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The 3D reconstruction of bones is very useful in medical
applications such as presurgical planning of prosThesis
implant. A vital step in the geometrical modeling of
the bone/implant interface is the bone segmentation,
which, usually needs a lot of human interaction. In
order to release the surgeon from this tedious work, a
robust segmentation system is needed. As noted by some
authors, the integration of information from different
segmentations could give robustness to this process.
Here, an automatic integration method for the problem of
delineating the contours of bone structures is presented.
The system will integrate the classification information
obtained from two segmentation methods, one based on
region growing and the other based on snakes, using a
Markov random field model.

Keywords: segmentation, computed tomography (CT),
Markov Random Field, integration, optimization.

1. Introduction

The representation of the 3D shape of bones is
a prerequisite in certain computer-aided med-
ical procedures; e.g., the presurgical planning
of prosthesis implant, where the accuracy of
the geometrical model is crucial for the custom
prosthesis design and the prediction of the evo-
lution of the bone/implant interface (Keyak et
al., 1993; Miiller and Riiegsegger, 1995; Dario
et al., 1996; Aritan et al., 1997;). The use
of computational techniques allows good pre-
cision and repeatability, which improve the ob-
jectivity of measurement of shape parameters
with respect to the manual segmentations.

The objective of this work is to develop an au-
tomatic system for the 3D segmentation of the

tibia in a set of CT images in order to gen-
erate a surface model. The accuracy of the
analysis strongly depends on the precision with
which the geometry of the structure is defined.
Many methods proposed in the literature for
medical 1image segmentation are either edge-
based or region-based approaches, that require
a large interaction with the user for the con-
trol and correction of the results (Pepino et al.,
1993; Miiller and Riiegsegger, 1995; Brown et
al., 1997). Both, region-based and edge-based
methods, present advantages and disadvantages.
Although noise affects any image processing al-
gorithm, the region-based methods present less
sensitivity than those based on the gradient. The
same occurs with the loss of information at high
frequency. On the contrary, the shape variations
are better handled by means of a scheme based
on contours. Furthermore, since the edge-based
methods depend more on the changes in the gray
levels than on the values of such gray levels,
they are less sensitive to the distributions of the
gray scales. The edge-based methods provide,
in general, better location of the border between
segments of a partition.

Knowledge can be incorporated into the seg-
mentation process to produce better results;
rule-based systems, for example, have been
widely used to segment medical imagery (Dha-
wan and Arata, 1991; Sonka et al., 1996). Gen-
erally, the objective of these methods is the
identification of structures more than its correct
segmentation. On the other hand, the contour-
based methods that are presently receiving the
most attention are the deformable contours or
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Fig. 1. Scheme of low knee bones: (a) cross section
close to the proximal end; (b) cross section close to the
distal end.

snakes (Kass et al., 1988). They also intro-
duce knowledge into the segmentation process
through the initial contour and the definition
of the energy terms. In contrast to edge-based
methods that first identify edges and then try
to construct a closed boundary from the edges,
this approach shapes an initial contour to match
the boundary of the object.

A drawing identifying tibia, fibula, cortical bone
and trabecular bone can be seen in Fig. 1, with
the characteristics of the knee CT images. The
width and the high density of the cortical bone
and also the clear separation between tibia and
fibula, Fig. 1b, make the segmentation of the
tibia in the distal part fairly easy. As we ap-
proach the proximal part of the tibia, the thick-
ness of the cortical bone decreases and the dis-
tance from the fibula is reduced. Moreover,
problems of bone loss, cortical bone narrow-
ness, malformations, etc., can be found. This
leads up to: poorly defined bone external con-
tours, little separation between the internal and
external contour of the cortical bone and the
proximity between contours of different struc-
tures, Fig. la. These characteristics imply
several problems in the application of snakes.
Some of these are: (1) existence of noise and/or
textures in the background or inside the struc-
tures (trabecular bone), (2) very little distance
between different structures, and (3) the exis-
tence of double contours (cortical bone). In
these situations the contour can be trapped by
spurious edge points. This makes the final re-
sult very sensitive to the initial conditions. For
a correct delineation of the contour, the adjust-
ment to the external part of the cortical bone is
of paramount importance. When sequences of
slices are being processed, the final contour in

each slice can be used as the initial contour in
the next slice. Serious approximation problems
arise when injuries or deformations appear. In
this case the initial contour can be located close
to the internal contour of the cortical bone, and
become trapped by it. Although the deformable
contour models have demonstrated a great effi-
ciency in the segmentation of biomedical struc-
tures, they are not limitation free. They continue
to suffer dependency problems with the initial
conditions. The majority of these algorithms
can handle objects with simple geometry and
topology, but they are often inadequate for ob-
jects with deep cavities and for structures made
of different tissues (McInerney and Terzopou-
los, 1995). These drawbacks appear frequently
when treating bone structures with injuries.

On the other hand, the characteristics of knee
CT images also lead the region-based methods
to present problems. These include the inability
of separating very close bone structures, the dis-
location of bone contours and the undetection
of the very thin cortical bone. Region-based
systems present the advantage of having less
sensitivity to noise. Its disadvantages reside in
the difficulty of introducing shape information
into the region growing process and in that the
change of the pixel characteristics suggesting
the presence of a contour can remain diluted in
the global character of the region features. This
frequently provokes undesired merging of re-
gions. This infrasegmentation can be palliated
with a division process that takes information
from a border map. However, in injury zones
or zones with very close structures, the border
information can result incomplete. This is owed
to the effect of interference between neighbor-
ing real transitions, and could make performing
of a precise division impossible.

As noted by some authors, integration of in-
formation from different segmentations could
give robustness to the segmentation process
(Pavlidis and Liow, 1990; Chu and Aggarwal,
1993; Chakraborty et al., 1996; Tek and Kimia,
1997). However, this integration has almost al-
ways been carried out by complex systems or
systems with a large dependency on the used
segmentation algorithms. The majority of these
approaches are only effective in the case of ho-
mogeneous structures with respect to a certain
feature, but not in the case of structures with
several textured parts. Here, a method that inte-
grates different cues for the contour delineation
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of bone structures is presented. The system in-
tegrates classifications (partitions) obtained by
two segmentation methods, one based on region
growing (Pardo et al., 1995) and the other based
on snakes (Pardo et al., 1997) using a Markov
random field model. This statistical model im-
poses connectivity and smoothness constraints
on desired segmentation by Gibbsian priors.

The work is structured in the following way: in
section 2 the idea of the Markov Random Field
model is described, in section 3 an overview
of the used segmentation methods and of the
integration process that we have developed are
presented, and in section 4 the results and con-
clusions of the present work are shown.

2. Background on Markov Random Fields

Frequently, vision problems are formulated as
optimizing criteria due to uncertainties in vision
processes such as noise and ambiguities in the
interpretation. Generally, an exact solution does
not exist, and we have looked for an optimal
solution that satisfies certain constraints. The
Markov Random Field theory provides a math-
ematical basis to solve the problem of making
global inferences using local information. It
is used in labeling problems to establish prob-
abilistic distributions of interacting labels (Li,
1995).

The labeling of a scene is specified in terms of
a set of sites, S, and a set of labels, £. A site
is generally a point in the Euclidean space like
a pixel or a region. The labeling problem con-
sists of assigning a label to each of the sites,
f 8 — L. Thesites in S are related to each
other through a neighborhood system, this is de-
fined as N = {\;|Vi € S}, where N is the set
of sites neighboring in i.

The pair (S, N) constitutes a graph G, where S
contains the nodes and A determines the links
between the nodes according to the neighboring
relationship. The n-site clique, C,, for (S, N),
1s defined as a subset of & which collections of
n sites that are neighbors to one another.

Let 7 = Fy, ..., F, be a family of random
variables defined in the set &, in which every
variable F; takes a value f; in £. The F fam-
ily is called a random field. The probability
that the random variable F; takes the value f;

is denoted as P(f;), and the joint probability is
denoted as P(f). It is said that F is a Markov
random field on & with respect to the neighbor-
ing system A if and only if: P(f) > 0,Yf € F
and P(fi|fs—s) = P(filfy;). Intuitively, this
means that the label of a site only depends on
the direct neighbors.

The equivalence between the Markov random
field and the Gibbs distributions provides a sim-
ple way of specifying the joint probability of an
MRE. A set of variables F is said to be a Gibbs
random field (GRF) in S with respect to A if
and only if it obeys a Gibbs distribution:

P(f) = Zlxe U,
z = Y orih, (1)
feF
u(f) = Y Vels),
ceC

where Z is anormalization constant called parti-
tion function, T is a constant called temperature
and U(f) is the energy function defined as a sum
over the clique potential V,(f), which solely de-
pends on the local configuration of the ¢ clique.
The equivalence between the Markov and Gibbs
fields permits specification of the joint probabil-
ity P(F = f) specifying the clique potentials,
which will be defined as a function of the desired
behavior. In this way the a priori knowledge is
encoded.

To calculate the joint probability of an MRF,
that is a Gibbs distribution, it is necessary to
evaluate Z. As this implies adding up of all the
possible configurations, the calculation is nor-
mally intractable. The explicit evaluation can
be avoided in vision models based on the max-
imum probability.

When we have the knowledge about both prior
and likelihood distributions, the best is to max-
imize Bayes criteria. The maximum a priori
probability (MAP) is the most popular in MRF
modeling (Geman and Geman, 1984). In the
MAP formulation, the image interpretation can
be defined as the following optimization prob-
lem:

f*=arg ?g?P(ﬂd):arg ?éaj)__sp(d\f)f’(f) (2)
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Fig. 2. Global scheme of the region growing system.

Taking into account that F is a MRF, this results
in:

f*=argnin ULf|d)

~ argmin{U(dlf) + U} (3)

In our high level image analysis, the image fea-
tures are regions. A scene will be represented by
means of features (d) of the regions and the rela-
tions (A) between them. We search the config-
uration (segmentation) that minimizes the en-
ergy function using the simulated annealing al-
gorithm (Kirkpatrick et al., 1983).

3. Integration of Segmentations

In the introduction, some features of the region-
and edge-based segmentation methods were re-
ported. In this section, an overview of our previ-
ous work on region growing and snake models
has been made, and after comparing their perfor-
mance we present our proposal of integration.

3.1. Region Growing Approach

The region-based segmentation can be improved

by introducing knowledge about the domain.
The rule-based systems represent this knowl-
edge by means of a set of rules that allow them
to carry out segmentation control driven by data
and/or by model. We have implemented a
rule-based approach for region growing whose
scheme is sketched in Fig. 2. The system has
two main blocks: low level (extracts low level
features) and high level (performs region grow-
ing by using domain knowledge). The system
has also two memories: data base (input, output,
intermediate results, etc.), knowledge domain
(rules, strategies, etc.). The system begins to
carry out a low level presegmentation by means
of a neural network classifier (Cabello et al.,
1993). Then, regions and their features (shape,
densitometric and relational) are organized in a
region adjacency graph (RAG), where the nodes
contains region features and the weighted arcs
represent the size of the shared contours. After
the presegmentation, the high level stage works
directly over the RAG. It begins with the se-
lection of growing kernels of bone areas and
completes the recognition of the bone structures
by applying rules for the merging and the divi-
sion of regions. The growing process is driven
by a set of fuzzy rules that embodies criteria
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Fig. 3. (a) Original image; (b) presegmentation; (¢} model; (d) growing kernels for tibia (white regions); (&)
intermediate state; (f) final segmentation.

as compactness, closure, spatial closeness, and
distance to a model. Given the 3D continuity of
the bone structure, shape and location of bone
in each slice are similar to those in the previ-
ous slice. So, the bone contour delineated in
the previous slice is considered as a model for
the current slice. The process starts by defin-
ing an area of interest (AOI) by means of the
dilation of the model mask. Regions whose cen-
troid are out of this area are discarded. From
the remaining regions, the most dense ones are
chosen as the growing kernels (the higher the
intensity, the higher the probability of belong-
ing to the bone). All these tasks are carried out
by the block Area/Region Of Interest. The bone
growing is performed by the combined action of
two blocks Region Merger and Object Analizer,
which decide on the the merging of neighbor-
ing regions to bone kernels, and the incorpo-
ration of new bone kernels respectively. The
process iterates until a stop criterion, derived
from the measurement of matching between ob-
jects and models, is achieved in the Evaluation
And Control block. If different structures ap-
pear overlaid, then a splitting process, guided
by edge information (low level), has to be car-
ried out. Edge information is obtained combin-

ing the outputs of an edge operator with several
scales (Ig,, - - -, I5,) and taking into account the
shape and location of the model (constraints im-
posed by the knowledge on the domain). The
system has a special sub-block for edge focus-
ing and scale space analysis. A more detailed
description of the overall system can be found
in (Pardo et al., 1995). Fig. 3 illustrates the
growing process.

3.2. Deformable Contour Model

From the edge-based methods, those that are
receiving most attention are actually the de-
formable contour methods. One of the main
reasons for their popularity is the easiness of
the implementation of a mixed control strategy,
bottom-up (data-driven) and top-down (model-
driven). We have implemented a system of de-
formable contours where we introduced new en-
ergy terms which are adequate for the domain
of CT images of the knee (Pardo et al., 1997).
It takes the final contour of the structure in the
previous slice and tries to adjust it to the con-
tour this structure has in the actual slice. The
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adjustment is posed as a process of energy min-
imization. Thus, it is necessary to define an
energy as a function of the image data and the
a priori knowledge, so that the minimum corre-
sponds with the position of the real contour of
the structure.

In the absence of important external forces, the
snake will move in a circular shape and begin to
contract towards a point. Moreover, when a set
of consecutive slices is being processed, the in-
formation transferred from one slice to the next
consists of an approximate shape and its loca-
tion. Classical internal energy expression does
not impose constraints on this knowledge. For
the cases in which a good initial model is avail-
able, it is convenient to add an internal energy
term:

SOk [1— et )

v

where K (i) is a positive parameter, v{ represents
the position of the i-th vertex of the initial de-
formable model and o controls the flexibility in
the deviation with respect to this initial position.
This term constrains the final contour to be near
the initial contour (model).

One of the main problems related to the use of
snakes is strong dependence on the initial con-
tour. In an attempt to mitigate the problems of
bad initialization, we have proposed a potential
to be added to the classical terms for the gradi-
ent, intensity and the proximity to points on the
edge map. The expression of the potential is:

P(V,') ==Y V[G(Vi) * I(Vi]
21wy (5)

an

— 51(v) — G40’

where d(v;) denotes the distance between ver-
tex v; and the closest boundary, and v, &, , n
are positive constants. The fourth term causes
the snake to shift towards the external contour
in the case of structures with a double contour
(cortical bone), and towards the contour of the
closest structure in the case of proximity to other

structures. Here 7’ represents the normal to the
snake. When the structure has a double contour,
this new potential term presents the minimum
value in the exact position of the external con-
tour seen from the mass center (centroid) of
the curve. When the initial model is located
between two close structures, for example the
tibia and the fibula, this potential term attracts
the curve towards the contour that is closest to
the centroid of the snake. Fig. 4 illustrates the
effect of new energy terms compared with clas-
sical implementation.

3.3. Comparison

In the processing of CT images of the knee both
methods give, in general, good results with sim-
ilar quality. However, in slices with low quality
of the cortical bone or injuries, the segmen-
tations can be defective. With the objective in
mind to minimize the error of the automatic seg-
mentation, we propose an integration scheme
of both complementary methodologies. An ad-
vantage of the snake approach over teh region-
based system is a better precision in the loca-
tion of contours, as shown in Fig. 5. On the
contrary, snakes are more sensitive to noise and
fine textures of the trabecular bone. The region
growing method is based on the features of the

Fig. 4. (a) Initial contour; (b) final contour obtained with a classical snake model; (c) result attained with the new
energy terms.
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Fig. 5. Segmentations by means of: (a) region growing; (b) deformable contours.

pixel neighborhood, more than on the local fea-
tures of such a pixel. This provokes expansion
of the bone segment outside of its real limits as
observed in Fig. 5a, and that narrow regions are
lost as Fig. 6a illustrates.

On the other hand, the region growing system
depends less on the initial model than on the de-
formable contour model. This fact is revealed
in Fig. 7, where two slices have been randomly
chosen and the segmentations have been carried
out using different contour models. These mod-
els are the real contours of the same structure
in various adjacent slices. When an important
difference between adjacent slices exists, seg-
mentation by means of deformable contours is
unreliable. It is for this reason that a robust seg-
mentation cannot be exclusively based on them
in spite of their good properties.

3.4. Integration

To carry out the most reliable segmentation we
have proposed integration of both methods’ re-
sults. For this integration we employ the MRF

model, which has received special attention as
an integration scheme of constraints for the in-
terpretation of images (Modestino and Zhang,
1992; Kim and Yang, 1996). Although the ma-
jority of published works related to the MRF
model deal with pixels as sites for labeling,
the natural extension to image structures with a
more abstract level, as regions, can be reached.

The integration system considers those parts of
the original image which are classified as bone
in both systems as secure bone regions. It also
considers as a secure background region the one
that in both cases received this classification.
The integration system will not modify classi-
fication of such regions, but will only work on
the regions that have received a distinct clas-
sification in each segmentation system. These
image areas will be partitioned as in the low
level presegmentation. The scheme based on
the MRF model will decide on the incorpora-
tion of these regions (classified as bone by only
one of the segmentation systems) to the bone or
to the background. Fig. 8 shows the input to the
integration system for the two segmentations in
Fig. 6. Level 255 represents secure bone zone,

Fig. 6. Segmentation by: (a) region growing, (b) deformable contours.



302

An Integration Scheme for Biomedical CT Image Segmentation

=

©
n
T

@
o

n
2

20-

o EITOr IN INE Qerormanie contour

0 1
Relative index

~

i

% Error in the region growing
e

T

=1
o

0 1
Relative index

Fig. 7. Dependency of the regiong growing and deformable contour methods with the initial model. The horizontal
axis represents the relative position of the slices in the sequence whose final contours have been taken as initial
contours. The vertical axis represents the % of error with reiipect to a manual segmentation. Continuous and dotted

i

lines represent two

Fig. 8 Map of input regions to the integration system.
The system will decide on the labeling of the regions
with a gray value more than 0 or less than 255.

0 represents background, and the intermediate
levels represent regions to label. The regions
considered as secure bone receive a label with
value 2 for the tibia and 3 for fibula. The se-
cure background regions receive a label with
value 0. Initially, the rest of the regions are ran-
domly labeled as bone (label 1) or background
(label —1). The optimization of the labeling is
estimated through a unified energy function.

In our application, the sites correspond to the set
of N regions R = {Ry, ..., Ry} as commented
before. From these a graph G = {R, &, D} is
defined, where £ represents the set of edges that
connect the regions, and D = {dy, dy} repre-
sents the set of features: of the region (d ), or of
the relation with neighboring regions(d;). With
this graph it is possible to define a neighborhood
system ' = {N;|Vi € R}, where N; is the set
of neighbors of R;. Two sites (regions) are con-
sidered neighbors if they share an edge. The
set of labels is £ = {3,2,1,0, —1} ={tibia,
fibula, probable bone, background, probable

fferent cases.

background}. The integration problem is for-
mulated as the problem of assigning an L la-
bel to each one of the R sites, or, equivalently
as a set of random variables 7 = {[y, ..., Iy}
defined over R. 7 is the random field, and
I; € {—1, 1} is the random variable associated
with R;. Z is the MRF model over G with respect
to the neighborhood system .

The optimal segmentation (configuration) is
evaluated over the energy function that is now
defined:

U =>_ Vi) + > > Va(li 1)

i€R IER { eN;
+Y Vildill)+) D Valdali i)l I)
icR I€ER { e N

where V| refers to the energy functions that only
take into account labels or features of individ-
ual regions (dy), and V, represents the energy
functions dependent on the relation between two
regions (d3).

In our application the labels with value O (secure
background), 2 (secure fibula) and 3 (secure
tibia) do not change. The regions with these la-
bels are included in the region adjacency graph,
but are only used to evaluate relating features
with the regions in analysis.

The potentials are defined in such a way that
connection between different structures (tibia
and fibula) is avoided, the regular shape of the
bone is favoured, and they have the tendency
to label as background those regions which are
far from the secure bone. These last regions



An Integration Scheme for Biomedical CT Image Segmentation

303

were generated by growing regions and rep-
resent transition zones and appear as a series
of parallel and narrow regions. It is also nec-
essary to eliminate gaps in the bone. Then
labeling must favour the bone label if all its
neighbors are labeled in the same way. It
also takes into account the gray level for the
guidance of the integration. The (d)) fea-
tures of individual regions that are employed
here are: perimeter (P), average gray level
(p) and its variance (o). The relation prop-
erties used are: adjacency to the background
(Is_Ady B € {1, 0}), connectivity of different
structures (Con D_St € {1.0}), shared perime-
ter (Per;) with each neighbor (R; € N;), and
the number of neighbors (NN). These features
are represented in Table 1. The clique poten-
tials should represent the afore mentioned con-
straints. We have constructed an energy func-
tion with the following clique potentials:

Vi(l;) = 0 (6)

Vol 1) = 0 (7)

Vi (dl (l) |Ii) = MiCOHD,St(I')
_)LL_DML\/EL'—P.I; (8)

Po

If+]. Per.. €
(L ) ii +ﬁ71_ﬁ

Va(da(i, )T 1) =IOy )

P; NN
. ([il 1 )Periir €
_wliIS—AdY—B(l)eeg(T. ﬁ)
i
(I.l + ]_)Pel"i.f
&L — Py) (9)

®y 1s the Heavisade function centered on zero,
it takes value 1 in arguments higher than zero
and 0 in the others. The function O, (8) takes
value 1 if the argument is higher or equal to
¢; and 0 in the other cases. A, A, x, v, & are
positive constants. The term in A tries to avoid
merging between different structures. The term
in A favours the inclusion, as part of the bone,
of the regions with a density higher than the
pp threshold, and as part of the background in
opposite cases. The term in y favours the in-
clusion, as part of the bone, of regions where
the majority of its neighbors have this label.
The term in y has the tendency to eliminate
from the bone area those regions adjacent to the
background and with a small or no connection
to the bone label regions. Finally, the term in
& promotes elimination of concavities (assign-
ing bone label) whose adjacency with the bone
exceeds a Pery, threshold. Table 2 specifies the
meaning of each energy term and the values

Features (d;)

Definition |

Area

A; = size of the region R,

Perimeter

P; = size of the perimeter of the region R;

Average gray level

p= AL‘ Z{x,y)ER,'I(x: y)

Standard deviation of gray levels

o= [AL! Z(x,y]ER,‘(I(xz y) - p!_)Z]l/Z ‘

(a)

| Features (d) |

Definition |

Background adjacency

Is_ Ady B(i) = {

1 if3i € N, suchthatZ, =0
0 otherwise

Connect different structures

Con_D_St(i) =

{

1 if3j k € N;suchthat/; =2and f; =3
0 otherwise

Shared perimeter

Per;; = size of the contour between regions R; and R;
ij g .

Number of neighbors

NN = number of adjacent regions

(b)

Table 1. Definition of Features: (a) for single region, (b) for relationship.
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g 1.0

Weight | Meaning of the Weighted Term | Degree of fFunction | Definition
Magnitude o>
. ‘ Thetay | Oy(6) = L ifo = 1

A Avoid the connection between | oo 0 otherwise

regions of different structures 1 if0>e
A Promote bone labeling at high O, B.,(0) = { 0 othe;wise

densities and background label- | 1.0

ing at low densities (b)
5 Promote homogeneity in label-

[ Parameter | Value |

1V Promote background labeling if €1 0
regions are found to be distant | 1.0 . 0T
from bone labeled regions 2 0'
& Avoid the formation of cavities 3
in the bone 1.0 Py 0.6
(a) (c)

Table 2. Definition of: (a) energy terms, (b) functions; (c) parameter values.

given to all parameters used. These parame-
ters were heuristically determined considering
a large set of knee CT images. We found that
their values are not critical, it is enough that A
is much greater (about 2 degrees of magnitude)
than other weights, and these can take the same
value. Parameters ¢; and Py represent what
we understand by the limits of small and large
shared contours between regions, respectively.
In our application, we found that 0.1 and 0.6 are
the best values. These values were used in the
processing of all the CT image sequences re-
gardless of particular imaging conditions. Thus
they do not need to be tuned for each particular
case.

For the optimization of the labeling the MAP
criteria are used together with the simulated
annealing algorithm. The regions that, after
the optimization process, have the label O or -1
are considered to be background, and those that
have the label 1, 2 or 3 are considered to be the
bone. .

4. Results and Conclusions

The integration process is catried out to im-
prove the location of the exterior contours of
the structures of interest. This process takes
the segmentations given by the region growing
system and the snake based approach as inputs.
When the two methods give a tight segmenta-
tion, the integration approximates more to the
segmentation of the deformable models, as they
usually offer a better location of the edges. This
is seen in Fig. 9a, which shows the result of the
integration of the segmentations in Fig. 5.

Another example of the performance of our in-
tegration system is the one shown in Fig. 9b for
the segmentation of Fig. 6. This corresponds to
an image where two injuries appear in the tibial
plateau. These injuries correspond to the zones
with a higher gray level inside the tibia. They

Fig. 9. Results of the integration of the segmentations of: (a) Fig. 5, (b) Fig. 6.
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Fig. 10. (a) Original image; (b) model; (c) segmentation by region growing; (d) segmentation by snakes; () input to
integration module; (f) result of integration.

were provoked by a fracture caused by a bone
loss effect. Low quality of the cortical bone
makes the transitions of gray levels between the
tibia and the muscle much smoother than these
that exist around the injuries. Asaconsequence,
the region-based segmentation does not always
detect presence of the cortical bone owing to the
narrowness of such a bone and its low density.
Another consequence can be that deformable
contours are attracted by the contour of one of
the injuries more than by the contour between
bone and muscle. The integration scheme com-
bines both results to offer a better segmentation
as shown in Fig. 9b.

A very 1llustrative example of the performance
of our approach can be seen in Fig. 10. In
Fig. 10a an image of tibia and fibula appears,
with a considerable bone loss in the fibula. It
makes the region growing and deformable con-
tour processes delineate the fibula unaccurately
(Fig. 10c-d). Fig. 10e shows the differences
between the two segmentations, and Fig. 10f
contains the result of the integration.

In parts farther away from the proximal end of
the knee, where the difference between slices is
small and the cortical bone is wide and dense,

the integration provokes a slight adjustment of
the contours location. In the proximal end, the
distance between tibia and fibula is reduced,
the width of the cortical bone decreases and
the injuries appear. In this part the segmenta-
tion is more complex and the integration pro-
vokes more notable improvements, as shown in
Fig. 10. In Fig. 11 we can see a new example
of the application of the integration system in
the proximal zone. In this case the region grow-
ing system initially merged the tibia and fibula.
The division process separated both structures,
but also eliminated part of the cortical bone of
the tibia, Fig. 11a. On the other hand, the de-
formable contour adjusted to the internal con-
tour of the cortical bone owing to the initial
model being situated in the interior of the bone,
Fig. 11b. The integration of both segmentations
produces a better result as can be observed in
Fig. 11c.

Fig. 12 shows an example of neighboring struc-
tures with a injury in-between them. In that
case, region growing cannot achieve a complete
separation between the tibia and fibula as shown
in Fig. 12a; and with the deformable contour
approach it is necessary to impose an exces-
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Fig. 12. Segmentation of neighboring structures by: (a) region growing; (b) snakes; (c) integration.

sive smoothness to avoid the contact between
the two structures. By means of an integration
scheme it is possible to attain a more precise
segmentation, Fig. 12c.

Finally, in Fig. 13 we show the segmentations of
12 intermediate slices of a CT image sequence
composed of 76 slices.

As we have commented on before, both the
region growing and the snake based methods
produce good segmentation in the majority of
cases. However, none of these methods 1s fool-
proof. When injuries, deformations or bone
loss appear, the similarity between the texture
of certain bone tissues and the muscle increases,
and borders become diffused and disconnected.
So, the quality of the segmentations strongly
depends on the values of the segmentation pa-
rameters. Integration of different segmentation
strategies is highly recommended to find the
most probable contour location, and to avoid
the need of a precise tuning of segmentation pa-
rameters, because definite decisions are made
by the integration scheme. In this way, errors
in individual segmentations can be detected and
corrected. On the other hand, we found that

values of the parameters involved in the inte-
gration process are not critical, and the heuris-
tic values formerly shown work well in all con-
sidered cases. With our integration system we
overcome several inconveniences presented by
individual modules. In this way we obtain a
more robust segmentation method.

The method has been used in the segmentation
of four CT image sequences, in total more than
300 images have been analyzed, and the speed
of segmentation was between 1 and 1.5 minutes
per slice in a SUN SPARC 10. Since the main
motivation for medical image segmentation is
to automate all or part of manual segmentation,
it was important to compare the results of our
algorithm with those of manual segmentation.
Two medical experts carried out the segmenta-
tion of one image sequence, taking, in average, 5
minutes per slice. After comparing the two seg-
mentations with the one offered by our method,
we found that, generally, the discrepancy be-
tween the manual segmentations is greater than
the discrepancy between the automatic segmen-
tation and each of the manual ones.
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Fig. 13. Intermediate slice segmentations in a CT image sequence of 76 slices.

There still remains work to be carried out in
obtaining potential terms that make the integra-
tion strategy better, and in the development of a
reliable evaluation system of the segmentation
results. In this way the global segmentation
system could be based on one of the modules
and thus would decide whether it is needed to
incorporate additional knowledge or not. In
the case new information 1s needed, the system
would use the other module and would finally
integrate the results.
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