
Journal of Computing and Information Technology - CIT 23, 2015, 2, 111–121
doi:10.2498/cit.1002441

111

Segment Oriented Compression
Scheme for MOLAP Based on
Extendible Multidimensional Arrays

Sk. Md. Masudul Ahsan and K. M. Azharul Hasan
Department of Computer Science and Engineering, Khulna University of Engineering and Technology (KUET), Bangladesh

Many statistical and MOLAP applications use multidi-
mensional arrays as the basic data structure to allow the
efficient and convenient storage and retrieval of large
volumes of business data for decision making. Allocation
of data or data compression is a key performance factor
for this purpose because performance strongly depends
on the amount of storage required and availability of
memory. This holds especially for data warehousing
environments in which huge amounts of data have to
be dealt with. The most evident consequence of data
compression is that it reduces storage cost by packing
more logical data per unit of physical capacity. And
improved performance is a net outcome because less
physical data need to be retrieved during scan-oriented
queries. In this paper, an efficient data compression
technique is proposed based on the notion of extendible
array. The main idea of the scheme is to compress
each of the segments of the extendible array using the
position information only. We compare the proposed
scheme for different performance issues with prominent
compression schemes.

Keywords: extendible array, multidimensional array,
MOLAP, database compression, compression ratio

1. Introduction

The strong need to handle large scale data effi-
ciently has been promoting comprehensive re-
search themes on the organization or imple-
mentation schemes for multidimensional arrays
[1]. Multidimensional arrays are the basic data
structure used in many scientific, statistical, and
engineering applications because they are well
understood and can easily be incorporated in
other data structures [2]. Scientific and statis-
tical datasets grow too massively in their size
in the order of terabytes and petabytes. Hence

the storage of such data requires efficient dy-
namic storage schemes where the array is al-
lowed to arbitrarily extend the bounds of the
dimensions [3], [4]. Conventional multidimen-
sional arrays do not support dynamic extension
of an array and hence the addition of a new
column value is impossible if the size of the
dimension overflows. Therefore, we need a
method of extending multidimensional arrays
in all dimensions [5], [6]. Another problem
with the multidimensional array structure is its
sparsity, which wastes memory because a large
number of array cells are empty and thus are
rarely used for actual implementation [7], [8].
In particular, the sparsity problem becomes se-
rious when the number of dimensions increases.
This is because the number of all possible com-
binations of dimension values exponentially in-
creases, whereas the number of actual data val-
ues stored would not increase at such a rate. So
it is important to design a technique to compress
such sparse arrays.

In our previous work [9], [10], we present a new
extendible multidimensional array system, na-
mely Extendible Karnaugh Array (EKA)along
with its operations and [3] presents memory
management performance for controlling the
address space overflow for large multidimen-
sional arrays. The EKA is based on Karnaugh
map [11] and is dynamically extendible during
runtime in any direction without any relocation
of the data already stored. In this paper, we pro-
pose a compression scheme based on the EKA
[9], [10]. To compress the EKA, we store only
the position information of each segment of the
array, i.e. the construction history, the segment

112 Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays

number and the offset inside the array. Our
scheme will be called SCEKA (Segment based
Compression scheme for Extended Karnaugh
Array). It can be effectively applied not only
to the implementation of MOLAP [7], but also
to multidimensional database systems [12], or
parallel data warehouse systems [13], [14].

The rest of the paper is organized as follows;
Section 2 gives a brief description of the EKA
system, Section 3 describes the proposed com-
pression scheme, Section 4 explains the exper-
imental results, Section 5 provides some com-
parisonwith other relatedworks and finally Sec-
tion 6 outlines the conclusion.

2. The EKA System

The idea of EKA [9], [10] is based on Karnaugh
Map (K-map) which is used for minimizing
Boolean expressions. Figure 1 (a) shows a 4
variable K-map to represent possible 24 com-
binations of a Boolean function. The variables
(w, x) represent the row and the variables (y, z)
represent the column that indicates the possi-
ble combinations in a two dimensional array for
the four Boolean variables. The array repre-
sentation of the K-map for 4 variable Boolean
function is shown in Figure 1(b).

Figure 1. Realization of Boolean function using K-map.

Definition 1: (Adjacent Dimension). The di-
mensions (or index variables) that are placed
together in the Boolean function representation
of K-map are termed adjacent dimensions (writ-
ten adj(i) = j). The dimensions (w, x) are the
adjacent dimensions in Figure 1(a) and (b) i.e.
adj(w) = x or adj(x) = w.

Figure 2 shows the dynamic extension realiza-
tion of the array of Figure 1(b). EKA is an

Figure 2. Logical extension of 4-dimensional EKA.

array system which is the combination of sub
arrays. To maintain dynamic extension and the
subarrays, it has three types of auxiliary tables,
namely history table, coefficient table, and ad-
dress table. For each dimension these tables
exist. The history table stores construction his-
tory of the subarrays. The first address of a
segment is stored in the address table and is
used to compute the correct position of an ele-
ment. Any element in the n dimensional array is
determined by an addressing function as follows

f (xn, xn−1, xn−2, . . . , x2, x1)
= l1l2 . . . ln−1xn + l1l2 . . . ln−2xn−1

+ . . . + l1x2 + x1

The coefficients of the addressing function, na-
mely 〈 l1l2 . . . ln−1, l1l2 . . . ln−2, . . . , l1〉, are re-
ferred to as coefficient vectors which are stored
in coefficient table. The subarrays are divided
into equal size segments (see Figure 2) that can
be stored contiguously on the disk.

Consider a 4-dimensional array of size A[l1, l2,
l3, l4] where li (i = 1, 2, 3, 4) is the length
of each dimension di that varies from 0 to
li − 1. The dimensions (d1, d3) and (d2, d4) are
grouped as adjacent dimensions respectively.
The length of the extended subarray which is
allocated dynamically for the extension along

dimension di is determined by
4∏

j=1
dj (j �= i).

The number of segments in any subarray (be-
longs to dimension di) is determined by the

Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays 113

Figure 3. The realization of EKA(n).

length of the adjacent dimension of di. The
number of segments determines the number of
entries in the address table and is equal to the
length of adjacent dimension. After extending
along any dimension di, the length of the cor-
responding dimension is incremented by 1. For
each extension of the auxiliary tables, namely
history table, address table and coefficient ta-
bles are maintained. Figure 4 shows the detailed
extension realization of a 4 dimensional EKA
where Hd1, Cd1 and Ad1 are history table, co-
efficient table and address tables of dimension
1. The EKA scheme can be generalized to n
dimensions using a set of EKA(4)s. We write
EKA(n) to denote an n dimensional EKA. Fig-
ure 3 shows an EKA(6) represented by a set of
EKA(4)s on two levels containing 5th and 6th

dimensions each of lengths 3 and 2 respectively.
Each of higher dimensions (d5 and d6) are repre-
sented as one dimensional array of pointers that
points to the next lower dimension and each cell
of d5 points to each of the EKA(4). So each
EKA(4) can be accessed simply by using the
subscripts of higher dimensions. In the case of
EKA(n), the similar hierarchical structure will
be needed to locate the appropriate EKA(4).
Hence the EKA(n) is a set of EKA(4)s and a
set of pointer arrays.

The segments are always 2 dimensional for an
EKA(n). Hence, in our model the coefficient
vector becomes single dimensional such as 〈 l1〉
only. The EKA can be extended along any di-
mension dynamically during runtime only by
the cost of these auxiliary tables.

Let the value stored in the subscript (x1, x2,
x3, x4) be retrieved. The maximum history
value among the subscripts hmax = max(Hd1[x1],
Hd2 [x2], Hd3[x3], Hd4 [x4]) and its corresponding
dimension (say d1) that corresponds to the hmax
is determined. hmax is the subarray that con-
tains our desired element. The first address and

offset from the first address is found out using
the auxiliary tables. The adjacent dimension
adj(d1) (say d3) and its subscript x3 is found.
The first address is found from Hd1[x1].Ad1 [x3].
The offset from the first address is computed
using the addressing function; coefficient vec-
tors are stored in Cd1. Then adding the off-
set with the first address, the desired array cell
(x1, x2, x3, x4) is found.

For example, the values of the subscripts (2, 2,
0, 0) are determined as follows (see Figure 4).
Here hmax = max(Hd1[2] = 7, Hd2[2] = 6,
Hd3[0] = 0, Hd4[0] = 0) = 7, and dimension
corresponding to hmax is d1 whose subscript is
x1 = 2 and adj(d1) = d3 and x3 = 0. So the
first address is in Hd1 [2].Ad1[0] = 36, and offset
is calculated using the coefficient vector stored
in coefficient table Cd1 [2] = 3. Here offset
= Cd1[2] ∗ x4 + x2 = 3 ∗ 0 + 2 = 2. Finally,
adding the first address with the offset, the de-
sired location 36 + 2 = 38 is found (encircled
in Figure 4).

3. The SCEKA

The Segment based Compression scheme for
Extended Karnaugh Array (SCEKA) stores the

Figure 4. Segment-compressed representation of
EKA(4).

114 Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays

extended history value, the segment number and
the logical location inside the segment of the
subarray i.e. the offset of the subarray. The data
stored in the SCEKA scheme can be accessed
in compressed form and at the same time it can
grow and shrink in length or number of dimen-
sions at run time.

3.1. The Realization of SCEKA(4)

Alongwith the auxiliary tables ofEKA,SCEKA
uses an additional table namely Element table
for each dimension to store the number of el-
ements in a segment. In SCEKA scheme, we
store the auxiliary tables including the element
table. Along with the auxiliary tables, we also
store the segment number of the subarray to
which the element belongs and the offset of
element of the segment. These are the po-
sition information to recollect the subscripts
of the item. Hence, in SCEKA scheme, we
store the tuple 〈 history value, segment number,
offset〉 for array cell mapping and the data is
stored as well. The history value is unique and
can uniquely determine the subarray. The seg-
ment number inside the subarray is also unique
and can also be determined uniquely. The off-
set value inside the segment is also unique and
can be determined by the addressing function.
Hence the tuple 〈 history value, segmentnumber,
offset〉 can uniquely map anarray cell of the
EKA.Let the subscripts 〈 x1, x2, x3, x4〉 are given;
we determine the 〈 history value, segment
number, offset〉 as follows: To find the history
value, we calculate hmax as described in Section
2. To determine the segment number we cal-
culate the dimension of hmax as dmax and hence
the adj(dmax) = dk (k = 1 . . .4) is found out.
Hence xk is found and this xk is the segment
number s. Once the segment number s is found,
the first address of the segment can be found
from the address table and the offset is calcu-
lated. We store the offset and data value pair in
a linear array in the secondary storage as com-
pressed physical array.

Example 1. Let us be given four subscripts
〈 2, 2, 0, 0〉 for dimension d1, d2, d3, and d4 (see
Figure 4). Here hmax = max(Hd1[2], Hd2 [2],
Hd3 [0], Hd4[1]) = max(7, 6, 0, 0) = 7, and di-
mension corresponding to hmax i.e. dmax = d1

whose subscript xmax = 2 and adj(dmax) =
adj(d1) = d3 and x3 = 0 (i.e. segment num-
ber).

So the f irstAddress = Ad1[2][0] = 36, and
offset is calculated using the coefficient vector
stored in coefficient table Cd1 which is 3. Here,
offset = Cd1 [2]*x4 + x2 = 3*0+2 = 2. Hence,
to map the cell the tuple 〈 7, 0, 2〉 is stored along
with the data value 38 (encircled in Figure 4).

3.2. Accessing from SCEKA(4)

Let us be given the SCEKA tuple 〈 h, s, o〉 that
represents history value, the segment number,
and an offset position respectively in a Com-
pressed EKA(4). We have to determine the
subscripts of each dimension. The history val-
ues are monotonically increasing and placed se-
quentially in history table, so searching the his-
tory tables with the given h we find the dimen-
sion i (Hdi) and its subscript xi. Let adj(di) = dj,
then xj is the segment number s i.e. (xj = s).
The other two subscripts xu, xv (say) are found
using the entry in co-efficient table as follows.
Let the coefficient table entry in dimension di at
xi is c i.e. Cdi[xi] = c, then

xu = offset % c and xv = offset\c
where % is a modulus and \ is an integer divi-
sion operator.

Example 2: Let the tuple 〈 6, 1, 4〉 be given,
that is, history = 6, segment number = 1, off-
set = 4. Now searching each of the history
tables, we found that Hd2 [2] = 6, so x2 = 2.
Here adj(d2) = d4, so x4 = 1 (the segment
number). Again, we see that Cd2[2] = 3 = c,
which was the length of dimension 3 during the
extension. So x3 = offset % 3 = 4 % 3 = 1,
and x1 = offset\3 = 4\3 = 1. Hence the de-
sired subscript is 〈 1, 2, 1, 1〉 . If the first Address
is null, the element doesn’t exist.

3.3. Realization of SCEKA(n)

We only compress each of the EKA(4)s and the
upper pointer arrays remain as usual. Since an
n-dimensional EKA can be represented as a col-
lection of EKA(4)s, we can individually com-
press each EKA(4)s. The compression scheme

Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays 115

Figure 5. Arrangement of SCEKA(n) for backward
mapping.

described above is applied to each of those
EKA(4)s. To access a compressed SCEKA(n),
we need some additional tables, since the EKA
scheme loses the higher dimensional subscripts
to search in bottomupmanner. So, eachEKA(4)
and higher dimensional pointer arrayswillmain-
tain a tiny Upper subscripts array (see Figure 5)
to get the facility for searching the bottom up
fashion. It will contain the index of immediate
lower and higher dimension pointers.

To reduce the search space, we employ a small
two dimensional array namely map array. The
index of the array represents the history counter
(history values), one of its entry is the dimen-
sion of extension and another is a pointer to the
EKA(4). Consider the tuple 〈 h, s, o〉 . We first
look at the map array at index h and find the
entry i(say) which is the dimension of h and
the exact EKA(4) in which dimension the h re-
sides. Now we apply binary search only over
the history table of dimension i, Hdi to locate the
position of h. Now we can determine the sub-
scripts of the lowest 4 dimensions by applying
the process described in Section 3. Since each
EKA(4) maintains an upper subscripts table,
the higher dimensional subscripts can be found
from there by going back to the root and by col-
lecting upper subscripts array entry. Figure 5
shows the logical arrangement of an SCEKA(n)
along with necessary auxiliary tables.

4. Related Works

The chunking ofmultidimensional arrays iswell
addressed in the literature [19], [20] for MOLAP
implementation. In this scheme the large mul-
tidimensional arrays are broken into chunks for
better storage and processing. All the chunks
are n dimensional with smaller length (of di-
mension) than the original array. To compress
the array, a pair 〈ChunkNumber, OffsetInChunk〉
is stored for each valid entry. The offset inside
the chunk OffsetInChunk is computed using the
multidimensional array linearization function.
The idea is based on the traditional multidi-
mensional array and dynamic extension is not
possible. Compressed Row Storage (CRS) and
Compressed Column Storage (CCS) [18], [20]
are used due to their simplicity and purity with
a weak dependence relationship between array
elements in a sparse array. It uses two one-
dimensional integer arrays RO and CO to com-
press all of the nonzero array elements along
the rows (columns for CCS) of the sparse array.
Array RO stores information about the nonzero
array elements of each row and CO stores the
column (row forCCS) indices of those elements
(for two dimensional arrays). For higher di-
mensional sparse arrays more one dimensional
integer arrays are needed. Hence compres-
sion ratio and range of usability become im-
practical for higher dimensional arrays [5], [13],
[21]. Ref. [17] proposes a multidimensional ex-
tendible array [22] based compression scheme,
namelyEaCRSwhich usesCRS scheme to com-
press each of the subarrays of the extendible ar-
ray. For an n dimensional extendible array, the
EaCRS scheme requires n − 1 auxiliary arrays
for each of the n − 1 dimensional subarray to
compress it. Hence the compression ratio is not
good enough for higher number of dimensions.
A compression scheme, namely ECRS/ECCS
for array model EKMR [15] is presented in [16].
The scheme is based on CRS/CCS [18], [19]
and applied on EKMR. The EKMR represents
n dimensional arrays by a set of two dimen-
sional arrays. Every two dimensional EKMRs
map with a four dimensional traditional multi-
dimensional array. Hence, when applying the
CRS/CCS scheme on EKMR the number of
auxiliary arrays is always less. Hence com-
pression ratio and range of usability become

116 Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays

efficient. But the CRS/CCS and ECRS/ECCS
schemes are applicable for statically allocated
arrays and are not suitable when the length of
dimension and the number of dimension grow
incrementally. A compression scheme for data
warehouses using Hilbert curve [23] is proposed
in [24] for statistically allocated arrays for pre-
determined size of dimension in the space and
dynamic extension of the dimension size is not
considered. [22], [25], [26] propose index array
models for implementing extendible arrays, but
do not provide any record encoding schemes
or data compression technique. Since empty
array elements occupy storage, they can be em-
ployed only for dense array; [25] handles the
history tables using B tree structures and [26]
uses axis vector to reduce the size of auxiliary
tables. They are considered as sequence of the
two consecutive extensions along the same di-
mension as an uninterrupted extension of that
dimension and are handled by only one expan-
sion record entry in the axial-vector. Therefore
the number of elements in an axial vector is
always less than or equal to the number of in-
dices of the corresponding dimension. Hence it
would be hard to apply the schemes to the actual
storage organization especially for MOLAP.

5. Experimental Results

In this section we compare the performance
of different array-based compression schemes,
namely ECRS [15], [16], EaCRS [17], CRS [18].
The basic idea of these compressions is dis-
cussed in Section 4. The parameters that are as-
sumed are described in Table 1. All the lengths
and sizes are in bytes. The length of each di-
mension is equal, i.e. li = l, for all i. We placed
the array in the secondary storage having the
parameter values shown in Table 2 for all the
schemes. We extend the length of dimensions
of EKA in round robin fashion. All the tests
are run on a machine (Dell Optiplex 380) of
2.932GHz processor and 2 GB of main memory
having a disk page size 4 KB using Microsoft
C++. The auxiliary tables are stored in the
main memory for faster access, since they act
as an index to access the array elements.

5.1. Storage Cost

Figure 6 shows the amount of storage needed by
different compression schemes for n = 3, 4, 5
and 6 respectively. The storage cost for CRS
is always higher because it needs n auxiliary
arrays to compress the n dimensional array.
SCEKA always takes less amount of storage
than CRS. SCEKA needs the same amount of
storage as that of EaCRS only for n = 3; other-
wise it needs less storage than EaCRS.

This is because EaCRS applies CRS technique
for each n − 1 subarray. Hence, when n in-
creases, EaCRS shows bad performance. We
see that ECRS is better than SCEKA in terms
of storage required. In fact SCEKA demands
a slightly higher amount of storage than ECRS,
but be noted that SCEKA has the property of
dynamic extendibility during run time, which is
not possible in ECRS/ECCS without relocating
the existing data. EaCRS is a dynamically ex-
tendible scheme, but requires more storage than
SCEKA for n ≥ 4.

li Length of each dimension i, li = l, for all i

 Size of each offset or auxiliary table cell

 Size of each cell of the EKA

Density of the array. It is the ratio between
non-empty array cells and total number of
cells. 0 ≤ ≤ 1

Compression Ratio is defined as the ratio
between the compressed array and that of
uncompressed array. The value of is
preferred to be 0 < < 1.

Range of Usability of compression scheme
and is defined as the maximum value of
up to which the compression ratio () is
less than 1.

n No. of dimensions of the array.

 The length of extension in each dimension.

NRQ Number of subscripts selected for range
key query.

max(li) Maximum length of a specific dimension i
for fixed n.

min(li) Minimum length of a dimension i for spe-
cific values of n.

Table 1. Parameters for SCEKA.

Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays 117

Figure 6. Comparison of storage requirement for different compression schemes.

n max(li) min(li) NRQ

3-6 4 8 2-20 30-140 10-40 (l −)/2 to
(l +)/2

Table 2. Parameters for constructed prototypes.

5.2. Compression Ratio and Range
of Usability

Figure 7 shows the comparison of the ranges
of usability in different compression schemes
for varying n. SCEKA and ECRS cross the
range of usability line at an approximate value
of = 0.66, which is better than or equal to
CRS or EaCRS scheme. Figure 7(e) represents
the compression ratio with constant density of
0.4. We find that CRS and EaCRS are usable
up to n = 3 and 4 respectively, for = 0.4,
but SCEKA can be of any number of dimen-
sions. This is because the compression ratio
of SCEKA does not depend on the number of
dimensions.

5.3. Extension Cost

Figure 8 shows the extension timeof SCEKA(4)
and EKA(4) for different values of . For
SCEKA(4) (Figure 8(a)) the extension time
varies with density. On the other hand EKA(4)
always takes similar time for extension, irre-
spective of the values of (shown in Fig-
ure 8(b)). This is because in uncompressed
version of EKA, the density of real data does
not affect the total size of the extension subar-
ray as disk I/O is constant. Figure 8(c) and
8(d) show the average extension time taken by
SCKEA and EKA for n = 4 and 5 respectively.
In both cases, SCEKA requires less time than
EKA, the reason is subtle, the compressed array
needs less data to write, hence fewer disks I/O
are required and therefore time is less. We see
that the difference in extension time increases
with the increase in length of dimension.

118 Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays

Figure 7. Comparison of the range of usability of different compression schemes.

5.4. Retrieval Cost

Figure 9 presents the average retrieval perfor-
mance for range key queries of NRQ subscripts
on both SCEKA(4) and EKA(4) with different
values of . The retrieval time varies with
in SCEKA(4). However, there is no effect of
 in uncompressed EKA. The retrieval time is
almost constant for a particular length of dimen-
sion (Figure 9(b)). This is because in EKA(4),
the segment or subarray sizes (that are read from
storage) remain the same irrespective of the val-
ues of for uncompressed EKA, hence the re-

trieval performance is constant. Similar results
are also found for EKA(5) and EKA(6). Fig-
ures 9(c) and 9(d) show the comparison of aver-
age range key retrieval time of NRQ subscripts
in SCEKA and EKA for n = 5 and 6, respec-
tively for = 0.4, 0.5, and 0.6, respectively.
In every case the SCEKA needs less time than
EKA. The reason is that in uncompressed EKA,
whatever the density, the segment is always the
same and the retrieval time is higher. Further-
more, if the density is less than 1, we need a lin-
ear search to be made for determining the non-
empty cells. On the other hand, in compressed

Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays 119

Figure 8. Extension time comparison of SCEKA and EKA.

Figure 9. Average range key retrieval time of SCEKA and EKA.

120 Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays

EKA the segments are compact and their size
varies with density. Since the segments contain
only the non-empty cells of the logical array,
there is no need for any search. Simply read the
segment from the disk to show the result. This
takes less time. Therefore, overall retrieval time
in SCEKA is better than that in uncompressed
EKA.

6. Conclusion

Multidimensional arrays are extensively used in
many scientific applications to represent their
data for efficient processing. However, in many
situations the total number of dimension and
length of dimension cannot be predicted. Be-
sides this, representing the real world data in
multidimensional array creates a very sparse ar-
ray. In this paper, we proposed a new compres-
sion scheme that can grow dynamically during
runtime. We compared the scheme with vari-
ous other schemes for their practical usability.
The proposed model is very efficient when dy-
namic extension of the array is an issue. We
believe that the proposed scheme can be suc-
cessfully applied to database applications, es-
pecially for multidimensional databases or mul-
tidimensional data warehousing systems. One
important future direction of the work is that
the scheme can easily be implemented in paral-
lel platforms. Because most of the operations
described here are independent of each other,
it will be very efficient to apply this scheme in
parallel and multiprocessor environments.

References

[1] S. SARAWAGI AND M. STONEBRAKER, Efficient or-
ganization of large multidimensional arrays. In
Proceedings of 10th International Conference on
Data Engineering (ICDE’94), pp. 328–336, 1994.

[2] M. S. MIT, J. B. SLAC, D. D. MICROSOFT, K. TAT
LIM, S. ZDONIK, Requirements for Science Data
Bases and SciDB. In: Proc. of Conference on
Innovative Data, Systems Research, CIDR’09.

[3] S. M. M. AHSAN AND K. M. A. HASAN, An Ef-
ficient Encoding Scheme to Handle the Address
Space Overflow for Large Multidimensional Ar-
rays. Journal of Computers, 8(5), pp. 1136–1144,
May 2013.

[4] E. J. OTOO, G. NIMAKO, D. OHENEKWOFIE, Chun-
ked extendible dense arrays for scientific data stor-
age. Parallel Computing, 39(12), 802–818, 2013.

[5] K. M. A. HASAN, M. KURODA, N. AZUMA, T. TSUJI,
AND K. HIGUCHI, An extendible array based im-
plementation of relational tables for multi dimen-
sional databases. InProceedings of 7th International
Conference on Data Warehousing and Knowledge
Discovery (DaWaK’05). Denmark: LNCS 3580,
Springer Berlin Heidelberg, pp. 233–242, 2005.

[6] S. JOANNOU, R. RAMAN, An Empirical Evaluation
of Extendible Arrays. In Proceedings of 10th Inter-
national Symposium on Experimental Algorithms
(SEA’11), Kolimpari, Greece, pp. 447–458, 2011.

[7] K. M. A. HASAN, T. TSUJI, AND K. HIGUCHI, An
Efficient Implementation for MOLAP Basic Data
Structure and Its Evaluation. InProceedings of 12th
International Conference on Database Systems for
Advanced Applications (DASFAA’07), pp. 288–299,
2007.

[8] J. GRAY, A. BOSWORTH, A. LAYMAN, AND H. PI-
RAHESH, Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and
Sub-Totals, Microsoft Research, TechReport MSR-
TR-95-22, 1995.

[9] S. M. M. AHSAN AND K. M. A. HASAN, An Imple-
mentation Scheme forMultidimensional Extendable
Array Operations and Its Evaluation. InProceedings
of International Conference on Informatics Engi-
neering & Information Science (ICIEIS’11). Kuala
Lumpur, Malaysia: CCIS 253, Springer Berlin
Heidelberg, pp. 136–150, 2011.

[10] S. M. M. AHSAN AND K. M. A. HASAN, Extendible
Multidimensional Array Based Storage Scheme for
Efficient Management of High Dimensional Data,
IJNGC 4(1), pp. 88–105, 2013.

[11] M. M. MANO, Digital Logic and Computer Design.
Prentice Hall, 2005.

[12] L. JIANZHONG, J. SRIVASTAVA, Efficient aggregation
algorithms for compressed data warehouses. IEEE
Transactions on Knowledge and Data Engineering,
14(3), pp. 515–529, May 2002.

[13] K. M. A. HASAN, T. TSUJI, K. HIGUCHI, A parallel
implementation scheme of relational tables based
on multidimensional extendible array. International
Journal of DataWarehousing andMining (IJDWM),
2(4), pp. 66–85, 2006.

[14] K. KACZMARSKI, T. RUDNY, MOLAP cube based
on parallel scan algorithm. In Proceedings of 15th
InternationalConference on Advances in Databases
and Information Systems (ADBIS’11). Vienna, Aus-
tria: LNCS 6909, Springer Berlin Heidelberg, pp.
125–138, 2011.

[15] CHUN-YUAN LIN, JEN-SHIUH LIU, AND YEH-CHING
CHUNG, Efficient representation scheme for mul-
tidimensional array operations. IEEE Transactions
on Computers, 51(3), pp. 327–345, Mar. 2002.

Segment Oriented Compression Scheme for MOLAP Based on Extendible Multidimensional Arrays 121

[16] CHUN-YUAN LIN, YEH-CHING CHUNG, AND JEN-
SHIUH LIU, Efficient data compression methods for
multidimensional sparse array operations based on
the EKMR scheme. IEEE Transactions on Comput-
ers, 52(12), pp. 1640–1646, Dec. 2003.

[17] R. ISLAM, K. M. A. HASAN, AND T. TSUJI, EaCRS:
an extendible array based compression scheme for
high dimensional data. In Proceedings of the Sec-
ond Symposiumon Information andCommunication
Technology (SoICT’11),Hanoi, Vietnam, pp. 92–99,
2011.

[18] R. BARRETT, ET AL., Templates for the solution
of linear systems: Building blocks for iterative
methods, 2nd ed. Philadelphia, PA: SIAM, 1994.

[19] D. ROTEM, E. J. OTOO, S. SESHADRI, Chunking of
Large Multidimensional Arrays, Lawrence Berke-
ley National Laboratory, University of California
LBNL-63230, 2007.

[20] Y. ZHAO, P. M. DESHPANDE, J. F. NAUGHTON, An
array-based algorithm for simultaneous multidi-
mensional aggregates. In Proceedings of the ACM
SIGMODInternationalConference onManagement
of Data (SIGMOD ’97), pp. 159–170, 1997.

[21] K. M. A. HASAN, Compression schemes of high
dimensional data for MOLAP. In Evolving Appli-
cation Domains of Data Warehousing and Mining:
Trends and Solutions, P. FURTADO, ED. Information
Science Reference, Hershey, PA, ch. IV, pp. 64–81,
2010.

[22] E. J. OTOO AND T. H. MERRETT, A storage scheme
for extendible arrays. Journal of Computing, 31,(1),
pp. 1–9, 1983.

[23] J. K. LAWDER, P. J. H. KING, Querying multi-
dimensional data indexed using the Hilbert space-
filling curve. ACM SIGMOD Record, 30(1), pp.
19–24, Mar. 2001.

[24] T. EAVIS, D. CUEVA, A Hilbert Space Compression
Architecture for Data Warehouse Environments.
In Proceedings of 9th International Conference
on Data Warehousing and Knowledge Discovery
(DaWaK’07),RegensburgGermany,pp. 1–12,2007.

[25] D. ROTEM, J. L. ZHAO, Extendible arrays for statis-
tical databases and OLAP applications. In Proceed-
ings of 8th International Conference on Scientific
and Statistical Database Systems, pp. 108–117,
1996.

[26] E. J. OTOO, D. ROTEM, Efficient Storage Allocation
of Large-Scale Extendible Multi-dimensional Sci-
entific Datasets. In Procedings of 18th International
Conference on Scientific and Statistical Database
Management (SSDBM’06), pp. 179–183, 2006.

Received: July, 2014
Accepted: November, 2014

Contact addresses:

Sk. Md. Masudul Ahsan
Dept. of Computer Science and Engineering
Khulna University of Engg.& Tech.(KUET)

Bangladesh
e-mail: masudul.ahsan@gmail.com

K. M. Azharul Hasan
Dept. of Computer Science and Engineering
Khulna University of Engg.& Tech.(KUET)

Bangladesh
e-mail: azhasan@gmail.com

SK. MD. MASUDUL AHSAN received his B.Sc. and M.Sc. degrees in
Computer Science & Engineering from Khulna University of Engineer-
ing & Technology, Bangladesh in 2003 and 2012 respectively. He is
now a PhD student in Kyushu Institute of Technology, Japan. His cur-
rent research interests lie in the fields of multi-dimensional database
implementation schemes, visual modeling, and machine vision. He has
been a faculty member of the Department of Computer Science and En-
gineering, Khulna University of Engineering and Technology (KUET),
Bangladesh since 2004.

K. M. AZHARUL HASAN received his B.Sc. (Engg.) degree from Khulna
University, Bangladesh in 1999 and M. E. from Asian Institute of Tech-
nology (AIT), Thailand in 2002 both in Computer Science. He re-
ceived his Ph.D. from the Graduate School of Engineering, University
of Fukui, Japan in 2006. His research interest lies in the areas of mul-
tidimensional databases, information retrieval and high performance
computing. He has been with the Department of Computer Science
and Engineering at Khulna University of Engineering and Technology
(KUET), Bangladesh since 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

