
Journal of Computing and Information Technology - CIT 22, 2014, 1, 31–44
doi:10.2498/cit.1002310

31

Reusable Prime Number Labeling
Scheme for Hierarchical Data
Representation in Relational Databases

Serhiy Morozov1, Hossein Saiedian2 and Hanzhang Wang1

1 University of Detroit Mercy, Detroit MI, USA
2 University of Kansas, Lawrence KS, USA

Hierarchical data structures are important for many com-
puting and information science disciplines including data
mining, terrain modeling, and image analysis. There
are many specialized hierarchical data management sys-
tems, but they are not always available. Alternatively,
relational databases are far more common and offer su-
perior reliability, scalability, and performance. However,
relational databases cannot natively store and manage
hierarchical data. Labeling schemes resolve this issue by
labeling all nodes with alphanumeric strings that can be
safely stored and retrieved from a database. One such
scheme uses prime numbers for its labeling purposes,
however the performance and space utilization of this
method are not optimal. We propose a more efficient and
compact version of this approach.

Keywords: hierarchical data structures, data labeling
schemes, relational database systems, prime number
labeling, performance evaluation

1. Background

Real-world information often consists of multi-
ple pieces that can be grouped together. Usually,
such an abstract relationship is modeled as a hi-

erarchy, e.g., business organization, family an-
cestry, or military chain of command. The most
common application of a hierarchical model is
the file system on any modern operating sys-
tem. It allows thousands of files to be neatly
organized into appropriate folders, subfolders,
etc. These hierarchical relationships provide an
interesting insight into how information is or-
ganized. Therefore, a demand exists for data
management systems that can store, retrieve,
and search such data.

One way to supply this demand is to use a
specialized hierarchical data management sys-
tem. In fact, many of such systems successfully
model complex trees and support a variety of
query languages, e.g., XQuery, XPath, DOM,
and SAX [19, 10]. Figure 1 shows an exam-
ple XML document and the visualization of the
hierarchy it represents. However, such special-
ized systems offer only hierarchical functional-
ity and lack the maturity, scalability, and per-
formance of relational database systems. Fur-
thermore, relational databases are more popu-

<?xml version="1.0" encoding="UTF-8"?>
<a>

<c></c>
<d></d>

<e></e>
<f>

<g></g>
</f>

a

b e f

gc d

Figure 1. Example XML document.

32 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

lar, prevalent, and have a wider support base.
Much of the existing data is stored in relational
databases, so adding another data management
system is often redundant.

A major distinction between hierarchical and
relational data management is the way each
method locates data. Hierarchical systems are
best suited for gradual refinement of the search
criteria or limiting the search to a specific cate-
gory, subcategory, etc. Due to their advanced in-
dexing ability, relational database systems excel
at searches based on fixed criteria. However, no
system can provide both kinds of functionality.
In fact, this is why modern operating systems
generate a file system index in addition to main-
taining all files in a hierarchy. As an alternative,
attempts have been made to add the hierarchical
functionality to an existing relational database.

Many papers discuss the automation of creat-
ing a relational database schema to match the
structure of a hierarchy. This provides the best
utilization of resources, but it may not be ap-
plicable in cases where the structure of a tree
is unknown [29, 11]. In fact, the limited accep-
tance of this approach has been due to the need
to redesign the relational schema each time the
hierarchy changes [26]. As a result, we focus
on relational database hierarchical datamanage-
ment solutions that can accommodate trees of
any shape.

1.1. Recursive Expansion Model

The recursive expansion model uses labels that
point to each other to reveal the parent-child
relationships of a tree. Each record contains a
self-label and a label of a direct parent. It is the
most natural way to store hierarchical data, es-
pecially for procedural programming language
developers who are used to the concept of re-
cursion. In fact, storing hierarchical data by
shredding it into rows of a table is still a widely
used technique [25, 7]. We refer to this model
as Edge in our experiments.

The Edge model is compact because it uses con-
secutive integers as labels. Adding new and
modifying existing nodes is simple as each node
inherits the self-label of a direct parent as its
parent-label. This allows quick sibling queries
because all siblings share the same parent-label.

However, reusing deleted labels is not common,
so larger labels may be used unnecessarily in a
frequently modified hierarchy.

Furthermore, the recursive nature of this model
limits its applications. For instance, descendant
searches in deep hierarchies require intermedi-
ate results to be stored in temporary tables for
further recursive queries and multiple self-joins
[27, 23]. Additionally, ancestor queries require
a separate database request for each generation
[21, 6]. Database communication is a major
performance bottleneck, so a model that relies
on multiple database requests to satisfy a single
query is inefficient. Therefore, the Edge model
is best suited for large and frequently changing
trees.

1.2. Materialized Path Model

The materialized path model is designed specif-
ically for ancestor determination queries. The
ancestor information is encoded in the node’s
label, which eliminates the need to make ad-
ditional database requests. The path from a
node to the root is usually enumerated with
numbers of specified length or encoded with
delimited strings [24]. For instance, an ab-
solute UNIX path /var/log/error log shows
that error log file resides in log directory un-
der var directory. We refer to this model as Path
in our experiments.

The Path model performs sibling and descen-
dant searches by comparing the common parts
of node labels. It often uses pattern matching
for descendant searches, which is slow and in-
efficient. Numerical, as opposed to character,
labels are more effective because numeric com-
parisons are quicker and simpler than pattern
matching. However, even with numeric labels,
this model has difficulty distinguishing between
direct children of a node and descendants of the
same node because they all share a part of the
label.

Path approach can quickly add new nodes to a
tree, but doing so significantly increases label
size. Each new node inherits the parent’s path
and appends its own label to it, thus making
the label size grow linearly with the depth of
the tree. This problem has been discussed in a

Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases 33

number of articles attempting to improve its per-
formance and reduce label growth [18, 17, 15].
Furthermore, if a parent node changes its label,
all descendants must be relabeled [9, 2]. There-
fore, the applicability of this model is limited to
shallow and static hierarchies.

1.3. Nested Set Model

The nested set model is designed specifically
for descendant searches because node labels are
chosen such that they can contain other labels.
It is easy to determine the relationship between
nodes by checking whether one label contains
another [28, 16, 12]. For instance, nodes may be
labeled with a number range expressed as two
numbers. These numbers represent the begin-
ning and the end of a range. The parent-child
relationship is then determined by computing if
one number range contains another. For exam-
ple, the node with 3 : 8 range is considered a
parent of all labels starting with 4 or more and
ending with 7 or less. We refer to this model
as Range in our experiments. The Range ap-
proach is the fastest way to do a descendant
search, which is difficult for other schemes to
accomplish. The performance advantage of this
method is strictly in descendant searches, as it
is computationally easy to locate all numbers
within a range. However, there is no simi-
lar advantage in ancestor searches because it
is difficult to search all the ranges that contain a
specific number [5]. This disadvantage affects
performance, but it is not the main reason why
this model fails in many applications.

Frequently changing trees require a consider-
able number of label adjustments, as the changes
stretch or shrink the number ranges. Adding a
node to a densely populated tree requires ad-
justing all of its ancestors and possibly some
of its siblings. Alternatively, failure to relabel

a tree results in a label collision, when one la-
bel is supposed to represent two distinct nodes.
A number of papers have addressed this issue
through reusable labels, extra space for each la-
bel, and using numeric fractions/alphanumeric
labels [30, 22, 14, 4]. Therefore, the applica-
bility of this model is limited to deep and static
hierarchies.

2. The Prime Number Model

Since classic approaches are limited in their ap-
plications, a lot of research has been directed to-
ward creating a more universal labeling scheme.
Wu et al. [3] introduce a new way to label a hier-
archy with prime numbers. The prime number
labeling scheme (PNL) labels each node with
two numbers: a unique prime number called
‘self-label’ and another number called ‘parent-
label’. Each parent-label is divisible by all of
its ancestors’ self-labels because the label is a
product of all ancestor self-labels. Adding a
node to such a tree is simple. The self-label is
assigned a value of any unused prime number
and the parent-label is a product of this prime
with a parent-label of the parent-node [3]. Fig-
ure 2 shows the prime number labeling table
and the hierarchy it models.

This labeling scheme determines the relation-
ship between two nodes by comparing their la-
bels. If self-label of node X divides node Y’s
parent-label, then node X is considered to be
a parent of node Y. Likewise, all nodes whose
parent-labels are divisible by prime P are de-
scendants of the node with P as a self-label. A
modulo function can automate this process. It is
not computationally intensive and can quickly
operate on very large numbers.

The main disadvantage of the PNL scheme is
that each prime number may only be used once.
This helps establish the uniqueness of the labels,

a[2:1]

b[3:2] e[11:2] f[13:2]

g[17:26]c[5:6] d[7:6]

<a> self: 2 parent: 1
 self: 3 parent: 2
<c> self: 5 parent: 6
<d> self: 7 parent: 6
<e> self: 11 parent: 2
<f> self: 13 parent: 2
<g> self: 17 parent: 26

Figure 2. Prime number labeling scheme.

34 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

but also causes each subsequent parent-label to
increase. This shortcoming is especially ap-
parent in deep hierarchies, which require many
prime numbers to be multiplied. Li et al. com-
pared this scheme to two variants of the nested
set model and a Dewey prefix scheme [13].
The PNL scheme required considerably more
storage and had a much longer response time.
Härder, et al. also performed benchmark exper-
iments with PNL scheme modeling trees up to
37 levels deep and a maximum fanout of sev-
eral millions [20]. The authors concluded that
PNL scheme was not the most optimal solution
for such complicated hierarchies. We propose a
new version of this labeling scheme that solves
its main drawback.

3. A Reusable Prime Number
Labeling Scheme

The original prime number labeling scheme
does not allow self-labels to be reused. This
causes parent-labels to growexponentially,which
limits model capacity, increases model size, and
reduces performance. In fact, label size limita-
tions dictate the maximum possible depth and
fanout of the model. This issue has been iden-
tified by the authors and confirmed by indepen-
dent research [20, 13, 3]. A number of optimiza-
tions have been developed to improve the short-
comings of the original prime number labeling
scheme. For instance, Preuveneers and Berbers
recommended decreasing the label size by label-
ing each node with two different parent-labels
that can be factorized into a single set of par-
ent self-labels [8]. We propose a reusable prime
number labeling scheme (rPNL) that natively
recycles deleted labels and produces a more
compact and responsive hierarchical model.

The proposed labeling scheme uses factoriza-
tion to derive ancestor information. According
to the Unique Factorization Theorem, every nat-
ural number greater than one can be written as
a unique product of prime numbers. We use
natural numbers as parent-labels and primes as
self-labels. Given a node, factorization of its
parent-label reveals the list of its ancestors. De-
coding the rPNL label would take integer factor-
ization, with an estimated time complexity be-
tween polynomial and exponential. However,
local factorization of small numbers is consid-
erably faster and more efficient than performing
multiple database requests. Figure 3 shows the
rPNL table as well as the hierarchy it models.

If the model reuses prime numbers through-
out the hierarchy, repeating self-labels will ap-
pear. Therefore, our method records the or-
der of the ancestors’ self-labels using the si-
multaneous congruence (SC) number. The SC
number encodes the order of primes such that
SC = i mod pi. The Chinese Remainder The-
orem states that there exists a number n that
satisfies k simultaneous congruencies

n = n1 mod m1

n = n2 mod m2

. . .

n = nk mod mk

if and only if ni = nj mod gcd(mi, mj) for all
i and j. The solution n is then congruent to
the least common multiple of all mi, n = n
mod lcm(m1, m2, . . .mk)1. Because the self-
labels are prime, the least common multiple is
their product and their greatest common divisor
is one. This means that a simultaneous con-
gruence number is guaranteed to exist for any
combination of primes.

a[2:1:0]

b[3:2:0] e[5:2:0] f[7:2:0]

g[3:14:8]c[5:6:4] d[7:6:4]

<a> self: 2 parent: 1 sc: 0
 self: 3 parent: 2 sc: 0
<c> self: 5 parent: 6 sc: 4
<d> self: 7 parent: 6 sc: 4
<e> self: 5 parent: 2 sc: 0
<f> self: 7 parent: 2 sc: 0
<g> self: 3 parent: 14 sc: 8

Figure 3. Reusable prime number labeling scheme.

1 mod refers to the modulus operator, often represented as %; gcd stands for the greatest common divisor; lcm refers to the least
common multiple.

Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases 35

There is an interesting pattern in rPNL node
labels. The CS number of the child nodes is
congruent to the parent’s CS number modulo
the parent’s parent-label. For example, a node
with a self-label=7 and ancestor path of 2.3.5
has a parent-label=30 and CS number=23. The
child of this node, with a path 2.3.5.7 would
have a parent-label=210 and CS number=53.
It is evident that 53 mod 30 = 23, which is
also the parent node’s CS number. The proof of
this pattern is simple. Assuming that XC is the
CS label of the child, XP is the CS label of the
parent, and i is the generation of the node, the
following must be true for all prime numbers
on the parent’s path, XC mod pi = i = XP
mod pi or XC mod pi = XP. Since the last
formula holds true for all prime numbers on the
parent’s path, it must hold true for their product
as well, XC mod

∏
pi = XP. This property

of rPNL labels may be used for both direct child
and descendant node searches.

To avoid label collision, three rules must be en-
forced. First, only unique prime numbers may
be allowed on each individual path, because it
is impossible to have two simultaneous congru-
encies with the same modulo and different re-
mainders. Second, only unique self-labels may
be allowed among siblings, so we can uniquely
identify them. Third, each self-label must be
larger than the level at which it resides, because
otherwise the SC number would have multiple
meanings. For each node in a hierarchy, self-
labels and parent-labels are assigned similarly to
the original PNL scheme. However, according
to the three rules, self-labels are not required to
be globally unique primes. In fact, this scheme
ensures that each self-label is the smallest pos-
sible prime that is bigger than its position on the
path, unique within the given path, and unique
among the siblings (see Appendix 1 listing for
get next rpnl prime). These rules reduce the
label size growth that is so problematic with the
PNL scheme. They also force deleted labels
to be automatically reused, which makes this
labeling scheme more efficient.

4. PNL and rPNL Label Size

The major advantage of the proposed scheme
is that it may reuse labels. In fact, the num-
ber of possible reusable labels is close to n!,
where n is hierarchy depth. Because a different
prime is used for a node at each level, there will
be n! possible combinations that result in the
same parent-label. The actual number will be
slightly less because certain small primes may
not be used at the level that is greater than the
prime itself.

A typical relational database can store integers
up to 64 bits long and record numbers as big
as 1.84E+19. This influences the number of
generations any branch may have. The biggest
primorial (n#), a product of all prime numbers
less than or equal to n, that fits into the allocated
space is 47#=6.15E+17. This means that there
are 15 primes that may be used to describe the
longest branch. Table 1 outlines the availability
of the 15 positions relative to each prime.

Assuming that the prime position must be less
than the prime itself, there are nine primes that
are greater than 15. They may be organized in
any order, which results in 9! = 362, 880 com-
binations. The first six primes are smaller, so
some positions may be unavailable. There are
1 ∗ 1 ∗ 2 ∗ 3 ∗ 6 ∗ 7 ∗ 9! = 91, 445, 760 total pos-
sible combinations. The difference between the
PNL and rPNL schemes is that the PNL scheme
may have only one 15 level path. It also must
be the first path, assuming depth-first approach.
The rPNL scheme may have over 91 million of
such paths. Figures 4 and 5 shows the label
growth of both schemes. The proposed scheme
produces smaller labels and is less affected by
the depth and fanout of the tree.

Table 2 shows the total label size of the differ-
ent labeling schemes for the running example.
The example tree contains only seven nodes so

Prime 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Possible Positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Unsuitable Positions 14 13 11 9 5 3 0 0 0 0 0 0 0 0 0
Available Positions 1 1 2 3 6 7 9 8 7 6 5 4 3 2 1

Table 1. rPNL self-label availability.

36 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

Figure 4. PNL label size.

Figure 5. rPNL label size.

the difference between labeling schemes is not
obvious. The rPNL scheme uses three labels,
while PNL uses only two. However, the parent
label of the PNL scheme grows significantly
faster in a larger hierarchy because the self la-
bels are not reused. As a result, we anticipate
our model to be more compact than PNL.

Edge Path PNL Range rPNL

Size in Bits 28 34 41 41 49

Table 2. Example tree total label size comparison.

The reciprocal function essentially finds a so-
lution to the equation a ∗ x = 1 mod b, given
a and b. We have implemented a less efficient
version of this algorithm for simplicity. The
current version has a time complexity of O(b).
However, a more optimal version exists with a
time complexity of O(log a) [1]. The simulta-
neous congruence function accepts d primes,
computes their product, and a reciprocal for

each prime. The entire operation would have
a time complexity of O(

∑
log(pi)) operations.

Furthermore, the number of primes is bound by
the depth of the hierarchy d. Therefore, the
time complexity of labeling a single node is
O(

∑d
i=0 log(pi)) and O(n ∗ ∑d

i=0 log(pi)) for
n nodes. The summation will have at most
d components with all primes pi less than or
equal to pn. All primes pi are bound by pn ≤
n∗ ln(n∗ ln(n)) for n ≥ 6. Therefore, log(pi) ≤
log(n ∗ ln(n ∗ ln(n))) and the time complexity
of labeling a tree with n nodes on d levels will
be O(n ∗ d ∗ log(n ∗ log(n ∗ log(n)))). We know
that log(n) ≤ n and n ∗ log(n) ≤ n2, therefore
log(n ∗ log(n)) ≤ log(n2) ≤ n. Applying the
same argument again, we get log(n ∗ log(n ∗
log(n))) ≤ log(n2) which makes the time com-
plexity of our algorithm O(n ∗ d ∗ log(n)).

5. PNL and rPNL Benchmarks

To evaluate the proposed method, we used a
hierarchy with considerable depth and fanout.
The XML source of the CNN homepage has
multiple nested tables, which add to the depth
of the tree, and multiple links, which add to the
fanout. It is a complex tree with an unbalanced
structure, i.e., body tag contains the majority of
the data whereas head element has only a few
children. The CNN homepage contained 840
elements with 444 paths. Maximum depth and
fanout were 14 and 20 respectively. Figure 6
shows the hierarchy we modeled.

Figure 6. CNN tree visualization.

Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases 37

Hardware resources also play an important role
in a model’s performance. The experimental
system configuration is outlined in the table be-
low.

CPU Intel Pentium D 2.66GHz

RAM 2GB
Database MySQL v5.0.45

Code PHP v.5.2.3 DOM/XML enabled

Table 3. System configuration.

Additionally, network connection speed may
have a great impact on the performance of cer-
tain schemes. If a scheme relies on client side
computation, which results in very few queries
being sent to the database, then network la-
tency effects are minimal. For example, the
proposed scheme will produce a single query
for most tasks, provided that a small list of
prime numbers is available to the client. Other-
wise, network delaywill occurwith every query.
For instance, Edge approach relies on recursive
queries being sent to the server. If the network
connection is slow, this model’s performance
will suffer. Finally, the database scheme itself
affects the performance of all labeling schemes.
We did not implement any indexing or other op-
timizations in order to test the true performance
of each labeling scheme.

5.1. Model Size

When labeling the CNN tree, our scheme gen-
erated parent-labels that were 15 orders of mag-
nitude smaller and took up less than half the
space of PNL labels. The PNL scheme cre-
ated labels up to 9.91E+25 that would require
as many as 87 bits. The biggest parent-label
in our reusable prime number labeling scheme
was only 9.91E+10, which takes up only 37
bits. In addition to a much smaller parent-label
that is much easier to factor, the rPNL scheme
used only 27 prime numbers to label the entire
tree instead of 840 unique primes required by
the PNL scheme.

Table 4 compares model sizes of different label-
ing schemes and the original XML document.
The size is measured in the minimum number

of bytes required by each model. The Edge ap-
proach produced the most compact representa-
tion, followed by the Range labeling scheme.
The rPNL scheme was better than the PNL
method. Our method produces a model size that
is comparable to traditional approaches, yet is
smaller than the original PNL scheme.

XML Edge Path PNL Range rPNL

CNN 41,550 82,376 98,760 115,144 82,376 98,760

Table 4. CNN tree table sizes.

Note that we measured size of the hierarchy by
comparing the size of the entire database table
to size of the raw XML file. All tables have
the same number of rows, with some columns
smaller than others. MySQL storage engine
may have padded/modified the data for more
optimal retrieval, which is why different label-
ing schemes take up the same amount of space
for different labels.

5.2. Tree Labeling Time

We recorded the time it took each scheme to
label the CNN tree. Figure 7 shows that Range
labeling scheme was the slowest of all models.
The Edge and Path models work quickly be-
cause new label generation does not require any
computation or database requests. The rPNL
scheme was a little behind the Edge and Path
models because it had to request a new label
from the database before each new node was

Figure 7. Overall tree labeling time.

38 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

saved. However, considering that it used only
27 primes to label the entire tree, the database
requests could be replaced by a cached list of
primes, which would dramatically improve per-
formance. The PNL scheme took 48 seconds,
and was removed from the graph to preserve the
scale. Our scheme is comparable to traditional
approaches and is over 20 times faster than the
original PNL method.

In fact, it can model complex hierarchies, with-
out slowing down. Figure 8 shows a more de-
tailed view of the time it takes to label the CNN
tree. Both PNL and rPNL schemes have strict
rules about label uniqueness. The PNL scheme
requires global uniqueness, which results in in-

creasing delays, as the tree gets bigger. The
rPNL scheme requires only local uniqueness,
so very few records are referenced with every
new node. The two labeling schemes are very
close at the beginning because only a few labels
must be checked for uniqueness. However, as
the model grows, the number of labels increases
and the PNL scheme must check them all. The
rPNL scheme checks only the nodes on the path
to the root and sibling nodes. As a result, the
delay is relatively constant.

Figure 9 shows a similar comparison between
rPNL and Edge scheme. The Edge labeling
scheme has no drawbacks that would slow it
down as it progresses down the tree, there-

Figure 8. PNL vs. rPNL CNN tree modeling.

Figure 9. Tree labeling with rPNL and edge.

Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases 39

fore each node insertion should take the same
amount of time and result in a straight-line
graph. The small discrepancy in the Edge graph
is due to physical interference, hardware re-
source availability, hard disk access times, etc.
The proposed scheme differs from the Edge ap-
proach only slightly whenever the tree’s depth
increases. For example, depth of the tree goes
from 4 to 13 and back to 4 between the 10th
and 40th nodes. In fact, on average rPNL is
68% slower than the fastest possible labeling
scheme.

5.3. Direct Children Lookup

The goal of this experiment was to traverse
the entire tree from top to bottom, one level
at a time. For each node in a tree, only its
direct children were located. The results are
displayed in Figure 10. The Edge model per-
formed best as it involved fast number lookups.
The PNL scheme also used numerical lookups,
but it took some time to generate the necessary
labels. The Range approach performed well be-
cause it is best suited for descendant searches
with a small correction for depth in this case.
The Path method was the slowest because reg-
ular expression matching is complex and re-
source intensive. The rPNL scheme was only
10% behind PNL. Unlike PNL, rPNL parent-
labels are not globally unique, so fast number
lookups were not possible. Direct child lookups

Figure 10. Top-Down tree traversal.

are usually singular, which means that, on aver-
age, the proposed method will be 48% behind
the fastest available method.

5.4. Descendant Search

The descendant search is the most common ap-
plication of labeling schemes. In fact, it is a fre-
quent practice to search only a specific branch
of the hierarchy. Figure 11 shows the results of
the descendant search experiment. The desired
nodes were located on different depths between
5 and 11 generations. Each algorithm inspected
71 paths and located 135 matching records. The
Range descendant search produced the best re-
sults because the only function needed to iden-

Figure 11. Descendant search.

40 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

tify the resulting nodes was a simple number
comparison. The Path scheme was also able
to successfully locate all matching nodes, but it
was the slowest one. The rPNL scheme located
the same nodes in considerably less time. Both
prime number based models had similar results
on smaller depths. However, the PNL scheme
was not able to successfully complete this ex-
periment, as it failed to compute the relation-
ships among nodes at such extreme depths. The
Edge implementation is not present on the graph
to preserve scale. It used recursive queries to
traverse the sub-tree, analyzing each node indi-
vidually to determine if it matched the criteria.
As a result, it took 0.09471 seconds to complete.
This is almost forty times as slow as the rPNL
scheme.

5.5. Update Flexibility

Tree updates are one of the most complex oper-
ations available. They usually require a number
of nodes to be relabeled in order to reflect an-
cestor removal/addition and branch movement.
The Edge labeling scheme is best suited for this
purpose because only a single node needs to be
updated. The Range model is also quite flex-
ible because it assumes frequent updates. For
the Path labeling scheme, each individual up-
date is not very complex. Even though string
operations are resource intensive, they are guar-
anteed to work at all depths of the tree. The
PNL scheme can accommodate various types
of updates as well. However, due to extremely
large labels that are common in deep hierar-
chies, some of the updates might not be able
to propagate through the entire sub-tree. Our
scheme cannot move an entire sub-tree within
a hierarchy because there is no reliable way to
ensure that the prime numbers used in the des-
tination branch are not also used in the sub-tree
being moved. The only way to accomplish this
would be through individual node relabeling.
Therefore, our scheme is best suited for trees
that do not move its branches.

6. Conclusions

The purpose of hierarchical data modeling is a
quick determination of relationships among the
nodes in a tree. Many specialized hierarchical

data management solutions exist, but they may
not be always available. On the other hand,
relational databases are more common and are
extensively used in many organizations. We
researched the different ways to model hierar-
chical data in relational databases. To do so
efficiently, a labeling scheme that supports fast
and computationally light queries must be in
place. Many labeling schemes exist, but no one
is best for all applications.

We propose a labeling scheme that utilizes the
unique characteristics of prime numbers to en-
code the node position in a hierarchy. Our
scheme allows labels to be reused throughout
the tree. This keeps the label size minimal and
improves performance. Table 5 outlines the re-
sults of the experiments performed (lower num-
ber represent better ranking). Overall, rPNL
scheme is not the best performer. However, it
is better than PNL in four out of six categories.
Furthermore, rPNL lacks the disadvantages that
make traditional approaches specialized, e.g.,
the relabeling issue with nested sets model, the
intermediate results issue with recursive expan-
sion model, and the update performance issue
of materialized path model. The experiments
show that our scheme is capable of quickly
and efficiently modeling complex hierarchies
as well as searching them effectively. The only
disadvantage of our scheme is the difficulty of
moving branches within a tree. However, this
kind of functionality is rare. In fact, the Edge
method is designed specifically for such hierar-
chies. Therefore, our labeling scheme is a good
general-purpose approach that performs well in
most common applications.

Edge Path PNL Range rPNL

Model Size 1 3 5 2 4
Insert Performance 1 2 5 4 3
Direct Children Lookup 1 5 3 2 4
Descendant Search 4 3 5 1 2
Ancestor Determination 3 2 5 1 4
Update Flexibility 1 3 4 2 5

Table 5. Experiment summary.

Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases 41

References

[1] D. E. KNUTH, The Art of Computer Program-
ming, Vol. 2: Seminumerical Algorithms. Addison-
Wesley, 1997.

[2] M. YOSHIKAWA, T. AMAGASA, T. SHIMURA, S. UE-
MURA, XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using Relational
Databases. ACM Transactions on Internet Technol-
ogy, 1(1) (2001), 110–141.

[3] X. WU, M.-L. LEE, W. HSU, A Prime Number La-
beling Scheme for Dynamic Ordered XML Trees.
In Proceedings of the 20th International Confer-
ence on Data Engineering (ICDE’04), (2004), pp.
66–78.

[4] F. WEIGEL, K. U. SCHULZ, H. MEUSS, The BIRD
Numbering Scheme for XML and Tree Databases –
Deciding and Reconstructing Tree Relations Using
Efficient Arithmetic Operations. In Proceedings of
the 3rd International Conference on Database and
XML Technologies, (2005), pp. 49–67.

[5] V. TROPASHKO, Nested Intervals Tree Encoding in
SQL. ACM Special Interest Group on Management
of Data, 34(2) (2005), 47–52.

[6] W. M. SHUI, F. LAM, D. K. FISHER, R. K. WONG,
Querying and Maintaining Ordered XML Data Us-
ing Relational Databases. In Proceedings of the
16th Australasian Database Conference, (2005),
pp. 85–94.

[7] J. SHANMUGASUNDARAM, K. TUFTE, C. ZHANG,
G. HE, D. DEWITT, J. F. NAUGHTON, Relational
Databases for Querying XML Documents: Limita-
tions and Opportunities. In Proceedings of the 25th
International Conference on Very Large Data Bases
(VLDB’99), (1999), pp. 302–314.

[8] D. PREUVENEERS, Y. BERBERS, Prime Numbers
Considered Useful: Ontology Encoding for Ef-
ficient Subsumption Testing, 2006.

[9] P. E. O’NEIL, E. J. O’NEIL, S. PAL, I. CSERI, G.
SCHALLER, N. WESTBURY, ORDPATHs: Insert-
Friendly XML Node Labels. In Proceedings of the
2004 ACM SIGMOD International Conference on
Management of Data, (2004), pp. 903–908

[10] C. MATHIS, T. HÄRDER, K. SCHMIDT, Storing and
Indexing XML Documents Upside Down. Com-
puter Science – R&D, 24(1-2) (2009), 51–68.

[11] M. MANI, D. LEE, XML to Relational Conversion
Using Theory of Regular Tree Grammars. In Pro-
ceedings of the VLDB 2002 Workshop EEXTT and
CAiSE 2002 Workshop DTWeb on Efficiency and Ef-
fectiveness of XML Tools and Techniques and Data
Integration over the Web-Revised Papers, (2002),
pp. 81–103.

[12] Q. LI, B. MOON, Indexing and Querying XML Data
for Regular Path Expressions. In Proceedings of the
27th International Conference on Very Large Data
Bases (VLDB’01), (2001), pp. 361–370.

[13] C. LI, T. W. LING, M. HU, Reuse or Never Reuse the
Deleted Labels in XML Query Processing Based
on Labeling Schemes. In Proceedings of the 11th
International Conference on Database Systems for
Advanced Applications (DASFAA’06), (2006), pp.
659–673.

[14] C. LI, T. W. LING, QED: A Novel Quaternary En-
coding to Completely Avoid Re-Labeling in XML
Updates. In Proceedings of the 14th ACM Interna-
tional Conference on Information and Knowledge
Management, (2005) Bremen, Germany, pp. 501–
508.

[15] C. WALLACE, Strategies for Encoding XML Doc-
uments in Relational Databases: Comparisons and
Contrasts, 2006.

[16] A. A. KHAING, N. L. THEIN, A Persistent Labeling
Scheme for Dynamic Ordered XML Trees. Web
Intelligence, 2006, pp. 498–501

[17] H. JIANG, H. LU, W. WANG, J. X. YU, XParent: An
Efficient RDBMS – Based XML Database System.
In Proceedings of the 18th InternationalConference
on Data Engineering, (2002), pp. 335–336.

[18] H. JIANG, H. LU, W. WANG J. X. YU, Path Mate-
rialization Revisited: An Efficient Storage Model
for XML Data. Australasian Database Conference,
(2002).

[19] T. HÄRDER, C. MATHIS, Key Concepts for Native
XML Processing. From Active Data Management to
Event-Based Systems and More, (2010), pp. 1–19.

[20] T. HÄRDER, M. P. HAUSTEIN, C. MATHIS, M. WAG-
NER, Node Labeling Schemes for Dynamic XML
Documents Reconsidered. Data Knowledge Engi-
neering, 60(1) (2007), 126–149.

[21] D. FLORESCU, D. KOSSMANN, Storing and Query-
ing XML Data Using an RDBMS. Bulletin of the
Technical Committee on Data Engineering, 22(3)
(1999), 27–34.

[22] M. DUONG, Y. ZHANG, LSDX: A New Labeling
Scheme for Dynamically Updating XML Data. In
Proceedings of the 16th Australasian Database
Conference, (2005) Darlinghurst, Australia, pp.
185–193.

[23] M. M. DAVID, ANSI SQL Hierarchical Processing
Can Fully Integrate Native XML. ACM Special In-
terest Group on Management of Data, 32(1) (2003),
41–46.

[24] E. COHEN, H. KAPLAN, T. MILO, Labeling Dynamic
XML Trees. Symposium on Principles of Database
Systems, (2002).

[25] J. CELKO, Joe Celko’s SQL for Smarties: Trees and
Hierarchies. Morgan Kaufmann Publishers Inc.,
San Francisco, 2004.

[26] R. CATHEY, S. M. BEITZEL, E. C. JENSEN, D.
A. GROSSMAN, O. FRIEDER, Using a Relational
Database for Scalable XML Search. The Journal of
Supercomputing, 44(2) (2008), 146–178.

42 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

[27] D. BRANDON, Recursive Database Structures. Jour-
nal of Computing Sciences in Colleges, 21(2)
(2005), 295–304.

[28] T. BÖHME, E. RAHM, Supporting Efficient Stream-
ing and Insertion of XML Data in RDBMS. In
Proceedings of the Third International Workshop
on Data Integration over the Web, (2004) Riga,
Latvia.

[29] M. ATAY, A. CHEBOTKO, D. LIU, S. LU, F. FOTOUHI,
Efficient Schema-Based XML-to-Relational Data
Mapping. Information Systems, 32(3) (2007), 458–
476.

[30] T. AMAGASA, M. YOSHIKAWA, S. UEMURA, QRS: A
Robust Numbering Scheme for XML Documents.
In Proceedings of the 19th InternationalConference
on Data Engineering, (2003).

Received: December, 2013
Revised: May, 2014

Accepted: May, 2014

Contact addresses:

Serhiy Morozov
University of Detroit Mercy

Detroit MI
USA

e-mail: morozov.sergey@gmail.com

Hossein Saiedian
University of Kansas

Lawrence KS
USA

e-mail: h.saiedian@ku.edu

Hanzhang Wang
University of Detroit Mercy

Detroit MI
USA

e-mail: wangha2@udmercy.edu

SERHIY MOROZOV is currently an assistant professor at the Mathemat-
ics, Computer Science, and Software Engineering department at the
University of Detroit Mercy. He teaches undergraduate and graduate
courses in software engineering and serves on the software engineering
assessment committee. He is currently involved in the recommender
systems research, but his other interests include data mining and Web
development. Prior to his academic career, Serhiy worked as a Web de-
veloper for over 5 years. He received a BA degree from the Westminster
College in 2005, MS degree from the University of Kansas in 2007, and
PhD from the University of Kansas in 2011. Serhiy is a member of the
Institute of Electrical and Electronics Engineers (IEEE) and a member
of the Association for Computing Machinery (ACM).

HOSSEIN SAIEDIAN (Ph.D., Kansas State University, 1989) is currently
the director of IT undergraduate and graduate degree programs and an
associate chair and a professor of software engineering at the Depart-
ment of Electrical Engineering and Computer Science at the University
of Kansas (KU) and a member of the KU Information and Telecom-
munication Technology Center (ITTC). His career includes 27 years of
research and teaching in software engineering, over 160 publications,
several research fundings, as well as an array of industrial consulting
and training courses. He has won a variety of research and teaching
awards and was ranked among the top-10 software engineering scholars
by the Journal of Systems and Software. He has served as the confer-
ence general, program chair, track chair and/or committee member for
many of the prestigious IEEE-CS and ACM conferences. Saiedian has
over 150 publications on a variety of topics on computing but primarily
on software engineering and has supervised the work of more than 65
Ph.D. and Master’s students.

HANZHANG WANG is a software engineering graduate student at theUni-
versity of Detroit Mercy. He received his undergraduate degree in Com-
puter Information Systems from the same school in 2011. Hanzhang
is currently involved in testing and data management research projects.
He also serves as a technical co-founder at a local start-up, specializing
in mobile application development. In the past, Hanzhang received the
2014 Mathematics and Software Engineering Graduate Student of the
Year award from the University of Detroit Mercy and won the 1st place
at the Chinese National Olympiad in Informatics in 2006.

Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases 43

Appendix 1: The Next-Prime Algorithm

Below please find various components of get next rpnl prime algorithm.

Listing 1: PNL
1 <?php
2 include "get_next_pnl_prime.php";
3
4 // load xml file into the DOM tree
5 $tree = new DOMDocument;
6 $tree ->preserveWhiteSpace = false;
7 $tree ->load(’tree.xml’);
8
9 pnl($tree ->documentElement);
10
11 function pnl($node , $parent = 1)
12 {
13 $self = get_next_pnl_prime ();
14
15 echo "<".$node ->nodeName." >\tself: ".$self."\tparent: ".$parent."\n";
16
17 // proceed with the first child (if any), with a longer parent label
18 if($node ->firstChild)
19 pnl($node ->firstChild , $parent*$self);
20
21 // proceed with the next sibling , with the same parents label
22 if($node ->nextSibling)
23 pnl($node ->nextSibling , $parent);
24 }
25 ?>

Listing 2: Get Next PNL Prime
1 <?php
2 function get_next_pnl_prime ()
3 {
4 static $index = 0;
5 $primes = array (2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79);
6
7 return $primes[$index ++];
8 }
9 ?>

Listing 3: rPNL

44 Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

Listing 4: Simultaneous Congruence Library
1 <?php
2 // Calculate the multiplicative inverse of a number.
3 // i.e, find x in the equation a*x mod b = 1
4 // this is only possible when a and b are coprime
5 function reciprocal($a , $b)
6 {
7 $answer = 0;
8 $a = $a % $b; // reduce a mod b if necessary
9
10 // find the smallest (positive or negative) x
11 for($i=1; $i <=$b/2; $i++)
12 {
13 $product = $a * $i;
14 if($product % $b == 1)
15 return $i;
16 elseif(-$product % $b == (-$b+1))
17 return -$i;
18 }
19 return $answer;
20 }
21
22 // Calculate the simultaneous congruence number , given a sequence of primes
23 function get_sc($parents)
24 {
25 $sc = 0; // Simultanous Congruence (SC)
26
27 $N = 1; // product of all parent labels
28 foreach($parents as $prime)
29 $N = $N * $prime;
30
31 // apply Chinese Remainder theorem
32 foreach($parents as $position=>$prime)
33 {
34 $n_i = $N/$prime;
35 $reciprocal = reciprocal($n_i , $prime);
36 $sc = $sc + $position*$n_i*$reciprocal;
37 }
38
39 $sc = $sc % $N; // reduce the number if necessary
40 if($sc <0)
41 $sc = $sc + $N; // make sure the answer is positive
42
43 return $sc;
44 }
45 ?>

Listing 5: Get Next rPNL Prime
1 <?php
2 // get the next available prime that has not yet been used by any of
3 // the parents or siblings and is bigger than the current node’s generation
4 function get_next_rpnl_prime($parents , $sibling_offset = 0)
5 {
6 $primes = array (2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79);
7 $index = 0;
8
9 // prime must be greater than its generation
10 while(count($parents)>$primes[$index])
11 $index ++;
12
13 // prime may not already be used as parent label
14 while(in_array($primes[$index], $parents))
15 $index ++;
16
17 // prime must be different from existing siblings
18 $index = $index + $sibling_offset;
19
20 return $primes[$index];
21 }
22 ?>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

