . .
Number of nested conditional statements
on different levels (if statements nested
only inside if statements)

“nested for|while 2”,
“nested for|while 3”,. . .

Number of mixed nested loops on different
levels (while loops nested inside for loops,
for loops nested inside while loops)

“1 if inside 1 for/while”,
“2 if inside 1 for/while”,
. . . , “1 if inside 2 for/while”,
“2 if inside 2 for/while”,. . .

Number of conditional statements nested
inside loops on different levels (if statements
nested inside for or while loops)

“1 for/while inside 1 if”,
“2 for/while inside 1 if”,
. . . , “1 for|while inside 2 if”,
“2 for|while inside 2 if”,. . .

Number of loops nested inside conditional
statements on different levels (for or
while loops nested inside if statements)

“function definitions”,
“recursive functions”,
“functions with try block”

Modularity of the program (number of
modules, i.e. functions)

“variables”, “unused variables”,
“1 dim. arrays”, “2 dim. arrays”,. . . Number of different variable identifiers

“classes not derived”,
“classes derived from 1 base class”,
“classes der. from 2 base. . .

Number of classes

“namespace definition” Number of sub-spaces in which the space of
visibility of the program entities is partitioned

“break”, “return”, “continue” Total number of jump statements

“new expression”,
“cast expression”,
“using directives”

Number of other useful expressions

Table 1. Description of attributes used in the source code representation.



A New Model for Semiautomatic Student Source Code Assessment 189

very efficient in performing the task for which
it has been intended. One of the main advan-
tages that the tool offers is that it analyzes the
source codes by simulating each code’s execu-
tion from a given starting point.

The tool takes a set of C/C++ source codes
as input, and generates a “.CSV” file contain-
ing the attribute representations of all the source
codes in that set, one per line. In accordance
with the standard for this file format, the first
line of the generated file contains the attribute
names, and all the data are separated by com-
mas. This format of the output file was selected
to be further processed with the WEKA soft-
ware [6].

4.3. Description of the conducted
experiments

We selected 8 different pools (sets) of program
source codes from the MENDO system. Each
pool contained solutions to a particular pro-
gramming task that were submitted on MENDO
by the participants at one of the Macedonian na-
tional competitions in informatics.

All the programs were written in the C++ pro-
gramming language. Only executable programs
(that compiled without errors) were included in
the pools.

The selected pools contained 676, 449, 171,
141, 273, 231, 94 and 365 source codes, re-
spectively. In the next step, using EMAx, we
obtained the corresponding files that describe
these pools.

Given that our goal was to determine simi-
larity between source codes belonging to the
same pool, we concluded that the most appro-
priate data mining approach would be to seek
for groups of vectors (descriptors of the source
codes) that belong together, i.e. to use clustering
methods.

Intuitively, similar source codes should be grou-
ped in the same cluster, so if we manage to ob-
tain clusters that contain source codes from a
single pool, then this will imply that we have
detected similarity between each pool’s source
codes. Of course, it is expected that each pool
may contain different types of solutions that rep-
resent implementations of different algorithms,

but if each such solution type has many repre-
sentatives (programs) in the pool, then all of
them will be grouped in the same cluster.

In order to conduct the clustering, we formed all
possible combinations of 2, 3, 6, 7 and 8 source
code pools, and saved the respective attribute
representation of each combination in a sepa-
rate file. We obtained, respectively, 28, 56, 28,
8 and 1, files. Then, we applied two appropri-
ate clustering methods (the standard K-Means
and EM algorithms). These methods receive
the number of clusters to be sought as input
(for our problem, this parameter was known in
advance), to produce the required clusters. Fi-
nally, we evaluated the resulting clusters using
the “Classes to clusters” evaluation technique,
described in [13]. For the purpose of conduct-
ing this evaluation, we added a single attribute
to the source code representation. Its value rep-
resents the ordinal number of the actual pool to
which the respective source code belongs. This
attribute played the role of “class attribute” in
the evaluation process.

4.4. Results and analysis

The results from our experiments, presented in
[11], are given in an extended form in Table
2 and Table 3. Table 2 gives the average, the
best and the worst percentage of correctly clus-
tered instances using the K-Means method, for
combinations of different number of pools. Fur-
thermore, the last column of the table shows the
average area under the ROC curve (AUC) for
the clusters found by this method.

Number of
combined

source
code pools

Average %
of correctly
clustered
instances

Best % of
correctly
clustered
instances

Worst % of
correctly
clustered
instances

Average
AUC (Area
under the

ROC curve)

2 88.94% 98.38% 71.65% 0.848
3 79.32% 97.23% 59.56% 0.813
6 57.76% 69.81% 47.45% 0.724
7 55.30% 60.26% 48.30% 0.724
8 55.09% 55.09% 55.09% 0.731

Table 2. Results from the ”Classes to clusters“
evaluation for the clusters found by

the K-Means method.

The results show that we have achieved over
88% average of correctly clustered instances,



190 A New Model for Semiautomatic Student Source Code Assessment

and even over 98% of correctly clustered in-
stances for some combination of 2 pools.

One has to keep in mind that we are talking
about vector representations of solutions for a
given task that are not all correct. Furthermore,
there is a possibility that many different ap-
proaches (algorithms) are employed in different
solutions to the same problem. Hence, 88.94%
average of correctly clustered instances and an
average of 0.848 AUC value are very good and
promising results.

The same statistics for the EM method are
shown in Table 3. The estimated performance
of K-Means doesn’t differ significantly from the
one of EM, and this claim remained true when
different numbers of pools were combined, i.e.
different numbers of clusters were required.
Figure 1 confirms this graphically, by show-
ing the curves of average correctly clustered
instances (source codes) for different numbers
of clusters.

Number of
combined

source
code pools

Average %
of correctly
clustered
instances

Best % of
correctly
clustered
instances

Worst % of
correctly
clustered
instances

Average
AUC (Area
under the

ROC curve)

2 88.24% 98.92% 67.00% 0.854
3 74.65% 96.08% 47.54% 0.791
6 58.08% 67.51% 47.90% 0.732
7 55.16% 58.60% 51.28% 0.714
8 51.71% 51.71% 51.71% 0.703

Table 3. Results from the ”Classes to clusters“
evaluation for the clusters found by the EM method.

Figure 1. The estimated performance of K-Means and
EM expressed in terms of average percentage of

correctly clustered source codes for different numbers of
combined pools (clusters) [11].

Additionally, here we present information on
the average precision and recall values for the
clusters found both by K-Means and EM (Table
4). These data confirm our conclusions.

Figure 1 also shows that the percentage of cor-
rectly clustered instances declines, as the num-
ber of combined different pools rises. Never-
theless, this declination is rather slower than if
we consider the probability of random guess of
the class, when there are 3, 6, 7 or 8 classes.

Number of
combined

source
code pools

Average
precision

(K-Means)

Average
precision

(EM)

Average
recall

(K-Means)

Average
recall
(EM)

2 90.11% 88.48% 88.94% 88.24%
3 80.98% 75.65% 79.39% 75.17%
6 60.06% 56.21% 58.66% 59.27%
7 57.80% 49.65% 56.21% 55.69%
8 60.80% 50.30% 56.50% 51.40%

Table 4. Average precision and recall values for the
clusters found by the K-Means and the EM method.

5. Description of a New Model for
Semiautomatic Student Source
Code Assessment

Based on the results from the previously de-
scribed series of experiments on our approach
for code similarity detection, we have con-
cluded that clustering methods give quite good
results in detecting similarity between source
codes. This has encouraged us to consider the
possibility of applying these methods in seeking
an answer to our main research question – de-
termining similarity of a given code (that scored
low or zero points on a grading system) to an-
other code (that scored full score), in order to
reconsider the grading of the first one.

Let’s assume we are given a pool of source
codes, for which we know the grades assigned
by an automated grading system. More pre-
cisely, for each of the programs in the pool, we
know whether it passes all the test cases or fails
on at least one of them. In order to decide which
codes in the pool under consideration are poten-
tially good solutions (implementations of ap-
propriate algorithms) to the problem for which
they have been written, we propose the follow-
ing algorithm:



A New Model for Semiautomatic Student Source Code Assessment 191

1. Generate the attribute representation of the
pool;

2. Apply datamining clusteringmethods on the
representation in order to form appropriate
clusters of similar source codes within the
pool;

3. For each of the obtained clusters:

• If the cluster doesn’t contain programs that
pass all the test cases, then reject it – none
of the codes that belong to that cluster are
candidates for reassessment;

• If the cluster does contain programs that pass
all the test cases, then all the other programs
(that fail on at least one of the test cases) in
the cluster are candidates for reassessment.

With this algorithm we define a model that in-
volves a joint effort of an automated system and
a human, in order to produce a better assessment
of the students’ work.

The model attempts to offer a quality improve-
ment of the results from the automated as-
sessment. The proposed solution is obviously
slower than the fully automated approach, but
can be used in situations where automated as-
sessment is considered to be very strict (e.g.
students are beginners and/or very young, so it
is necessary to give them better motivation with
some appropriate partial points).

We evaluate the proposed algorithm with the
experiments described in the following section.

6. Evaluation of the Proposed Algorithm

In this section, we describe the experiments that
we have conducted to test the successfulness of
the proposed algorithm, as well as the obtained
results.

6.1. Experiment description

For this series of experiments, we selected 3 dif-
ferent pools of source codes from the MENDO
system. Each pool contained solutions to a con-
crete programming task, submitted on MENDO
by first-year students as part of an introductory
programming course exam held at our institu-
tion. The selected pools contained 96, 70 and
33 source codes, respectively. All the programs

were written in the C programming language.
Like in the previous series of experiments, only
executable programswere included in the pools.

First, an automated assessment of the selected
pools was performed using MENDO. All the
source codes that were not assigned the max-
imum points by the system were subsequently
assessed manually by the teaching assistants, as
part of the course exam. All of the assistants in
question had previously graded more than 1000
programming codes (in their teaching experi-
ence). This provided us with an objective grade
assigned by a professional – data that served as a
way to check the successfulness of the proposed
algorithm.

In the next step, we generated the corresponding
files that describe the pools using EMAx, and
we applied the same two clustering methods
as in the first series of experiments. It should
be noted that for this series of experiments the
required number of clusters was not known in
advance, so a multiple application of the clus-
tering methods was necessary in order to deter-
mine the most appropriate partition for each of
the pools. We experimented by seeking 2, 7 and
10 clusters with K-Means, and by seeking 2 and
10 clusters with EM. Also, for each of the pools
we ran an additional experiment in which we
didn’t supply the number of clusters as parame-
ter to EM – thus letting the method to determine
the appropriate number of clusters on its own.

6.2. Results and analysis

The results obtained by applying the algorithm
for determining candidates for reassessment on
each of the 3 pools of source codes are pre-
sented in Table 5, Table 6, and Table 7, respec-
tively. Here we must emphasize that we use the
expression “incorrectly clustered instances” to
mark those instances that have been assigned to
a cluster which doesn’t contain programs that
pass all the test cases, and have received a solid
grade when assessed manually by the teach-
ing assistants (at least 40% of the total possible
number of points).

Table 5 shows the results for the first pool. The
best results were obtained when the number of
required clusters was 10, regardless of which of
the two clustering methods was applied.



192 A New Model for Semiautomatic Student Source Code Assessment

K-Means EM

No. of clusters 2 7 10 – 2 10
PCI 27 12 10 21 21 17

ICI50% 2 3 4 3 3 3
ICI40% 5 8 9 7 7 8

Table 5. Results from applying the proposed algorithm
on the first pool of programs (96 codes, 25 of them pass
all the test cases). PCI – number of instances assigned to
clusters which contain codes that pass all the test cases
(excluding those that pass all the test cases); ICI50% –

number of incorrectly clustered instances that have
received more than 50% of the possible points when
assessed manually; ICI40% – number of incorrectly
clustered instances that have received more than 40%

of the possible points when assessed manually.

The clusters formed using K-Means suggest
only 10 programs as candidates for reassess-
ment, while the number of candidates suggested
by EM is 17. This means that, for the first
case, the amount of programming solutions that
should be reassessedmanually has been reduced
to 14% using the proposed algorithm for deter-
mining candidates (in the worst scenario, can-
didates for manual assessment would be all the
codes that fail on at least one of the test cases).
For the second case, using EM, the number of
candidates for reassessment has been reduced
to 24%. The benefits for the teachers in both
cases, in terms of the time saved, are extremely
large.

The best results for the other two pools were
also achieved when 10 clusters were required
using any of the two clustering methods, as can
be seen from Table 6 and Table 7.

K-Means EM

No. of clusters 2 7 10 – 2 10
PCI 33 23 22 27 43 24

ICI50% 2 2 2 2 0 2
ICI40% 2 2 2 2 0 2

Table 6. Results from applying the proposed algorithm
on the second pool of programs (70 codes, 27 of them

pass all the test cases).

The benefit for the human evaluators of the sec-
ond pool of programming solutions is that they
have to manually assess 51% (according to K-
Means) or 56% (according to EM) of the so-
lutions that they would have to assess without
using the algorithm for determining candidates.

These percentages for the third pool are both
equal to 38%.

It is interesting to note that the number of clus-
ters found by EM (when applied without sup-
plying this number as its parameter) was 5, 3
and 4, respectively, for the first, second and
third pools. However, the obtained results (in
terms of the ratio PCI versus ICI) in this case
were worse as compared to the case when the
number of clusters supplied to EM was 10, for
each of the pools.

K-Means EM

No. of clusters 2 7 10 – 2 10
PCI 23 14 11 20 29 11

ICI50% 1 3 3 3 0 1
ICI40% 2 5 5 4 0 3

Table 7. Results from applying the proposed algorithm
on the third pool of programs (33 codes, 4 of them pass

all the test cases).

The results from the conducted experiments
confirm that datamining clusteringmethods can
be used for estimating the “potential” of a given
source code – particularly, one that has been
assigned a weak grade by an automated grad-
ing system. Namely, even if the code does not
pass on some or all of the test cases, the methods
can predict whether it potentially represents im-
plementation of a good or approximately good
algorithm for the appropriate problem. In other
words, these methods can very accurately pre-
dict if the program solution under consideration
would receive more than 50% of the total pos-
sible number of points when assessed manually
by a professional human evaluator.

7. Conclusion

In this paper we explained the need for fast
assessment of program source codes that oc-
curs in competitions in informatics and also in
university and high school level programming
courses. Given that automated assessment can
result in very rough and strict grades, we pro-
posed a different model that can improve the
quality of grading. The solution involves data
mining methods.



A New Model for Semiautomatic Student Source Code Assessment 193

Wepresented the results of experiments on com-
bined sets of solutions to different programming
tasks, with the intention to prove that data min-
ingmethods can give good results in detection of
code similarity. Based on the results achieved in
correctly clustering the different task solutions,
we presented a new model for semiautomatic
student source code assessment, with human –
computer collaboration. The presented results
from the preliminary testing of the model are
very promising, and we can conclude that the
model can be a strong base for a new approach to
the assessment of student programming codes.

Future work that should be done is to improve
the model in the sense of building a complete
environment with a user friendly interface that
will allow easy employment of the model.

Acknowledgments

The research presented in this paper is partly
supported by the Faculty of Computer Science
and Engineering, at Ss. Cyril and Methodius
University in Skopje.

References

[1] P. IHANTOLA, T. AHONIEMI, V. KARAVIRTA, O. SEP-
PALA, Review of Recent Systems for Automatic
Assessment of Programing Assignments. In: Pro-
ceedings of the 10th Koli Calling InternationalCon-
ference on Computing Education Research. New
York, NY: ACM, 2010.

[2] INTERNATIONAL OLYMPIAD IN INFORMATICS.
http://www.ioinformatics.org

[3] M. JOVANOV, B. KOSTADINOV, E. STANKOV, M. MI-
HOVA, M. GUSEV, State Competitions in Infor-
matics and the Supporting Online Learning and
Contest Management System with Collaboration
and Personalization Features MENDO. Olympiads
in Informatics, an International Journal, 7 (2013),
42–54.

[4] R. KIRKOV, G. AGRE, Source Code Analysis – An
Overview. Cybernetics and Information Technolo-
gies, 10(2) (2010), 60–77.

[5] B. KOSTADINOV, M. JOVANOV, E. STANKOV, A new
design of a system for contest management and
grading in informatics competitions. In: ICT Inno-
vations 2010, Web proceedings, pp. 87–96.

[6] Machine Learning Group at the University of
Waikato, New Zealand, WEKA 3: Data Mining
Software in Java, (2012).

[7] S. MAGGIOLO, G. MASCELLANI, Introducing CMS:
AContestManagement System.Olympiads in Infor-
matics, an International Journal, 6 (2012), 86–99.

[8] M. MARES, Perspectives on Grading Systems.
Olympiads in Informatics, an International Journal,
1 (2007), 124–130.

[9] C. ROY, J. CORDY, A Survey on Software Clone
Detection Research. School of Computing, Queen’s
University, Canada, 2007.

[10] E. STANKOV, M. JOVANOV, A. BOJCHEVSKI, A.
MADEVSKA BOGDANOVA, EMAx: Software for
C++ Source Code Analysis. Olympiads in Infor-
matics, an International Journal, 7 (2013), 123–
131.

[11] E. STANKOV, M. JOVANOV, A. MADEVSKA BOG-
DANOVA, Source Code Similarity Detection by Us-
ing Data Mining Methods. In: Proceedings of the
35th International Conference on Information Tech-
nology Interfaces (ITI 2013), pp. 257–262. IEEE,
2013.

[12] D. TRUSSO HALEY, P. THOMAS, A. DE ROECK, M.
PETRE, Seeing the Whole Picture: Evaluating Au-
tomated Assessment Systems. ITALICS e-journal of
the Learning and Teaching Subject Network for In-
formation and Computer Science (LTSN-ICS), 6(4)
(2007), 203–224.

[13] I. WITTEN, E. FRANK, M. HALL, Data Mining:
Practical Machine Learning Tools and Techniques.
3rd Edition. Morgan Kaufman Publishers, 2011.

Received: August, 2013
Revised: September, 2013

Accepted: September, 2013

Contact addresses:

Emil Stankov
Faculty of Computer Science and Engineering

University Ss. Cyril and Methodius
st. Rugjer Boshkovikj 16

Skopje
Macedonia

e-mail: emil.stankov@finki.ukim.mk

Mile Jovanov
Faculty of Computer Science and Engineering

University Ss. Cyril and Methodius
st. Rugjer Boshkovikj 16

Skopje
Macedonia

e-mail: mile.jovanov@finki.ukim.mk

Ana Madevska Bogdanova
Faculty of Computer Science and Engineering

University Ss. Cyril and Methodius
st. Rugjer Boshkovikj 16

Skopje
Macedonia

e-mail: ana.madevska.bogdanova@finki.ukim.mk

Marjan Gusev
Faculty of Computer Science and Engineering

University Ss. Cyril and Methodius
st. Rugjer Boshkovikj 16

Skopje
Macedonia

e-mail: marjan.gusev@finki.ukim.mk



194 A New Model for Semiautomatic Student Source Code Assessment

EMIL STANKOV is a PhD student at the Faculty of Computer Science
and Engineering, University “Ss. Cyril and Methodius”, in Skopje. He
is a member of the Executive Board of the Computer Society of Mace-
donia and has actively participated in the organization and realization
of Macedonian national competitions and Olympiads in Informatics
since 2009. His research interests are in the field of intelligent systems,
machine learning and the application of CAA techniques in teaching
programming as well as in programming competitions. He has par-
ticipated in more than ten domestic and international conferences with
paper presentations, and in several workshops and schools.

MILE JOVANOV is a teaching and research assistant at the Faculty of
Computer Science and Engineering, University “Ss. Cyril and Method-
ius”, in Skopje. He is President of the Computer Society of Macedo-
nia and has actively participated in the organization and realization of
Macedonian national competitions and Olympiads in Informatics since
2001. He has finished his PhD thesis on online collaborative ontology
building in e-learning environment in 2013. He is the author of over
thirty scientific papers in the area of computer science published in the
reviewed conference proceedings and international scientific journals.
His research interests are in the fields of semantic web, algorithms and
programming, digital presentation of national heritage, e-learning and
ICT in education.

ANA MADEVSKA BOGDANOVA is an associate professor at the Faculty of
Computer Science and Engineering, University “Ss. Cyril and Method-
ius”, in Skopje. She is a member of the Computer Society of Macedonia
and has participated in the organization and realization of Macedonian
national competitions and Olympiads in Informatics. Her research in-
terests are in the fields of intelligent systems, bioinformatics, machine
learning and ICT in education. She is the author of over forty scientific
papers, chapters in the books on computer science and presentations for
popularization of informatics.

MARJAN GUSEV is a professor at the Faculty of Computer Science and
Engineering, University “Ss. Cyril and Methodius”, in Skopje. His
research interests are in the fields of parallel processing, computer
networks, Internet technologies, e-business, mobile and wireless ap-
plications. He has authored/co-authored 18 books, 51 publications
in reviewed international journals and 91 articles in reviewed interna-
tional conference proceedings. He has participated in more than 86
conferences, workshops and seminars.


