
Journal of Computing and Information Technology - CIT 22, 2014, 4, 251–265
doi:10.2498/cit.1002422

251

A Parallel Hyper-heuristic
Approach for the Two-dimensional
Rectangular Strip-packing Problem

Istvan Borgulya
Faculty of Business and Economics, University of Pecs, Hungary

In this paper, we present a parallel hyper-heuristic
approach for two-dimensional rectangular strip-packing
problems (2DSP). This is an island model with a special
master-slave structure, and in all the islands we run
a memetic algorithm-based hyper-heuristic (HH). The
basic technique of this HH is a memory-based evolution-
ary technique, the “extended virtual loser” (EVL). The
memory-based technique memorises the past events, e.g.,
past successes of the evolutionary process or bad values
of the variables; thus, we can influence the operations of
the evolutionary algorithms using this memory. The EVL
technique learns the bad values of the variables based
on the worst solutions of the population and computes
probabilities to control the mutation steps. With the help
of the EVL technique, we can use a mutation-omitting
recombination operator and obtain a learning mechanism
for the selection of heuristics. In the HH, the selection of
the low-level heuristics is modified with mutations based
on the EVL technique using a local search. The island
model achieved good performance. The test instances
show that the proposed algorithm is efficient for the
rectangular strip-packing problem.

Keywords: rectangular strip-packing, hyper-heuristic,
memetic algorithm, memory-based technique, island
model

1. Introduction

In the 2DSP, we have a set of n rectangular
items with wi widths and hi heights, where
i = 1, 2, . . . , n. The goal is to pack all the items
without overlap into a strip of width W such
that the height of the packing is minimised. The
packing problem can be specified with orienta-
tion and guillotine constraints. We will regard
the 2DSP variant with a fixed orientation and
without a guillotine cut.

The 2DSP belongs to cutting and packing prob-
lems that have several industrial applications,

such as garment manufacturing, sheet metal
cutting, furniture making, and shoe manufac-
turing, and also applications in logistics. The
2DSP is NP-hard (Garey and Johnson 1979).
Many exact, heuristic and meta-heuristic algo-
rithms have been published to solve it. Usually,
a combination of different heuristics can give
better solutions than a single heuristics. It is
a complex task to determine the best algorithm
including the operators and heuristics to use. In
this planning process the HHs can help. A HH
is a search method that works in the heuristic
space (using only limited information from the
problem solution space) selecting or generating
good heuristics and then applying them to solve
the problem. In the last decade, HH methods
were also used for the solution of the 2DSP.

In this paper, we are interested in HH methods
and we developed a HH for the 2DSP. Our mo-
tivation was to build a HH algorithm using a
special learning technique and to show the ap-
plication of this HH. The learning technique of
this HH is a memory-based evolutionary tech-
nique, the EVL technique (Borgulya 2006).
The memory-based technique memorises the
past events, e.g., past successes of the evolu-
tionary process or bad values of the variables;
thus, we can influence operations of the evolu-
tionary algorithms using thismemory. TheEVL
technique learns the bad values of the variables
based on the worst solutions of the population
and computes the probabilities to control the
mutation steps. If we use the EVL technique
in the EA, we can use mutations that omit the
recombination operator and obtain a learning



252 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

mechanism for the selection of heuristics in a
HH (Borgulya 2006, 2008).

For the HH we use a memetic algorithm (MA);
Mas are hybrid evolutionary algorithms (EA)
incorporating a local search (LS) process. In
this MA-based HH, we apply a mixture of three
placement heuristics which are modifications
of earlier placement heuristics and use place-
ment strategies and improving procedures that
are different from the earlier ones. The HH
uses a set of mutation heuristics and a set of
LSs for the solution. Selection of the mutation,
LS and placement heuristics are modified with
the mutations based on the EVL technique using
a local search. For better results, we also use
parallel computing. We apply an island model
(Borgulya 2010), and in all the islands, we run
the MA-based HH. To the best of our know-
ledge, this model is the first to present parallel
HH for the 2DSP.

Thus, our contribution is a new parallel HH al-
gorithm for the 2DSP. The key features of this
contribution are the following:

• We propose a parallel MA-based HH for
2DSP. This is an island model, and the HH
uses EVL-based mutations and local search
to control the application of the heuristics
and select other heuristics.

• Wepropose three placement heuristicswhich
are modifications of the BF and BL heuris-
tics. All new heuristics use placement strate-
gies and improving procedures that are dif-
ferent from the earlier ones.

• Our algorithm is efficient for the rectangular
strip-packing problem.

The rest of this paper is organised as follows.
Section 2 gives a summary of the methods of
the 2DSP and the methods of HHs. Section 3
gives a description of the island model used.
Section 4 presents the new MA-based hyper-
heuristic for the 2DSP, gives a description of
the EVL technique, as well as of the operations
and characteristics of the algorithm; and it also
gives examples for the individuals and opera-
tors. Section 5 presents the low-level heuristics
used. The computational results are reported in
Section 6, and the conclusions are summarised
in Section 7.

2. Related Works

2.1. Exact, Heuristic and Meta-heuristic
Methods for 2DSP

We find exact, heuristic and meta-heuristic al-
gorithms to solve the 2DSP. The first exact al-
gorithm was a linear programming approach
(Gilmore and Gomory 1961). Tree search-
based algorithms were published for the guil-
lotine and non-guillotine versions (Christofides
and Whitlock 1997). Some authors used vari-
ants of the branch and bound technique (e.g.,
Martello et al. 2003; Arahori et al. 2013; Bo-
schetti and Monatelli 2010). We can use these
methods to solve only small 2DSP instances
within a reasonable time.

Heuristic algorithms can find the solutions
quickly, but do not guarantee to provide the
global optimum. The most important heuris-
tic group, constructive heuristics, use various
strategies for the packing of the items. An im-
portant point is how they choose the next item
for placement. They can choose the next item
from a fixed sequence of the items or, dynami-
cally, from the sequence for placement. A fixed
ordered sequence is used for the best known
placement heuristic: the “bottom up, left jus-
tified” (BL) heuristic (Baker et al. 1980). BL
first sorts the items according to their areas and
then starts with each item from the top-right
corner. Then, it slides the item as far as pos-
sible to the lowest location and then, as far as
possible to the left of the strip. There are more
improved versions of BL (e.g., Hopper and Tur-
ton 2001). The “best fit” (BF) heuristic (Burke
et al. 2004) dynamically chooses the items. BF
repeats two operations until all items are placed;
it searches for an available space as low as pos-
sible and then places the item that fits the space
best. An improved version of BF is the “bidi-
rectional best-fit” heuristic (Özcan et al. 2013).
Additional heuristics are the squeaky wheel op-
timisation (Burke et al. 2011), the shacking pro-
cedure (Wauters et al. 2013) and a combination
of constructive heuristics with other methods,
e.g., BF and simulated annealing (Burke et al.
2004).

We can use the usual meta-heuristic methods
for the 2DSP. Meta-heuristics usually give se-
quences of the items for other heuristics to use.
The most frequently used meta-heuristics are



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 253

simulated annealing (SA), the tabu search (TS)
and the genetic algorithm (GA) (e.g., Jakobs
1996; Faina 1999; Burke et al. 2011; Thomas
and Chaudhari 2014). The methods with best
results are usually hybrid methods that can use
combinations of meta-heuristics, LSs, place-
ment heuristics or improving procedures (e.g.,
Jakobs 1996; Yang et al. 2013; Wei et al. 2011;
Iori et al. 2003). Some heuristics use other
solutions for the improvement. The reactive
GRASP (Alvarez-Valdes et al. 2008) involves
a constructive phase and a subsequent iterative
improvement phase.

2.2. Hyper-heuristic Methods

The HH is “a search method or learning mech-
anism for selecting or generating heuristics to
solve computational search problems” (Burke et
al. 2013). The HH works in the heuristic space
selecting or generating good heuristics and ap-
plies them to solve the problem. It uses only
limited information from the problem solution
space. If the HH selects heuristics, it selects one
or more heuristics from a low-level heuristic set
in every step of the HH algorithm. The low-
level heuristics are usually mutation operators,
local search procedures, and other constructive
heuristics. If the HH generates heuristics, it
uses genetic programming (GP) to build new
heuristics.

The HH selects or generates heuristics; in both
cases, we can use constructive and improvement
techniques. The constructive techniques con-
struct the solution step-by-step, with low-level
heuristics; the improvement techniques change
only small parts of the solution. Selection meth-
ods differ between the two techniques. Con-
structive techniques use various methods to se-
lect appropriate heuristics, e.g., EAs, TSs, and
classification systems. The selection mecha-
nism in the improvement techniques is divided
into two parts: a heuristic selection method and
a move acceptance criterion. The heuristic se-
lectionmethod can select heuristics randomly or
it can select heuristics using a learning mecha-
nism. The move acceptance criterion, which is
based on the result, accepts or rejects the new
solution.

Most HHs work with one solution (single-point
search). However, there are a few HHs that
workwithmultiple solutions (population). These

are generally improvement techniques and are
built based on GA, ACO, or PSO, for example,
(detailed descriptions of the HH methods are
available in Burke et al. 2013).

In the following, we describe three HHs for the
2DSP:

• Garrido and Riff (2007) developed a con-
structive, GA-based HH. Individuals of a
population are sequences of low-level heuris-
tics. The low-level heuristic set is four place-
ment heuristics, and the individuals are se-
quences of these low-level heuristics with
ordering, rotation and repeating information.
In a generation, it uses roulette wheel selec-
tion, one-point crossover and three mutation
operators to generate descendants. It con-
structsmultiple solutions in every generation
and it accepts the descendants (the descen-
dants constitute a new population).

• The HH of Burke et al. (2010) is a GA with
an improvement technique and works with
a population of the solutions together with
the information about the heuristics. The
low-level heuristic set includes three place-
ment heuristics with four placement strate-
gies. The individuals are permutations of
items; a set of candidate heuristics, together
with probabilistic information, is attached
to each item of the individual. For every
item, the algorithm uses roulette-wheel se-
lection to choose a heuristic from the candi-
date set in the packing process. The GA ap-
plies crossover and mutation operations on
the permutation of items to generate descen-
dants, and a learning mechanism updates the
probabilities of applying heuristics and/or
modifies the candidate heuristic set accord-
ing to the result of the descendant. The algo-
rithm accepts the descendants (the descen-
dants constitute a new population).

• The HH of Nguyen et al. (2012) is a GP-
based HH that automatically generates pro-
grams as new placement heuristics. It is
similar to GP in Burke et al. (2010). The in-
dividual is a program that can use variables
which store important data on the placement
and influence the result (e.g., the slot height
and width, the width and height of the item,
the difference between the slot and item
widths). To improve the results, the gen-
erated heuristics also include the statistics



254 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

from previous packing solutions, which al-
low the evolved heuristics to iteratively cor-
rect the mistakes made in previous place-
ment decisions. Based on this statistics,
the GP calculates the average penalty of the
item, which indicates the difficulty of plac-
ing. In each placement step, the heuristic
will calculate the score for each combina-
tion of items, allocation and slot (together
with the penalty), and the combination with
the highest score will be applied for the
next placement. The algorithm accepts the
new heuristics (they constitute a new popu-
lation).

2.3. Parallel Methods

Parallel processing is a useful tool for reducing
runtimes and improving the quality of meta-
heuristics. In most applications of parallel pro-
cessing, the parallel meta-heuristics are imple-
mented using a master–slave or an islandmodel.
For cutting and packing problems, there are also
parallel solutions. For instance, for bin pack-
ing, circles packing, and 2D cutting problems,
we find parallel processing beneficial. There
are also a few parallel HHs for timetabling and
scheduling (Rattadilok et al. 2005) and for real
parameter optimisation (Biazzini et al. 2009).

3. The Island Model

The islandmodel (Borgulya 2010) uses amaster-
slave structure with a centralised scheme in
which slave processors execute the evolutionary
process and periodically send their best partial
results to a master process. The master process
stores partial results in a common migration set
(MS) and then randomly chooses individuals
from the MS, one after another for every slave
and sends them to the slaves.

The island model can work with np parallel pro-
cessors (e.g., 2, 4, 8 or 16), and the given EA
runs on every parallel processor. The parallel
process will be controlled with the frequ and
mignumb parameters. Let EPi be the evolu-
tionary process on the ith slave processor with
Pi population. frequ determines the communi-
cation frequency; after frequ iterations, every
slave sends migrating individuals into the MS.

Every EPi sends the mignumb number of in-
dividuals to the MS, and these select the best
individuals for migration. The master process
randomly selects mignumb individuals from MS
for every EPi, and each population Pi obtains
these individuals from MS (The master process
selects the individuals for Pi randomly, except
for the earlier migrant individuals from Pi). Ev-
ery EPi replaces the worst individuals with the
incoming ones in Pi.

We simulated the island model in one proces-
sor and did not examine the parallel environ-
ment characteristics in a network. To determine
the cost, we computed only the running time,
which also includes the communication time.
Naturally, we considered all parallel processes
as only one process time, which belonged to the
longest process.

In our parallel HH approach (PMAHH), the
MA-based HH (MAHH) runs as an evolution-
ary process in this island model.

4. Our Hyper-heuristic Algorithm

4.1. The EVL Technique

Our MAHH uses the EVL technique in differ-
ent mutation operations. Mutation operators
of MAHH select another low-level mutation
heuristic, another low-level local search heuris-
tic and other placement heuristics in a few po-
sitions of the placement heuristics list. Among
the low-level mutation heuristics for the solu-
tion, there are also two heuristics that use mu-
tation based on the EVL (see Sections 4.2 and
5.3).

The principle of theEVL is as follows (Borgulya
2006). Let us consider a generic EA, and sup-
pose that the individual has l variables, each
having k discrete values. Notice that the ECM
(explicit collective memory) is a k × l matrix
that stores and learns the relative frequencies of
different values of the variables. This matrix
is updated throughout the evolution procedure,
using some of the worst performing individuals.

Let ECMgen
ij be the collected relative frequency

of the ith values on the jth position (variable)
until the genth generation. We can update the
elements of the ECM matrix

ECMgen+1
ij = (1 − α) ECMgen

ij + αΔECMij



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 255

where ΔECMij is a relative frequency of the ith
value on the position j based on the worse indi-
viduals of the genth generation and α denotes
some relaxation factor (e.g., α = 0.2). We up-
date ECM periodically, every knth generation
(e.g., kn = 10). The computation of ΔECMij
goes on as follows:

• we take 20% of the worst individuals from
the population;

• we count how many times the ith value oc-
curs on position j in the worst individuals
(i = 1, 2, . . . , k; j = 1, 2, . . . , l)

• we divide the ΔECM matrix by the number
of worst individuals.

We use the ECM matrix to estimate the proba-
bility of the mutation. Let X be an individual,
and let z be the value of the jth variable in indi-
vidual X (Xj = z). To determine the probability
of mutating the jth variable in individual X, we
use the formula

prj = 1 −

∣
∣
∣
∣
∣
∣
∣
∣
∣

ECMgen
zj

k∑

i=1
ECMgen

ij

− aj

∣
∣
∣
∣
∣
∣
∣
∣
∣

where aj is the following: if B is one of the
best individuals, then if z = Bj then aj = 1 else
aj = 0.

4.2. The Memetic Algorithm-based
Hyper-heuristic

OurMAHHuses an improvement technique and
workswith a population. The individual has two
parts: a permutation of n items and a set of the
low-level heuristics used. We acquired a new
solution by applying these low-level heuristics
from an earlier individual. We define muta-
tion operations and LS for the heuristics part of
the individual. Mutation is based on the EVL
technique; thus, in the algorithm, there is no
separated learning mechanism.

MAHH is a steady-state MA-based HH. It uses
a two-stage algorithm structure to speed up con-
vergence and to produce higher-quality results.
The first stage is a quick “preparatory” stage that
is designated to improve the quality of the initial
population. The second stage is a steady-state
MA that searches for better solutions.

For certain tasks, the algorithmmight ”get stuck”
at one of the local optima. To enable escape to-
ward a potential global optimum, the algorithm
generates new, additional individuals. A new
individual is also a descendant and can help to
improve capability and speed of the algorithm
to find the global optimum. Thus, in the second
stage, new descendants are periodically inserted
in the population until the maximum size of the
population is reached.

Algorithm 1 shows the main steps of MAHH
and Figure 1 shows how it works. Parameters
of the algorithm are the following:

tmax – the maximum size of the population.
t – the size of the population in the first stage.
itt – the number of generations in the first
stage
kn – the algorithm is controlled in every knth
generation.
timeend – the limit of the running time.
tp – parameter of truncation selection.
gp, rp – parameters of the condition of the
Restart procedure.
LSn, LSmax, rep, prun1, prun2 – parameters
of the low-level local search heuristics.
Hn – parameter of the LSH local search.
Imax – parameter of the placement heuris-
tics.

The operations and the characteristics are as fol-
lows:

Input. The algorithm reads the instance and the
values of the parameters (these are described
and given in the parameter selection section).

Individuals. Every individual of population P
is a pair of the permutation of the n items and a
set of heuristics Ij = (Sj, Hj) j = 1, 2, . . . , |P|,
where Sj is the permutation of the items and Hj
is the list of the low-level heuristics used. In
the list, we distinguish three groups: mutation
heuristics, local search heuristics and placement
heuristics. The Hj list of heuristics is (MSj,
LSj, PLj1, PLj2,. . . ,PLjn), where MSj is a mu-
tation heuristic on the permutation, LSj is a lo-
cal search heuristic on the permutation and the
PLj1, PLj2, . . . , PLjn heuristics are the place-
ment heuristics; there is one placement heuris-
tic attached to every position of the permutation
(see Section 5).

Initial population. In the initial population,
the algorithm generates five individuals where



256 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

Algorithm 1. The main steps of MAHH

Input: the instance, the values of the parameters.
Initialize the individuals,the ECMs matrices.
/* First stage */
Do itt times

Generate a descendant randomly.
Accept descendant according to the move acceptance criteria.
In every knth generation update ECMs. Filter.

od.
/* Second stage */
Repeat

Do kntimes
Select a parent.
Mutations of the low level heuristics.
Apply the low level heuristics.
LS on the low level heuristics.
Accept descendant according to the move acceptance criteria.

od
If (t< tmax) then t=t+1 fi
Apply LS procedures on the last descendant.
Accept descendant according to the move acceptance criteria.
Apply LS procedures on the best individual.
Accept individual according to the move acceptance criteria.
Update ECMs. Filter, Restart.

until running time>timeend
end

items of the permutation are ordered using vari-
ous criteria (decreasing order: by height, height
and width, perimeter, area and by width and
height) and the Hj sets are generated randomly.
Other individuals are generated randomly.

Fitness function. The fitness function is defined
on the permutation and it is the height of the
packed items on the strip.

Selection operator. MAHH selects individual Ij
based on truncation selection. In this selection,
only the best tp percentage of the population is
considered a potential parent.

Mutation operators. MAHH applies appropri-
ate mutations for the three groups of the heuris-
tics in Hj. All mutations use the EVL technique
with different ECMMS, ECMLS and ECMPL
matrices:

• Mutation of MSj. The ECMMS is a 4 × 1
column matrix; every mutation heuristic has
a row in the matrix. The mutation opera-
tor selects another heuristic with the highest
prj probability. The algorithm applies the
mutations with 0.5 probabilities.

• Mutation of LSj. The ECMLS is a 7 × 1
column matrix; every local search heuristic
has a row in ECMLS. The mutation operator
selects another local search with the highest
prj probability. The algorithm applies the
mutations with 0.5 probabilities.

• Mutation of the list of the placement heuris-
tics. The ECMPL is a 3 × n matrix. Every
placement heuristic has a row, and every po-
sition on the list has a column in ECMPL.
The mutation operator first chooses a ran-
dom i position on the list of the placement
heuristics. Next, it chooses another heuristic
for this position with the highest pri proba-
bility. (MAHH applies this mutation opera-
tor twice in a sequential manner). The algo-
rithm applies the mutations with 0.5 proba-
bilities.

Local search. For the 2DSP, we use three dif-
ferent placement heuristics, named HP1, HP2
and HP3. For the list of placement heuristics in
the individuals, we define a local search, named
LSH. LSH is a complex local search. In the
first step, it constructs new sequences of the
placement heuristics. If the application of a se-



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 257

quence improves the result, it will be the new
sequence of the placement heuristics in the indi-
vidual. The generated sequences are the follow-
ing: with ph probability, LSH takes the HP1 on
every position; otherwise, the HP2 or HP3 are
taken with equal probabilities. Nine sequences
are generated with the following ph values: 0.1,
0.2. . .0.9. Construction of the nine sequences

is repeated five times. In the second step, LSH
modifies the sequence of the placement heuris-
tics. At a random position, it changes the heuris-
tic randomly to a different one. If the applica-
tion of the sequence improves the result, the
modified sequence will be the new sequence of
the placement heuristics in the individual. This
modification is repeated Hn times.

Figure 1. The flowchart of MAHH.



258 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

Filter, Restart. To speed up the convergence,
the algorithm uses Filter and Restart proce-
dures. The Filter procedure filters and deletes
the weak individuals which are members of the
neighbourhood of a better individual (individ-
uals Ik and Ij are neighbours if the Hamming
distance dH (Sk, Sj) < 3). If the fittest solution
did not change in the last gp generations, the
Restart procedure deletes the weakest solutions
(rp proportion of the population).

Move acceptance criterion. The move accep-
tance criterion is a special variant of the crowd-
ing technique and it helps separate the local and
global optima. This crowding technique com-
pares the descendant with the former solutions
(or the parent) based on similarities in the Sj
permutations. In the first stage, the descendant
may replace (is accepted) the most similar of
the former solutions if the descendant is better
(similarity is based on the Hamming distance);
in the second stage, the descendant may replace
(is accepted) the parent if the descendant is bet-
ter. If the descendant is an additional individual
or if there are fewer individuals than the size
of the population (after Restart or Filter pro-
cedures), a new descendant is unconditionally
inserted (is accepted) into the population until
the population size is reached.

Stopping criterion. The algorithm is terminated
if the running time limit is reached.

4.3. Example

The following example demonstrates the in-
dividuals and how MAHH works. Let there
be 5 items (n = 5). Among the low-level
heuristics we distinguish three groups: muta-
tion heuristics, local search heuristics and place-
ment heuristics groups. Let’s take four muta-
tion heuristics, seven local search procedures
and three placement heuristics. We identify the
items and the low-level heuristics in every group
with sets of serial numbers. The individual is
composed of 4 parts: permutation of items, se-
rial number of the mutation, serial number of
the LS and a sequence of serial numbers of
the placement heuristics. Permutation and se-
quence of the placement heuristics jointly con-
stitute the solution.

Let’s take a random individual (1, 3, 5, 2, 4, 1,
3, 1, 2, 1, 3, 3), the 1, 3, 5, 2, 4 is the permuta-
tion, and from the low-level heuristics we have

the 1st mutation heuristic, the 3rd local search
heuristic and the sequence 1st, 2nd, 1st, 3rd, 3rd
of the placement heuristics.

Let us see the applications of the mutations of
MAHH, of the low-level heuristics and of the
local search procedure of MAHH.

a) Let us suppose that the mutations of MAHH
arrived to the following modifications of the
serial numbers: the 3rd mutation, the 1st lo-
cal search and on the 2nd and 3rd positions
of the sequence the new serial numbers are
1st and 2nd. The descendant is thus the fol-
lowing: (1, 3, 5, 2, 4, 3, 1, 1, 1, 2, 3, 3)
(modifications are shown in bold).

b) Let’s now demonstrate application of the
low-level heuristics: Application of the 3rd
mutation: let us suppose the mutation is a
random insert operation and the item from
the 5th position will be inserted to the 2nd
position. The descendant is thus the follow-
ing: (1, 4, 3, 5, 2, 3, 1, 1, 1, 2, 3, 3).
Application of the 1st local search: let us
suppose that it analyses the swaps in the per-
mutation. After every swap it computes the
new value of the fitness and if the result is
better, it accepts the swap. Let us suppose
the two swaps improved the fitness: between
the 2nd-4th and 3rd-5th positions. The new
descendant is thus the following: (1, 5, 2, 4,
3, 3, 1, 1, 1, 2, 3, 3).
Application of the placement heuristics. This
is the computation of the fitness. One after
the other, the placement heuristics place the
next not-yet-placed item, or a dynamically
selected not-yet-placed item from the per-
mutation part of the individual.

c) LSH is a local search procedure of MAHH.
It modifies multiple times the sequence of
placement heuristics. For example, the out-
come may be the following after the applica-
tion of the LSH on the last descendant: (1,
5, 2, 4, 3, 3, 1, 2, 2, 2, 1, 3). LSH computes
a new value of the fitness and if the result is
better, it accepts the modification.

5. Low-level Heuristics for the 2DSP in MAHH

Among the low-level heuristics, we distinguish
three groups: placement heuristics, local search
heuristics and mutation heuristics groups.



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 259

5.1. The Placement Heuristics

For the 2DSP, we use three different placement
heuristics. The first is a modified version of
the BL heuristic; the second and third ones are
modified versions of the BF heuristic. The most
important modification of the heuristics is that
they use a local search procedure after every
item, and the procedure attempts to improve the
placement with a block of multiple items. We
call these heuristics HP1, HP2 and HP3.

HP1 first applies the BL heuristic and then at-
tempts to improve the result with a local search
procedure. The BL places the next not-yet-
placed item from the solution part of the indi-
vidual. If thewidth of the packed item is smaller
than the width of the space, HP1 applies the lo-
cal search ImpLS, which works in two steps.
First, it searches other items to be packed into
the empty part of the space. These items are
the next not-yet-packed items with maximum
imax. In the second step, ImpLS builds blocks
combining one, two or three items from the se-
lected items and chooses the block that fits in
the empty part of the space and has the largest
width. If ImpLS finds a block, HP1 places the
block into the space. (In the block, the items
can be different, unlike in the reactive GRASP
method Alvarez-Valdes et al. 2008).

HP2 first applies the BF heuristic and then at-
tempts to improve the result in two different
ways with the ImpLS local search. The BF dy-
namically selects a not-yet-placed item and fits
the item into the lowest available space. If the
lowest available space is too narrow to place a
remaining item into it, the space is raised to the
level of the lower space adjacent to it, and the
two spaces are merged. Next, BF begins again.
If the placing was successful and the width of

the packed item is smaller than the width of
the space, HP2 applies the ImpLS local search.
First, HP2 applies the ImpLS for the full space.
If ImpLS builds a block with a larger width than
the fitted item found, the block replaces the item
in the space. If there is no appropriate block,
HP2 (similarly to HP1) applies the ImpLS on
the empty part of the space. If ImpLS finds a
block, HP2 places the block into the space.

HP3 is a modified version of HP2, in which
the BF is replaced with a modified, score-based
version of BF. The idea of the score-based BF
was motivated by the IDBS method (Wei et al.
2011). In the IDBS, the placing heuristic uses
several strategies, and one of the strategies as-
signs fitness values to some important (space, fit
item) pairs. The IDBS may choose the (space,
fit item) pair with the highest fitness value to
place. In the score-basedBF,we assign scores to
some special types of spaces without the items.
The score reflects the importance of the spaces,
and our BF variant searches for a fit item for the
space that has the highest score value. Thus,
the score is 4 if the space is at the left or the
right edge and lies deeper than the neighbour-
ing space; 3 if the space lies deeper than its
neighbours and the neighbouring spaces lie at
the same height; 2 if the space lies deeper than
its neighbours and the neighbours lie at differ-
ent heights; 1 if the space is located in middle
of three steps; and 0 if the space is located at
the lowest available space.

It is important to determine the efficiency of the
HP1, HP2 and HP3 heuristics. First we anal-
ysed the importance of the ImpLS local search
and used the heuristics without ImpLS as well.
Our conclusion is that the ImpLS can improve
the results in general and gives better than av-
erage results. Next we compared the heuris-
tics separately and some combinations of the

Used placement C-6-100-1 C7 1 Zdf9
heuristics Best Aver. Best Aver. Best Aver.

HP1 793 801.4 246 247.6 5975 6082.3
HP2 776 780.4 243 244.1 5667 5769.0
HP3 775 780.3 242 243.1 5566 5621.3
HP1, HP2 774 779.3 243 244.1 5625 5652.6
HP1, HP3 777 778.4 244 244.4 5276 5357.3
HP2, HP3 771 779.7 243 244.2 5517 5626.1
HP1, HP2, HP3 777 779.0 244 244.5 5480 5554.0

Table 1. Computational results with different placement heuristics.



260 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

heuristics in MAHH. Table 1 shows a compar-
ison with the help of the C 6 100 1, C7 1 and
Zdf9 instances (the best results for every in-
stances are shown in bold). Among the HP1,
HP2, and HP3 heuristics, the HP3 has the best
results. The combination of two or three heuris-
tics gives better result in general than the sim-
ple heuristics. Although the results of HP1 are
weaker than the results of HP2 and HP3, their
combination with HP1 improves the quality of
the results. Thus, in the MAHH algorithm, we
use the three (HP1, HP2, and HP3) heuristics
together.

5.2. The Local Search Heuristics

To compile the set of appropriate LS procedures
for the algorithm, we use seven LS procedures.
A local search version takes every pair of the
values of the permutation, attempts to apply a
move on the pair and computes the new value
of the fitness function. If the application of
the move improves the result, the procedure ac-
cepts the move. The moves in the procedures
are swap, insert, or inversion.

The low-level heuristics are the following: LS1
is a search with a swap move; LS2 is a search
with an insert move; LS3 is a search with an
inversion move; LS4 is LS1 followed by LS2;
LS5 is LS1 followed by LS3; LS6 is LS2 fol-
lowed by LS3; and LS7 is LS1 followed by
LS3 and then by LS4. We attempted to achieve
shorter running times with all local searches.
Thus, every local search uses only a few ran-
dom parts of the permutation for the move. The
number of parts is controlled by the LSn pa-
rameter, and the length of each part is at most
LSmax elements. If a local search improves the
results, it can be repeated. The rep parame-
ter controls the repetition of local searches. If
rep=1, then MAHH can repeat the local search.
There are two parameters prun1 and prun2 that
control the applications of the local searches in
the algorithm. If prun1=1, then MAHH can
apply the local searches on every descendant.
If prun2=1, the algorithm can apply the local
searches on the last descendant in every knth
generation.

5.3. The Mutation Heuristics

The algorithm uses one of four mutation heuris-
tics for theSj permutations. The low-levelmuta-
tion heuristics are the following: a swap based
on the EVL technique, an insert based on the
EVL technique, a random swap, and a random
insert move.

The first and second mutation heuristics use
a common ECM matrix, named ECMS. The
ECMS is an n × n matrix. Every item has
a row, and every position of the Sj permuta-
tion has a column in the matrix. If the muta-
tion is based on the EVL method, the mutation
heuristic first chooses a random k position in
the permutation and then chooses another item
for this position with the highest prk probabil-
ity based on the ECMS; it searches the position
of the new item in Sj and swaps the values of
the positions or inserts the new item in posi-
tion k. MAHH examines randomly only min
(n, 50) rows of the ECMS matrix to search for
the highest prk probability.

6. Computation Experiments

The PMAHH algorithm was implemented in
C++. It was executed on an iMAC with an
Intel Core i5 2.5 GHz processor with 4 GB of
RAM, running the Mac OS X 10.9.2 operating
system.

We tested our algorithm with the benchmark
instances that are used generally in publica-
tions. The zero-waste instances comprise the
first group, and their optimal solutions are known.
The second group includes non-zero-waste in-
stances, the optimal solutions of which involve
some wasted regions.

The zero-waste instances are the following:

• C (Hopper and Turton 2001) with 21 in-
stances, the number of input rectangles rang-
ing from 16 to 197.

• N (Burke et al. 2004) with 13 instances, the
number of input rectangles ranging from 10
to 3152. We also used the set (N12), without
the N13 instance.

• RB (Ramesh Babu and Ramesh Babu 1999)
with 1 instance, the number of input rectan-
gles is 50.



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 261

• NT (Hopper 2000) with 70 instances, the
number of input rectangles ranging from 17
to 199.

• CX (Pinto and Oliveira 2005) with 7 in-
stances, the number of input rectangles rang-
ing from 50 to 15 000.

The non-zero-waste instances are:

• NP (Nice1,. . . , Path5) (Wang and Valenzela
2001) with 12 instances, the number of input
rectangles ranging from 25 to 1000.

• NPT (Nice1t,. . . , Path5t) (Wang and Valen-
zela 2001) with 60 instances, the number of
input rectangles ranging from 1000 to 5000.

• ZDF (Leung et al. 2011). We use only the
first 13 instances (ZDF13), the number of
input rectangles ranging from 580 to 15 096.

• 2sp (cgcut1, . . ., gcut1, . . ., ngcut1, . . .,
beng1, . . ., beng10) (Beasley 1985, 1985a;
Christofides and Hadjiconstantinou 1995;
Bengtsson 1982)with 38 instances, the num-
ber of input rectangles ranging from 7 to 200.

• BWMV (Berkey and Wang 1987; Martello
et al. 2003) with 500 instances, the number
of input rectangles ranging from 20 to 100.

6.1. Parameter Selection

While studying some of themore complex prob-
lems of the benchmark sets, we analysed the
process of MAHH to determine how the param-
eter values affect the convergence, the discov-
ery of the global optimum and the speed of the
calculation. Thus, we analysed the population
size (t and tmax parameter), the frequency of
checks (kn parameter), the generation in the
first stage (itt parameter), the parameters of
the Restart procedures (gp and rp) and of the
truncation selection (tp). Summarising the re-
sults of the analysis, we found the following:
t =5, tmax=30, itt=5, kn=5, gp=300, rp=0.7
and tp=0.1, and we accepted that the published
methods allowed a duration of 60 CPU seconds
for each test problem.

In the second part of the parameter selection,
we analysed the LS procedures, which are the
most time consuming part of the algorithm. As
the number of dimensions increases, their run-
ning times increase rapidly. Thus, the values of
LSp, LSmax, Hn, imax, rep and the parameters

prun1 and prun2 are important. We searched
the parameter values at different values of n.
The result is the following:

• 20≤ n ≤100, we use the planned LS with
repetition. The parameter values: LSp=30,
LSmax=50, Hn=30, imax=100, rep=1,
prun1=1 and prun2=1.

• 100<n ≤200, we narrow the use of the LSs
for the last descendant and the best individ-
ual with repetition. The parameter values:
LSp=30, LSmax=50, Hn=30, imax=100,
rep=1, prun1=0 and prun2=1.

• 200<n<500, the above values of the param-
eters except: LSp=3.

• 500≤n<2000, the above values of the pa-
rameters, but the local searches run without
repetition (rep=0).

• 2000≤ n ≤4000, we use only the local
search for the best individual without repe-
tition. LSp=2, LSmax=50, Hn=30, imax=
100, rep=0, prun1=0 and prun2=0.

• 4000<n≤8000, we use only the local search
for the best individual without repetition.
LSp=2, LSmax=10, Hn=10, imax=50, rep=
0, prun1=0 and prun2=0.

• 8000<n≤15100, we use only the local search
for the best individual without repetition.
LSp=1, LSmax=5, Hn=0, imax=10, rep=0,
prun1=0 and prun2=0.

Based on these results, we can give the initial
values of the parameters of the LSs. For exam-
ple, if n =300, the values of the LS parameters
are the following: LSp=3, LSmax=50, Hn=30,
imax=100, rep=1, prun1=0 and prun2=1.

In the third part of the parameter selection, we
used the parameters of MAHH in the island
model and searched appropriate parameter val-
ues for the island model. Experimenting with
setting frequ and mignumb we found that using
frequ =kn and mignumb =1 yielded the best-
quality results in general. We also applied the
island model with different numbers of islands.
We used 2, 4, 8, 16 and 32 islands and found
the best-quality results using the 32-island ver-
sion. Thus, we used the model with np=32 and
allowed a duration of 60 CPU seconds for each
test problem.



262 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

6.2. Comparative Results

PMAHH was run 10 times on each test instance,
and we provide the best and the average results
for every instance as % gap, which is the per-
centage gap to the lower bound (LB), namely, %
gap = 100 *(obtained solution - LB)/LB. LB
is the optimal height for the zero-waste prob-
lem. For the non-zero-waste problem, LB is as
described by Leung et al. (2011).

We show the summary of our results compared
with some published results. The first com-
parison shows the best result of two place-
ment heuristics, namely the BF (Burke et al.
2004) and BBFM (Özcan et al. 2013) place-
ment heuristics, and the results of the following
five HHs: the PMAHH, the GA of Garrido and
Riff (2007) (R GA), the GA of Burke et al.
(2010) (B GA), the GP of Burke et al. (2010a)
(B GP) and the GP of Nguyen et al. (2012)
(N GP). The second comparison is based on
the best-published results in the papers of Wei
et al. (2011) and Yang et al. (2013), where the
running times were 60 CPU seconds for each
test problem. From these papers, we chose four
methods: the reactive GRASP (Alvarez-Valdes
et al. 2008), the ISA (Leung et al. 2011), the
SRA (Yang et al. 2013) and the IDBS (Wei et
al. 2011).

In Tables 2-4, we show the comparisons. In Ta-
ble 2, we find the average best results (% gap)
of the placement heuristics and HHs. The re-
sults were available only for the C, N, N12, RB
and NP test sets. For C, the result of PMAHH
is approximately twofold better than the second
best result of R GA. For N and N12, the result of
PMAHH is approximately twofold better, and
for NP, the result is approximately 75% better
than the second best results of N GP. We can
conclude that for the C, N, N12 and NP test sets,

our approach outperforms the BF and BBFM
placement heuristics and the four HHs.

Table 3 shows the average results, and Table 4
shows the best results of GRASP, ISA, SRA,
PMAHH and IDBS. For the zero-waste test sets
(C, N, RB, NT and CX), the IDBS is the best
method based on the best and the average re-
sults. For the RB test set, only the GRASP did
not find the optimal result.

GRASP ISA SRA IDBS PMAHH

C 0.95 0.76 0.69 0.12 0.81
N 0.95 0.41 0.23 0 0.40
RB 0.30 0 0 0 0
NT 2.32 2.24 1.60 1.54 2.23
CX 0.88 0.88 0.52 0.43 0.50
NP 3.06 2.52 2.00 2.10 2.62
NPT 1.50 0.56 0.15 0.35 0.89
ZDF13 - 4.00 2.94 - 2.50
2sp 2.68 3.02 3.07 3.01 2.63
BWMV 1.77 1.70 1.63 2.00 1.70

Table 3. Average results (% gap) of the methods (with
60 CPU seconds).

GRASP ISA SRA IDBS PMAHH

C 0.95 0.64 0.62 0.04 0.67
N 0.95 0.20 0.13 0 0.23
RB 0.30 0 0 0 0
NT 2.32 1.96 1.30 1.01 1.69
CX 0.88 0.67 0.45 0.40 0.40
NP 3.06 2.32 1.90 1.90 2.37
NPT 1.50 0.56 0.15 0.25 0.78
ZDF13 - 3.08 2.87 - 1.80
2sp 2.68 2.99 3.05 2.62 2.60
BWMV 1.77 1.53 1.49 1.76 1.53

Table 4. Average best results (% gap) of the methods
(with 60 CPU seconds).

BF BBFM R GA B GA B GP N GP PMAHH
(60 sec) (60 sec)

C 5.70 2.32 1.39 - 10.50 1.70 0.67
N12 4.32 1.48 - 4.76 3.50 0.58 0.24
N 4.05 1.37 - - - 0.53 0.23
RB 6.66 0 - - - - 0
NP 6.43 5.18 - - - 3.19 2.37

Table 2. Average best results (% gap) of placement heuristics and HHs.



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 263

For the CX test set, PMAHH is also the best
method based on the best results and the sec-
ond of the five methods based on the average
results. Based on the best and average results of
the NT test sets, PMAHH ranks third of the five
methods, and based on its results for the C and
N test sets, it is the fourth of the five methods.
However, for the C test set, the best results of
ISA, SRA and PMAHH are very similar and for
the C, N and NT test sets, the average results of
PMAHH and ISA are very similar.

For the non-zero-waste test sets, there is not a
best method for every test set. For the NP, NPT
andBWMVtest sets, the SRA is the bestmethod
based on the best and average results, and for
the ZDF13 and 2sp test sets, the PMAHH is the
best method based on the best and the average
results. For the BWMV sets, the PMAHH and
ISA are the second best methods, and for the NP
and NPT test sets, the PMAHH is ranked fourth
based on the best and the average results (in the
three tables, the best results for every test set are
shown in bold).

We can conclude that our algorithm is effi-
cient for the rectangular strip-packing problem;
PMAHH is the best methods (or equally good)
in case of four test sets and the second best
method in case of the largest BWMV test set.
Based on the test results, it is better than reac-
tive GRASP, and PMAHH belongs to the group
of ISA, SRA and IDBS.

7. Conclusions

In this paper, we present a parallel memetic
algorithm-based hyper-heuristic for the 2DSP.
In our algorithm, the individuals are (solu-
tion, low-level heuristics) pairs. The algorithm
organises the choice of the low-level heuris-
tics with an improving technique that uses the
memory-based EVL technique. The algorithm
uses three placement heuristics that are mod-
ified versions of the BL and BF placement
heuristics and uses improving local searches
when placing an item. Our algorithm is effi-
cient for the rectangular strip-packing problem;
based on the test results, it belongs to the group
of ISA, SRA and IDBS methods. For four test
sets, it exhibited the best results.

In the future, we plan to extend our algorithm
to solve other types of strip-packing problems.

Our plan is to develop a hyper-heuristic frame-
work based on the memetic algorithm-based
hyper-heuristic.

References

[1] R. ALVAREZ-VALDES, F. PARREÑO, J. M. TAMARIT,
Reactive GRASP for the strip packing problem.
Computers & Operations Research 35, 1065–1083,
2008.

[2] Y. ARAHORI, T. IMAMICHI, H. NAGAMOCHI, An ex-
act strip packing algorithm based on canonical
forms. Computers & Operations Research, 39(12),
2991–3011, 2013.

[3] B. S. BAKER, E. G. COFFMAN, R. L. RIVEST, Or-
thogonal packing in two dimensions. SIAM Journal
on Computing 9, 846–55, 1980.

[4] J. E. BEASLEY, Algorithms for unconstrained two-
dimensional guillotine cutting. The Journal of the
Operational Research Society 36, 297–306, 1985.

[5] J. E. BEASLEY, An exact two-dimensional non-
guillotine cutting tree search procedure. Operations
Research 33, 49–64, 1985.

[6] B. E. BENGTSSON, Packing rectangular pieces –
a heuristic approach. The Computer Journal 25,
253–7, 1982.

[7] J. O. BERKEY, P. Y. WANG, Two-dimensional finite
bin-packing algorithms. The Journal of the Opera-
tional Research Society 38, 423–429, 1987.

[8] M. BIAZZINI, B. BANHELYI, A. MONTRESOR, M. JE-
LASITY, Distributed hyper-heuristics for real param-
eter optimization. Genetic and Evolutionary Com-
putation Conference, (F. ROTHLAUF, ED.). ACM:
New York, NY, 1339–1346, 2009.

[9] I. BORGULYA, An Evolutionary Algorithm for the
Biobjective QAP. Computational Intelligence, The-
ory andApplications “Advances in Soft Computing”
(B. REUSCH, ED.), Springer series, 577–586, 2006.

[10] I. BORGULYA, An Algorithm for the Capacitated
Vehicle Routing Problem with Route Balancing.
Central European Journal of Operations Research,
16(4), 331–344, 2008.

[11] I. BORGULYA, An Island Model for the No-Wait
Flow Shop Scheduling Problem. PPSN XI. Krakow,
Springer, LNCS 6239, 280–289, 2010.

[12] M. A. BOSCHETTI, L. MONATELLI, An Exact Algo-
rithm for the Two-Dimensional Strip Packing Prob-
lem. Operations research 58, 1774–1791, 2010.

[13] E. K. BURKE, M. GENDREAU, M. HYDE, G.
KENDALL, G. OCHOA, E. ÖZCAN, R. QU, Hyper-
heuristics: a survey of the state of art. Journal of
the Operational Research Society, 1–30, 2013.



264 A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem

[14] E. K. BURKE, Q. GUO, G. KENDALL, A Hyper-
Heuristic Approach to Strip Packing Problems. In
PPSN XI. Krakow, LNCS 6238, 465–474, 2010.

[15] E. K. BURKE, M. HYDE, G. KENDALL, A Genetic
ProgrammingHyper-Heuristic Approach for Evolv-
ing 2-DStrip PackingHeuristics. IEEETransactions
on Evolutionary Computation, 14(6), 942–958,
2010.

[16] E. K. BURKE, G. KENDALL, G. WHITWELL, A new
placement heuristic for the orthogonal stock-cutting
problem. Operations Research 52, 655–71, 2004.

[17] E. K. BURKE, M. HYDE, G. KENDALL, A Squeaky
Wheel Optimization Methodology for Two Di-
mensional Strip Packing. Computers & Operations
Research, 38(7), 1035–1044, 2011.

[18] N. CHRISTOFIDES, E. HADJICONSTANTINOU, An ex-
act algorithm for orthogonal 2-D cutting problems
using guillotine cuts. European Journal of Opera-
tional Research 83, 21–38, 1995.

[19] N. CHRISTOFIDES, C. WHITLOCK, An algorithm for
two-dimensional cutting problems. Operations Re-
search 25, 30–44, 1997.

[20] L. FAINA, An application of simulated annealing
to the cutting stock problem. European Journal of
Operational Research, 114(3), 542–556, 1999.

[21] M. R. GAREY, D. S. JOHNSON, Computers and
intractability: a guide to the theory of NP-
completeness. New York: Freeman, 1979.

[22] P. GARRIDO, M. C. RIFF, An Evolutionary Hy-
perheuristic to Solve Strip-Packing Problems H.
IDEAL. (YIN ET AL. ED.), LNCS 4881, 406–415,
2007.

[23] P. GILMORE, R. GOMORY, A linear programming
approach to the cutting stock problem. Operations
Research 9, 849–859, 1961.

[24] E. HOPPER, Two-dimensional packing utilising evo-
lutionary algorithms and other meta-heuristic meth-
ods. Ph.D. thesis, Cardi University, 2000.

[25] E. HOPPER, C. H. TURTON, An empirical investi-
gation of metaheuristic and heuristic algorithms
for a 2D packing problem. European Journal of
Operational Research 128, 34–57, 2001.

[26] M. IORI, S. MARTELLO, M. MONACI, Metaheuristic
algorithms for the strip packing problem.: Opti-
mization and Industry: New Frontiers. (P. PARDA-
LOS, V. KOROTKICH, ED.), Kluwer Pub. 159–179,
2003.

[27] S. JAKOBS, On genetic algorithms for the pack-
ing of polygons. European Journal of Operational
Research 88, 165–181, 1996.

[28] S. C. H. LEUNG, D. ZHANG, K. M. SIM, A two-stage
intelligent search algorithm for the two-dimensional
strip packing problem. European Journal of Opera-
tional Research, 215(1), 57–69, 2011.

[29] S. MARTELLO, M. MONACI, D. VIGO, An exact ap-
proach to the strip packing problem. INFORMS
Journal on Computing, 15(3), 310–319, 2003.

[30] S. NGUYEN, M. ZHANG, M. JOHNSON, K. C. TAN,
Automatic Discovery of Optimization Search
Heuristics for Two Dimensional Strip Packing Us-
ing Genetic Programming. SEAL (L. T. BUI ET AL.
EDS.), LNCS 7673, 341–350, 2012.

[31] E. ÖZCAN, Z. KAI, H. DRAKE, Bidirectional best-fit
heuristic considering compound placement for two
dimensional orthogonal rectangular strip packing.
Expert Systems with Applications 40, 4035–4043,
2013.

[32] E. PINTO, J. F. OLIVEIRA, Algorithm based on graphs
for the non-guillotinable two-dimensional packing
problem. Second ESICUP Meeting, Southampton,
2005.

[33] A. RAMESH BABU, N. RAMESH BABU, Effective
nesting of rectangular parts in multiple rectangular
sheets using genetic and heuristic algorithms. In-
ternational Journal of Production Research, 37(7),
1625–43, 1999.

[34] P. RATTADILOK, A.GAW, R. S. K. KWAN, Distributed
choice function hyper-heuristics for timetabling and
scheduling. The Practice and Theory of Automated
Timetabling V: Selected Papers from the 5th Inter-
national Conference on the Practice and Theory of
Automated Timetabling (E. K. BURKE, M. TRICK,
EDS), LNCS 3616, Springer: Berlin, 51–70, 2005.

[35] J. THOMAS, N. S. CHAUDHARI, A new metaheuris-
tic genetic-based placement algorithm for 2D strip
packing. J Ind Eng Int, 10–47, 2014.

[36] C. L. VALENZELA, P. Y. WANG, Heuristics for large
strip packing problems with guillotine patterns: an
empirical study. Proceedings of the 4th Metaheuris-
tics International Conference. University of Porto,
Porto, Portugal, 417–421, 2001.

[37] P. Y. WANG, C. L. VALENZELA, Data set genera-
tion for rectangular placement problems. European
Journal of Operational Research 134, 378–391,
2001.

[38] T. WAUTERS, J. VERSTICHEL, V. BERGHE, An effec-
tive shaking procedure for 2D and 3D strip packing
problems. Computers & Operations Research 40,
2662–2669, 2013.

[39] L. WEI, W. C. OON, W. ZHU, A. LIM, A skyline
heuristic for the 2D rectangular packing and strip
packing problems.European Journal ofOperational
Research, 215(2), 337–46, 2011.

[40] S. YANG, S. HAN, W. YE, A simple randomized
algorithm for two-dimensional strip packing. Com-
puter & Operations Research, 40(1), 1–8, 2013.



A Parallel Hyper-heuristic Approach for the Two-dimensional Rectangular Strip-packing Problem 265

Received: May, 2014
Revised: September, 2014
Accepted: October, 2014

Contact address:

István Borgulya
University of Pécs

Faculty of Business and Economics
Rákóczi út 80.

H-7621 Pécs
Hungary

e-mail: borgulya@ktk.pte.hu

ISTVÁN BORGULYA received his diploma in applied mathematics from
the University of Szeged, Hungary in 1971. He received his PhD degree
in computer science and the habilitation in economics from the Uni-
versity of Pécs too. He has been working 40 years at the University of
Pécs, Hungary. He teaches informatics for economics and informatics
students. He was head of the Department of Business Informatics and
head of the BSc Business Informatics Study. Recently he became a
honorary professor. His research interests include fuzzy methods in the
decision support and optimization with evolutionary algorithms.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (ColorMatch RGB)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




