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In this paper, the problem of 3D road scene interpre-
tation for autonomous vehicle driving is addressed. In
particular, the problems of road detection and obstacle
avoidance in outdoor environments are investigated. A
set of descriptive primitives (straight and circular line
segments) is selected to describe 3D objects which
commonly occur in road scenes, e.g., people, cars,
trucks, houses, etc. First, these primitives are extracted
directly from the input image of the scene, and then are
grouped according to specific geometric relationships
(symmetry, convergence, parallelism, closeness, etc.).
Relational geometrical knowledge of the elements of a
group can be used to index an object in a pure bottom-up
way, so decreasing the recognition complexity by reduc-
ing the amount of data to be matched with an object
model database. Results on a road image containing
obstacles, which show the efficiency, accuracy and time
performances of the proposed method are reported.

Keywords: Image processing, feature extraction, feature
grouping, autonomous vehicle driving

1. Introduction

Detection and recognition of the navigation site
and of possible obstacles is a basic task for au-
tonomous vehicle driving [1-5]. In a road envi-
ronment, this task requires that a visual recog-
nition system be able to extract a complete de-
scription of the content of an image in order to
identify the road and the objects that may be on
it. Many interesting objects can be perceived by
such a system as compositions of regular sur-
faces (e.g., cars, roads, traffic signs, etc.). In
general, 2D projections of regular surfaces onto
the image plane are characterized by piecewise
smooth contours and connected regions. There-
fore, descriptive primitives (DPs), such as edges
and regions, can be used to describe projec-
tions of interesting objects onto the image plane

[3,4,5]. For instance, edges characterized by
constant curvatures (i.e., circular and straight
lines) can provide most of the information nec-
essary to interpret a road scene. Straight line
segments can be associated with parts of the car
or human body (door, roof, legs, arms, etc.),
while circular line segments can be associated
with car wheels or human heads.

Several methods to extract straight or circular
lines from an image are provided in the litera-
ture. The most used is the Hough Transform
(HT), which is an efficient technique for line
and curve detection in images; it was proposed
by Hough [6] and improved by Duda and Hart [7]
and Ballard [8]. The main limitations of the HT
are loss of spatial information in the transforma-
tion process and a high false-alarm rate due to
discretization effects and to the presence of spu-
rious peaks. The non-accidentaliness principle
states that the detection of certain configura-
tions of DPs in an image is very likely related to
the presence of man made objects [9] in the ob-
served scene. For example, sets of parallel lines
in a 2D image usually correspond to parallel
lines in a 3D space, as well as proximal lines in
a 2D image are spatially close in 3D space. Fur-
ther steps are necessary to identify and locate the
related objects. In particular, if one describes
an object as a set of regular surfaces, under
some hypothesis, the problem can be reduced to
find correspondences between the set of straight
or circular lines on the image plane and the
3D boundaries of each surface. This prob-
lem has many possible solutions: hypothesis-
and-test approaches that imply the search for
the solution in a wide space is available, but
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it has been demonstrated that algorithms fol-
lowing these approaches have to deal with a
non-polynomial complexity. However, Lowe
[9] suggested an alternative approach by show-
ing that the use of perspective-invariant rules
together with perceptual organization mecha-
nisms can drastically reduce the search com-
plexity. On the basis of his work, many au-
thors [10,11] proposed different approaches to
the so-called “grouping” problem, which aims
at identifying consistent groups of DPs by us-
ing only domain-independent and viewpoint-
invariant knowledge. The main advantage of
grouping is to reduce the amount of data to be
matched with an object model. Relational geo-
metrical knowledge on the elements of a group
can be used to index an object in a pure bottom-
up way, so decreasing the recognition complex-
ity. In [12], a probabilistic approach to group-
ing based on Markov Random Fields (MRFs)
is proposed, which is used in this paper to ob-
tain the most consistent groups from a road-
scene 1mage. Such groups are then compared
with complex models of objects contained in a
database of the recognition system (e.g. cars,
pedestrians, and roads).

This paper describes a recognition system for
autonomous vehicle driving. The system in-
tegrates the capability of bottom-up grouping
with the possibility of propagating expectations
from the 3D world of object models down to the
image plane. Particular attention is devoted to
reporting grouping results. In Section 2, a gen-
eral description of the system is given. Section 3
deals with the description of low level modules
whose main task is to extract 2D straight and cir-
cular lines from 2D images. Section 4 presents
the method to group such DPs into consistent
subsets. Section 5 is focused on top-down hy-
pothesis propagation and on the matching pro-
cess between groups and object surfaces. Re-
sults on real images are provided in Section 6.

2. System Description

3D interpretation of a complex scene is a cru-
cial problem in Computer Vision that cannot
be solved by means of a single or small set of
methods. Generally, it is addressed by divid-
ing the task into several subtasks of reduced
complexity [6,12,13]. In this work, a system

architecture composed of four levels has been
developed (Fig. 1). For the present application,
256x256 b/w images of an outdoor real envi-
ronment are acquired by a visual sensor (e.g.,
a CCD camera). The first level is represented
by an edge-extractor algorithm [14] (i.e., the
Canny operator), which generates an edge-map
of the observed scene. The second level con-
sists of a virtual sensor which is in charge of
extracting straight and circular segments from
the edge-map. A voting-based approach is ap-
plied to map the edge-pixel information directly
nto a symbolic representation of the straight or
circular segments present in the scene. The
numerical input information consists of some
quantities provided by the Canny algorithm: (a)
the coordinates (x, y) of each edge point x on
the image plane, and (b) the gradient orientation
v (x) computed for such coordinates. Then, de-
tected segments are grouped according to spe-
cific geometric relationships (e.g., symmetry,
strong or weak convergence, parallelism, close-
ness, etc.) in order to reduce the amount of data
to be matched with an object model database.
The output is represented by a symbolic graph,
called the Descriptive Primitive Graph (DPG),
where each node is associated with either a
straight or a circular segment in the image and
the link between two nodes represents a differ-
ent geometric relationship between segments.

At the third level, segment-grouping operations
are performed according to perceptual organiza-
tion rules [9]. This stage consists of assigning an
additional label to each node in order to detect
groups of DPs characterized by a given set of
relations. To this end, a Markov Random Field
(MRF) process is applied to the DPG graph to
aggregate segments in order to detect a possi-
ble obstacle in the scene. For example, to de-
tect a car (e.g., lateral view), the MRF process
associates a couple of close parallel segments
and two circles with the lateral surface of the
car. The grouping process follows a Maximum
Probability (MP) approach to estimate the best
label configuration by minimizing an adequate
energy function [12]. A stochastic relaxation la-
belling based on Simulated Annealing [16] with
the Metropolis sampler is followed to obtain
the best configuration. Thanks to the reduced
dimensionality of the graph, as compared with
pixel-based MRF approaches [15,16], computa-
tion time can be reduced to an acceptable value,
evenin the case of complex scenes. The number
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Fig. 1. General architecture of the system.

of DPs in a scene is typically at least two orders
of magnitude smaller than the number of pixels,
and the average connectivity between the nodes
of the DPG is only a little higher than the typ-
ical 4-connectivity between image pixels. The
grouping process produces, as a result, a list of
groups of descriptive primitives.

The last system level performs the final scene
description, i.e., a 3D reconstruction of all ob-
jects obtained by using a Geometric Reasoner
module [6,13] according to the a-priori geomet-
ric knowledge of the objects and to the sen-
sor models. To this end, top-down hypotheses
about the object’s poses are made by fixing hy-
pothesized rototranslation matrices between the
sensor reference system and the reference sys-
tem in which the object is described.

3. Low Level Modules

Two different kinds of DPs are considered for
the road scene interpretation task: (a) straight
segments, which are used to approximate on
the image plane the contours of vehicle surfaces
(e.g., roof, door, bonnet, etc.) or the legs, arms
and trunks of people, and (b) circular segments,
which are used to represent the head of a person
or the wheels of a vehicle.

A. DPs extraction

DPs are obtained by applying, in a sequential
way, an edge extraction algorithm and a voting
mechanism. The former uses, as input data, an
original image /(x) = I(x, y) (where x = (x, y)
is an image point), from which it extracts an
edge image £(x) and a gradient image G(x) by
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(a)

(b)

Fig. 2. 2D image representation of (a) straight and (b) circular segments.

means of a Canny filter operator [14]. These
images can be defined as:

E(x) = {x:x € I(x), F(x) = 1}
G(x) = {r(x) : x € I(x), F(x) = 1}

(1a)
(1b)

where y(x) = y(x, y) is the orientation of the
gradient computed for the co-ordinates (x, y)
F(x) =1 ifxisanedge point

0 otherwise '
different voting functions are used to extract,
from the edge image F(x), the two kinds of
interesting DPs: (a) straight and (b) circu-
lar segments. A straight line, I(7), is identi-
fied on the image plane by an orientation pa-
rameter 0 and by a localization parameter p,
ie, m = (p,8). Each straight line can be
composed by a set of collinear segments, i.e,
I(m) = {lj(n) : j € [1,J(n)]}, each one univo-
cally characterized by a vector of local parame-
ters (I, (Xmin;» Xmax;» Vj], where l; is alocal label,
(Xminj» Xmax;) are the endpoints of the j-th seg-
ment, and V; is the number of votes associated
with the j-th segment, where J(7) represents
the number of straight segments belonging to
the straight line identified by 7 (Fig. 2a). The
parameter space II consists of an accumulator
array H(r) = H(p, 8), with 20 - (2R + 1) cells
(@ = 180 and R = }—;— 2 indicate the max-
imum resolution of the parameters 8 and p,
respectively). For each edge point x € E(x),
a limited set of H(m) cells is incremented by
considering the gradient information y(x) (i.e.,

and Two

y(x) —th < 0 < y(x) + th):
H(m) = H(p, 6)

N N
=33 B Y) -8l v, 0, 0] (2)

x=1 y=1

where §(-) is the normalized Kroenecker func-
tionand f(x, ) = f(x,v,p, 0) = p—x-cosO —
y - sinf = 0 is the voting equation [6-8]. At the
same time, elements of the vector L; are up-
dated.

Analogously, each circle ¢(¢) can be univocally
represented on the image plane by three param-
eters: an orientation parameter ¢, a localization
parameter o and the radius r, i.e., ¢ = (¢, o, r)
(Fig. 2b). Each circle can be composed of a set
cn(@) of N(@) circular arcs, ¢(@) = {cn(@) :
n € [1,N(9)]}, each one characterized a vec-
tor of local parameters [¢,, (Vimins Ymaxy)sUn,
where ¢, is a local label, (Vmin,, Ymax,) are the
endpoints of the n-th circular arc, and U, is
the number of votes received by the n-th circu-
lar segment. By considering the polar equation
of the circle and by substituting the values of
the centre (expressed in polar coordinates, i.e.,
xg = 0-cos ¢ and yg = 0 -sin ¢), the following
voting equation is obtained [17]:

S('xﬂyﬂ O‘?(pﬂr) :{

O-COSPp =x+r-cosy
o-sing =y+r-siny
(3b)
Accumulator array cells (maxima) with a large
number of votes represent straight segments
(circular arcs) in the input image. A local max-
imum 7* is defined as a parameter-space point
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Fig. 3. (a,b,c) Collinear, parallel and convergent straight segments, and (d) collinear circular segments.

associated with an accumulator H(7*) with the
highest value, compared with its neighbouring
cells and with a fixed threshold H,,:

n* ={n:H(x") > H(n) AND H(%*) > H,,
7T € Npr} (4)

where N+ is the set of neighbours of 7% and
consists of all points (p, 0) belonging to a mask
of dimensions AxB centred in 7*. More details
about maxima detection can be found in [17,19].

B. Geometric relationships among DPs

In this phase, collinear segments (Fig. 3a) are
detected as subclasses related to the same 7*
maximum. Parallel segments (Fig. 3b) are de-
tected as points belonging to subclasses asso-
ciated with a pair of the maxima characterized
by the same 6 value, but different p values.
In this case, the relational parameters are the

distance between two edges i and &, computed
as pp, = |p; — px| and the angular orientation
I',. Convergent segments (Fig. 3¢) are detected
in two steps: (a) local maxima n* are ranked
on the basis of their accumulator values (from
the lowest to the highest), and for each subclass
I;(m*) attached to a maximum, a general label A
is assigned to the points x belonging to that sub-
class by performing an antitransformation; (b)
the points x for which a conflict among their la-
bels occurs are inspected and a decision is made
on the basis of the class dimension. Local max-
ima (xy, yy) are also extracted from the image
coordinate space. Such maxima correspond to
convergence points. If a local maximum is asso-
ciated with more than one label (e.g., segments i
and j), then the related labels represent the set of
lines converging to the point (x4, y,). The fol-
lowing attributes are computed and associated
with each label A:
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Fig. 4. Grouped-segment organized into the Descriptive Primitive Graph (DPG).

— the convergence point (x¢, y¢) = (Xn, ¥n);

— the convergence angle 0, = |6; — 6;|;

— the weakness factor W;
— the maximum weakness factor W2,

Parameter W, indicates the minimum distance
of the convergent segment from the convergence
point. If W, = 0, this means that the segment
intersects the convergence point. An analo-
gous procedure is used for detecting circular
segments (Fig. 3d) [17].

C. DP graph building up

Finally, straight and circular segments are orga-
nized into a graph (Fig. 4), defined as DPG =
{sm : m = 1,.., M}, where M stands for the
graph dimensions (i.e., M is the number of de-
tected segments) and sm denotes the graph node
associated with the m-th segment. Geometri-
cal relations among DPG nodes are established.
Relations between two nodes are indicated as

[12]:

R(k, j)={h(sx, s;)=hy : k, jE[1..M], j#k} 5
where hy; represents a multidimensional array
whose components are relational features of
a segment pair. hy; can be computed start-
ing from the related pairs of intrinsic features
hkj - [AtafLiS ija pp7 Xey Yo 86‘7 WCa Wlnax]

where the variable status can assume the fol-
lowing values {1 parallelism, 2 convergence,
3 collinearity }.

4. Grouping Module

According to the kind of considered DPs, a
non-homogeneous (i.e., varying from node to
node) and multiple neighbourhood system has
been defined. In particular, two lists of seg-
ments may be associated with each node: they
specify the primitives that are related to a given
node: parallelism, convergence, collinearity be-
tween straight segments and spatial closeness

between straight and circular segments. Let
N? = {N?, =1,.,M i=1,.,1I} be
such a system, with Ngm = {30 w 5 P 5

and 59, € Nok} (i.e., I = 4). Neighbourhood

systems N7, (i = 1, ..,3) related to the paral-
lelism, convergence and collinearity properties
are provided directly by the segment extraction
process as a list of segments parallel, conver-
gent or collinear to the segment s, considered.
Neighbourhood system Ny, related to the vicin-
ity property requires computation of the degree
of closeness between rectilinear segments and
circles. In particular, a circular segment is con-
sidered to be a neighbour of a rectilinear one if
it is inside a window (of specified dimensions)
close to the straight segment (Fig. 5a). Size
and position of the window (with respect to the
rectilinear segment) where the circle should be
located are pre-defined by using a-priori knowl-
edge about the object model considered.

The MRF process aims to associate features
(i.e., rectilinear segments and circles) extracted
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by low level modules in order to detect differ-
ent objects (e.g., road, cars, people) in the scene
considered. It operates directly on the DPG, try-
ing to group primitives, by associating a circle
(the head) above one or more couples of close
parallel vertical segments (legs, trunk) with a
person, or two circles (wheels) under one pair
of parallel horizontal segments (the lateral sur-
face) with a car. To this end, the MRF process
1s split into two levels: the first is devoted to
detecting various subparts of objects and the
second level is devoted to merging groups of
several parts detected by the first level to iden-
tify sets of DPs in a one-to-one relation with an
object model.

A. First level

The first level of the MRF process, denoted as
level 0, operates directly on the DPG nodes.
The grouping process i1s performed by mini-
mizing an adequate energy function composed
of two terms related to the geometrical rela-
tions considered. In particular, the detection
process of a person tries to assign the same

label to close segments that are parallel and
symmetric and below a circle. At the first
level, the MRF model is specified by defining
an irregular lattice SO = {s% : m = 1,.., M},
where each node s¥ is associated with a recti-
linear or a circular segment, and a label field
RY = {rjo i =1,., M} defined on the same
lattice SY, where each 79 is associated with a
node s2. Random values extracted from a set of
M values are assigned to rj(-], i rj(-) € [1, .; M].
A vector g2 of intrinsic properties is assigned to
each graph node by the segment extraction algo-
rithm, i.e., GO = {g% :m = 1, .., M} is the ob-
servation field defined on S°. Let £, denote the
space of all possible configurations Ry. If Ry is
considered as an MRF with respect to the neigh-
bourhood system Ng = {NY : m = 1,.., M},
the best estimate R? according to the Maxi-
mum Probability (MP) criterion, is given by:

R% = arg min U(R)

(a)

RO
ith UR) = ) V,(R®) (6
with U(R") = W(R7) (6)
ceC?
b3 my j se
gment m
,,,,,, IDm |
segment Plmj D2
segment m !
........ . segment k
A, segment
D i D m,j (or group j composed
by scgments ] and k)
(®) (©

_ goupj

i | ‘,

groupk ., - p o

. | 1

|
"'---l‘-""

Fig. 5. Representation of (a) the neighbourhood system for straight and circular segments, (b) the clique for parallel
segments and (c) the clique for the closeness property between straight and circular segments. (d) Definition of the
window used to check i a generic node sj is a neighbourhood of a node sk and (&) representation of the parameter

Dk,j.
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where C? is the set of cliques associated with
a neighbourhood system related to each node
50, and V, represents the potential function re-
lated to different cliques ¢. A clique is defined

as a set of lattice sites (nodes), such that all

the sites that belong to C° are neighbours of
each other. In this case, the neighbourhood sys-
tems are provided directly as two lists of DPs
that may be associated with each node, and that
specify semantically different geometrical rela-
tions among nodes. Hence, it is necessary to
define C? as a set of cliques related to different

neighbourhood systems N?. Potential functions
for each clique configuration are derived from
a set of parameters P that allow one to discrim-
inate between different situations in the same
clique, i.e., V, = V.(R% P%). Therefore, the
best configuration for the field RY can be de-
termined by minimizing the following energy

function:
=3 > D V(R P (7)

nes0 i=1,2 cec?

where Pg C P?, and P? is the set of parame-
ters that are dependent on the observation field
G, and that represent different geometrical re-
lations among the nodes considered in N?. In
particular, a parallel clique favours configura-
tions of aligned parallel segments, i.e., the more
symmetric a couple of segments, the more likely
an edge configuration is to be accepted as a sin-
gle group (see Fig. 5b).

A circle is grouped with a single rectilinear seg-
ment or with a pair of parallel segments, accord-
ing to a proximity criterion, i.e., both the circle
(located inside the window) that is closest to
and most aligned with a rectilinear segment and
the segment itself are very likely to belong to
the same group. In general, energy functions for
the relations considered are computed on the ba-
sis of a first-order neighbourhood system (i.e.,
cliques containing only two nodes). The energy

function UY(RY) for parallelism is expressed as:

URY=D > Y VB, )
mes0i=12 cc?
=> > Z Vi (RO PY) - (8)
meS0i= 12]6 i

where Vm (., .)’s are potential costs related to

the conﬁgurdtion composed of the current site

s, and its neighbour s;. In particular, the clique
potential function for the parallelism property
is:

s A =4
Wi, )= { 0 D
K otherwise

The function ps scores the degree of symmetry
of a parallel straight line and is defined by the
following expression (Fig. 5b):

ps(PY))

where D,, and D; are relative displacements
(with respect to the case of perfect symmetry)
between the two edges, and Dy, ; is the distance
between parallel segments. Therefore, function
ps penalizes more strongly the grouping of seg-
ments that are not symmetric and that are far
from each other. The clique potential function
for the closeness property associated with one
or a pair of (parallel) segments and a circular
segment is defined as

PY if 0 =49
V,%U(RO P°) {VS( ) ifr, I"J (11)
K> otherwise

= Dj + D} + D, (10)

Function vs scores the degree of closeness be-
tween a (couple of parallel) straight segment(s)
and a circle, and is defined as follows (Fig. 5¢):

D1,
O *
vs(P) = > j+D3m,

(12)

where D1 and D2 are the distances between the
centre of the circle and the extremes of the cen-
tral axis related to the couple of segments (or
the extremes of the single segment), and D3 is
the distance between the centre of the circle and
the axis itself. In this way, configurations com-
posed of a circular segment close to the central
axis of a pair of long edges are favoured. The
resulting label image 1s made up of groups of
primitives composed of a circle and a pair of
segments, a circle and a single segment, and
spurious groups of rectilinear segments.

The algorithm searching for the minimum-ener-
gy configuration of the field R? is a stochastic
optimization method (i.e., Simulated Annealing
[15] with the Metropolis sampler). According to
this method, each graph node is iteratively con-
sidered, together with its neighbouring nodes
related to different relational subsystems. The
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current field energy at iteration k, U, is eval-
uated. Then, the label of the current site is
changed, choosing a new label among those of
the neighbouring nodes, in a random way. The
energy of the new configuration, say Uy, is
computed and is either accepted or not, accord-
ing to the Metropolis scheme [15], i.e.,

IF Uiy < Up THEN accept

ELSE {generate a random number A sampled from a
uniform distribution in [0, 1]};

IF A < exp{— (U1 — Uy)} THEN accept ELSE reject

If the change is rejected, the previous label is
reassigned to the node. Then, the next node,
according to a predefined rank, is examined.

B. Second level

The second-level MRF process, denoted as level
1, operates on the feature sets formed by the
first level, taking into account spatial relations
among the detected groups. Hence, it assigns
the same label to groups including only paral-
lel straight segments, located between a group
formed by parallel segment and a circle. A
circle associated with more couples of parallel
(vertical) segments identifying the legs and the
trunk (or the arms) characterizes a person, and
a circle associated with one or more couples of
parallel (horizontal) segments identify the lat-
eral body of a car. At this level, an irregular lat-
tice is defined, S' = {s} : k = 1, .., K}, where
each node s,i is related to a group detected by the
first level. A label field R' = {r} :j =1, .., K}

is also defined on the same lattice S!, where
each ?‘jl 1s associated with a node Si, and K is
the number of groups detected at level 0. The
final result is the best estimate of the label field
R'. Alsoin this case, a vector of observations g}
1s assigned to each node s, i.e., an observation
field is defined as G' = {g} : k=1, .., K}. G!
1s extracted from the final label configuration at
level 0, i.e., ©1 = F(R?), where F is a function

to be applied to R” to compute the parameters
Pl

At level 1, the neighbourhood system N! =
{N}, k=1, .., K} is unique and can be built by
using, for each group s, a window of prefixed
size, as at level 0. In other words, the node s;

is considered as a neighbour of s; if s; is con-
tained in a space portion located over s; (Fig.

5d). The size of the window is computed thanks
to the a-priori knowledge about the application
considered. At this point, following the consid-
erations made for level 0, we can compute the
energy function to be applied at level 1 as

U'RY =D > V(RL P

keS! ceC!

(13)

where V. are the clique potentials related to pos-
sible configurations of the clique C!, and P} are
the parameters involved in the cost computation.
We can rewrite equation (13) by expressing the
neighbouring system N ,} as follows

U'R) =YY V(R PY)

keS! cec!

DHNALND
kes! jen} (14)
ETI  |

dij ifr =7 . In this case,

K5  othervise

parameters P! represent the axis coordinates of
each group, and dy ; is the distance between the
axes of the groups s; and s; (Fig. 5¢). In this
way, close groups are likely to be considered
as a single group, until a standing person is de-
tected. At this level, too, the minimum-energy
configuration of the field R! is reached by using
the Simulated Annealing [15] algorithm with the
Metropolis sampler. There is no method used
to determine optimal parameters K;: they are
fixed according to heuristic criteria, trying to
find a good trade-off among the scale factors in
different terms of the energy functions.

where Vi ; = {

5. Geometric Reasoner Module

At the highest level, the Geometric Reasoner
(GR) manages the 2D-into-3D transformation
of DPs groups (called closures) into surfaces
[5,13]. Only one of the closures provided by
the lowest level is selected by means of an in-
trinsic matching phase in which the closure is
assigned to one of the surfaces of the object to
be searched for. The matching phase is mainly
based on the similarity of an observed closure
to the 2D shape of the model surface and it is
performed by means of a fuzzy approach. The
GR searches for one surface in each recogni-
tion cycle by considering model objects, which
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may consist of one or more surfaces. Once the
GR has identified a surface, it does not perform
additional grouping operations but a relational
matching to verify whether the surface is ge-
ometrically compatible with the other surfaces
previously found [13].

A. Recognition cycle

The GR considers an object model O; composed
of a set of surfaces:

O = {80 5o = laA¥ (15)
The system has a geometrical representation of
the object, given by the equations of the sur-
faces in the reference system of the model. In
addition, the minimum and maximum dimen-
sions of each surface are associated with each
object model. For each object model, a view-
point can be chosen from a subset of possible
viewpoints. This selection (i.e., a viewpoint
assumption) implies that the system must first
select a certain transformation between the ref-
erence system of the object model O; and that of
the sensor on the basis of the a-priori knowledge
on the most probable object pose. Selection of
the viewpoint is very critical for functioning of
the recognizer; it not only affects computation
of the inverse transformation (once the view-
point has been hypothesized), but also requires
an explicit representation of different probable
object poses.

B. Matching phase

When the viewpoints have been hypothesized,
each 3D-object model surface belonging to a
view can be transformed from the 3D-object
model reference system into the 2D-image ref-
erence system by using the prospective projec-
tion equations [6,13]. To this end, a 2D-model
closure is obtained for each model surface. As
described in [13], each 2D-model closure is ex-
pressed by means of symbolic descriptions, as-
sociated with a set of 2D grouping properties
(e.g., rectilinearity, convergence, etc.). These
properties are defined by means of fuzzy mem-
bership functions [18] which are applied to dif-
ferent features in order to perform a numerical
description of the 2D-model closure. The GR
also contains information about the features to
which fuzzy membership functions must be ap-
plied. Finally, if segment groups (e.g., clo-
sures) are available at the higher grouping level
(i.e., the third level), appropriate fuzzy mem-
bership functions are applied to each group to
perform numerical descriptions of the 2D real
closures. Then, a matching function (MF) is
applied to the numerical fuzzy values in or-
der to detect the segment group closest to the
characteristics of the 2D-model closure. For
example, in the case of the object “road”, de-
scribed as a rectangular flat surface, one view
must be selected among three possible views
(i.e., one central view and two lateral views);
the views are taken at a known height above
the ground plane. If a central view is chosen,
the 3D road model is mapped by a perspective
camera model into a trapezoidal 2D patch, and

Simple
Hints Features
Convergence | judge—on N
Somgiés Point position
Hint fuzzy
- value
Straigh Convergence| judge—on
Convergence angle angle m
Convergence| Judge—on _ | ' >
axis axis 84 angle

(a)

(t)

Fig. 6. (a) Example of how the “straight-convergence” fuzzy function is applied to the position (x,y) of the
convergence point, to the convergence axis and to the convergence angle; (b) behaviours of the
“straight-convergence” fuzzy function applied to the convergence angle from three different viewpoints.



3D Road Scene Interpretation for Autonomous Vehicle Driving 287
Fig. 7. Original road image without obstacles.
CONVERGENCE POINT | CONVERGENCE | CONVERGENCE
POSITION (X,Y) ANGLE AXIS

Right viewpoint

Right image position

small angle

right slanting axis

Central viewpoint

Central 1mage position

medium angle

vertical axis

Left viewpoint Left image position

small angle

left slanting axis

Table A The fuzzy description of the road model based on the position of the convergence point, on the amplitude of
the convergence angle, and on the convergence axis equation.

a “straight-convergence” fuzzy function is ap-
plied to the different features used to describe
the 2D closure [13]. Fig. 6a gives an exam-
ple of how this fuzzy function is applied to the
position (x,y) of the convergence point, to the
convergence axis and to the convergence angle
formed by the straight segments that make up
the 2D closure. In particular, Fig. 6b shows
the behaviours of the fuzzy function “straight-
convergence” applied to the convergence angle
formed by the straight edges, from three differ-
ent viewpoints (i.e., one central view and two
lateral views).

6. Results

The presented system was tested on about 100
images from a sequence acquired from a vehi-
cle on a country road. Two examples of scenes
were processed to assess the system’s capability
of detecting the road and the obstacles on it.

A. Road recognition

In the first image (see Fig. 7), an empty road
is shown. A 3D model of a straight road is
available at the Geometric Reasoner’s level, and
three possible viewpoints are considered: a cen-
tral view and two lateral views. For each of
these views, an expected rototranslation matrix
18 computed off-line. Figure 8 presents three
possible viewpoints for the model of the road
object. In Table A, the fuzzy descriptions of
such hypothesized regions are given: such de-
scriptions are based on the position of the con-
vergence point, on the amplitude of the con-
vergence angle and on the equation of the con-

| Group I | Group 2 ||

Right viewpoint 0.35 0.23
Central viewpoint 0.95 0.80
Left viewpoint 0.37 0.26

Table B Results of the matching between fuzzy models
of the road object and the top-ranked group.
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Fig. 8. Three different viewpoints for the object road.

and (2 circles)

Parallel segment | Convergence Parallel axis Convergence
orientation angle axis axis
Right view | (3 horizontal and 2 medium ( 1 vertical axis) and -
vertical segments) angle (2 horizontal axis)

Frontal view -| (4 horizontal and 4

vertical segments)

width angle

(2 horizontal axis)
and
(1 vertical axis)

1 vertical
axis

and (2 circles)

Rear view || (3 horizontal and 4 ( 1 vertical axis) and -
vertical segments) (2 horizontal axis)

Left view (4 horizontal and 4 medium (2 horizontal axis) 1 vertical
vertical segments) angle and axis

(1 vertical axis)

Table C Fuzzy description of the different car views
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Fig. 9. (a) Edges extracted from the original image in Fig. &, (b) straight segments extracted by the voting method
and (c) results of the grouping phase.

vergence axis. The input image was processed
according to the three-level process previously
described. First, edges were extracted by means
of the Canny algorithm, as shown in Fig. 9a.
Then, straight segment were extracted by ac-
cepting the maxima above a threshold, H;, = 20
(Fig. 9b). Finally, the segments are grouped by
using the MRF approach. In Fig. 9c, the results
of the probabilistic grouping are presented. As

one can see, the two straight segment of the
road borders can be easily recognized. A rank-
ing criterion based on the number and lengths
of the segments inside a group was used to se-
lect the most interesting group to be compared
with the models. Table B gives the results of
matching the fuzzy models with the top-ranked
group. The central view is selected as a verified
hypothesis to be confirmed at the GR’s level.
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B. Obstacle detection and recognition

In Fig. 10a, a more complicated image contain-
ing a car (frontal view) placed in the middle of
the road is shown. Detected straight segments
are shown in Fig. 10b. No circular segments
have been detected. The groups obtained by
the MRF-based approach are shown in Fig. 10c
and 10d, respectively. A 3D-car model and its
significant 2D views are shown in Fig. 11. In
Table C, the fuzzy description of the car views
is given. The road model is the same as used for
Fig. 8. As one can see, the groups receiving the
highest number of votes can be associated with
man-made or regular structures in the scene,
1.e., the road which is characterized by long and
convergent segments, and the car (frontal view)
which is characterized by a pair of parallel seg-
ments contained inside the road region on the
image plane. Results of the matching operation
are presented in Table D, for the recognition of
both the road and the car.

Figure 12 shows another road scene containing
a car (lateral view) placed in the middle of the
road. Straight and circular segments are shown

(c)

Group 1 | Group 2

(road) (car)

| Right (road) 0.20 0.11

Central 0.97 0.20
(road)

Left 0.31 0.1
(road)

Frontal 0.07 (.35
(car)

Rear (car) 0.05 0.40

Lateral 0.12 0.87

right (car)

Table D Results of the matching operation for the
recognition of both the road a%d the car on the image in
Fig. 1

in Fig. 12b and 12c, respectively. Figures 12d
and 12e show the detected DPs, which point out
the best match with the road model (long and
convergent segments) and the later view of the
car model (two pairs of parallel segments). Fi-
nally, Fig. 12f shows the groups obtained by the
MRF-based approach at the highest level: the
complete shape of the car has been detected.

/

//L"

PN

(d)

Fig. 10. (a) Real road image containing a stopped car (frontal view), (b) extracted straight segments and (c,d)
obtained groups of convergent and parallel segments, respectively.
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Fig. 11. 3D model of the car seen from four different viewpoints.
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Fig. 12. (a) Real road image containing a stopped car (lateral view), (b,c) detected straight and circular segments,
(d,e) obtained groups of convergent segments (matching with the model of the road) and of parallel segments
(matching with the later view model of the car), respectively, (f) groups obtained at the second-level which match
correctly with the model of the car.

A real scene containing more people (i.e., four,
even the one in the bottom-left part of the image
is almost completely out of the camera field of
view) is used to give an idea of the capabilities
of the system in classifying human obstacles
(Fig. 13a). Figs. 13b, 13c and 13d show the
edges extracted by the Canny algorithm, the rec-
tilinear and the circular segments, respectively.
Groups extracted by the first-level MRF pro-

cess are presented in Fig. 14a. In particular,
the heads, the legs and the bodies of three peo-
ple are clearly detected. At the second level of
the MRF process, such groups are merged ac-
cording to the fusion rules of the object model to
form the complete shape of a person (Fig. 14b).
Vertical and parallel straight segments over-
hanged by a circle are searched for. As can be
seen from these figures, despite the many primi-
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Fig. 13. (a) A real scene containing three people, (b) the edges obtained by the Canny algorithm, (c.d) the straight
and circular segments, respectively.

tives detected at the first level, the MRF process
1s able to identify the groups associated with
three persons. The fourth person has not been
detected as the detected features (i.e., two verti-
cal straight segments) are not sufficient to point
out a correct match with the model of a person.

C. Time performances

The system was implemented on a SUN SPARC
20 Workstation. About 0.5 sec were required for
the bottom-up processing, and the recognition
of each object took about 2 seconds, including
the formulation of multiple hypothesis and the
matching operation. Implementation on mul-
tiprocessor hardware, to be used together with
a pipelined image processor, is currently under
development. Finally, Fig. 15 shows the CPU
time required by the first level MRF process for
different numbers of DPG nodes. As can be
noticed, the time increases very rapidly for a
number of nodes over 50, thus making the algo-
rithm computationally too expensive. In gen-
eral, scenes of moderate complexity involve a
small number of nodes; therefore, computation

time remains within acceptable limits.

7. Conclusions

In this paper, we have presented a visual recog-
nition system for autonomous vehicle driving.
The main novelty of the system, compared with
the available ones [1-5], is an extensive use of
grouping techniques to simplify the complex-
ity of the data/model matching phase for object
recognition. 3D models of the road and possible
obstacles stopped on it have been considered.
A new grouping algorithm has been proposed,
which makes it possible to group together close
groups of segments and circles. The algorithm
is based on a Markov Random Field model of
the descriptive-primitive graph, which works
fast, mainly thanks to the reduced dimensions
of the input space. This approach can be ex-
tended to other problems of similar type (e.g.,
surveillance systems for outdoor environments,
etc.) by generalizing both the type of descrip-
tive primitives represented in the graph and the
neighbourhood relationships.



292

3D Road Scene Interpretation for Autonomous Vehicle Driving

i'f\ i

(a) (b)

Fig. 14. (a) All groups extracted from the first-level of the MRF process and (b) groups obtained at the second-level
which match correctly with the model of people.
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Fig. 15. Graph showing the CPU time required by the first-level MRI process versus different numbers of DPG nodes.
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