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Exploring Properties of a Bounded
Retransmission Protocol with VIS
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Itis of great interest for users of communication protocols
to have a proof that they are correct and reliable to use.
In order to prove a protocol correct formally, the protocol
and the required properties must be formally described.
This paper reports on verifying properties of a bounded
retransmission protocol for large data packets. It is
used to transfer files via a lossy communication channel.
We emphasize timing properties of the protocol. We
specified the protocol in Verilog and stated properties in
a computation tree logic. The verification was carried
out automatically by model checking. We used the
non-commercial tool VIS which made it possible to
introduce nondeterministic choice of data packets length
and a realistic notion of time.
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1. Introduction

Verifying communication protocols is known
to be a difficult challenge for verification tech-
nologies. Some protocols are simple enough
to be proved correct manually. However, there
are many reasons, why such proofs cannot be
carried out for most of them. One reason is
the presence of real-time aspects, which com-
plicates the proof significantly.

A simple well-known protocol for transferring
data reliably over an unreliable data channel is
the alternating bit protocol. It is widely used
as a theoretical example (e.g. [Mil89]). Its
drawback is the absence of a mechanism to
stop retrying to transfer a datum to the receiv-
ing side of the channel if the number of re-
transmissions exceeds a chosen number due to
successive corruptions. One nontrivial protocol

extension of the alternating bit protocol, which
uses timeouts and aborts transmission following
a bounded number of retransmission attempts,
is the bounded retransmission protocol (BRP),
introduced by Philips [Dam97].

The BRP has been developed for the 4" gener-
ation infra-red remote control systems. It has
already been studied using different approaches.
We know about the verification using the CADP
toolbox [Mat96], a tool for checking safety
properties of lossy channel systems [AK96],
Uppaal and SPIN [Dea96, Dam97], Mur¢ and
PVS [HS96|, uCRL and Coq [GdP96], I/O-
automata and Coq [Hea94], and automatic ab-
straction using PVS [GS97]. Only [Dea96] and
[Dam97] consider real-time aspects of the pro-
tocol. All the other case studies use tricks and
assumptions about proper timing. Our paper
reports on specifying BRP in Verilog and ver-
ifying it with VIS, which turned out to be a
capable tool compared to some others.

Verilog is a powerful hardware description lan-
guage for the description, verification, simula-
tion, and synthesis of electronic circuits [ Vea96.
It is a public domain, C-based language, and it
has been an IEEE standard since 1995. To spec-
ify our communication protocol we needed only
a small subset of its capability.

VIS (Verification Interacting with Synthesis)
is a powerful BDD-based tool for verification,
synthesis, and simulation of finite-state systems
[VIS, Vea96]. It has been developed jointly at
Berkeley, Boulder, and Austin. VIS operates
on an intermediate low-level language BLIF-
MYV, which allows to describe hierarchical sym-
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bolic sequential systems with nondeterminism.
A very good compiler from Verilog to BLIF-
MYV is included [Che94.

Probably the most efficient and popular ap-
proach to automatic formal verification 18 mo-
del checking. VIS enables model checking
using Fair CTL [Vea96]. CTL (Computation
Tree Logic) is a propositional temporal logic of
branching time. It is used to describe properties
of systems. If model checking fails, VIS can
report the failure with a counterexample.

Further in this paper we first introduce the BRP
service and BRP protocol. In section 3 we
present a model of the BRP in Verilog. In
section 4 we describe formal verification us-
ing CTL formulas and in section 5 we discuss
timing properties of the BRP. We conclude with
an evaluation of our work.

2. The Bounded Retransmission Protocol

2.1. Service specification

A producer successively wants to deliver large
data packets (e.g. files) to a consumer through
a lossy channel. Each data packet consists of an
arbitrary, nonzero number of small chunks. The
chunks of a data packet are delivered to the con-
sumer in sequence. There is a limited amount
of time available for delivering each chunk to
the consumer. If the time passes for a chunk,
delivery of the data packet stops. So, for each
data packet, either the complete data packet or
just a prefix thereof is delivered to the consumer,
and then delivery of the next data packet starts.
Both the producer and the consumer are to be
notified whether the complete data packet has
been delivered or not.

For each data packet sent, the producer gets one
of the following three confirmations. If itis sure
that the complete packet has been delivered to
the consumer, the producer gets a confirmation
Iok. Unsuccessful delivery is notified by Inok.
It gets Ipk if the last chunk has been sent but it is
not sure if it has been delivered to the consumer.

For each data packet being delivered, each chunk
received by the consumer is accompanied by an
indication. The indication is /rg7 if the chunk 18
the first but not the last one of the data packet. It
is I;yc if the chunk is an intermediate one, and

Iok 1if it 1s the last one of the data packet. In
the case delivery has been aborted after deliver-
ing at least one chunk of the data packet to the
consumer, it gets an indication Iyok.

2.2. Protocol specification

Our description of the BRP is similar to
that from [Dea96]. The protocol consists of
Producer, Consumer, Sender, Receiver,
Channelg, Channel;, and three timers
(Figure 1). Sender gets the data packets from
Producer and sends them as a sequence of
chunks through lossy Channelg. Sender ac-
companies each chunk of a data packet by an
indication Igpsr, Ive, or Iog. Ipst 15 used
for the first but not the last chunk of the data
packet. Ipg is used for the last chunk of the
data packet. All other chunks are accompa-
nied by Ijyc. Receiver passes received chunks
together with the accompanied indication to
Consumer. It also acknowledges every re-
ceived chunk through Channel;. The chunks
and the acknowledgements can be lost. After all
the chunks have been properly acknowledged,
Sender notifies Producer by confirmation Ipg
and waits for a new data packet.

Sender sends one chunk at a time. It starts
Timery immediately after sending a chunk and
waits for an acknowledgement from Receiver or
a timeout of Timery. If the acknowledgement
does not arrive 1n time, Timery times out and
Sender sends the chunk again, but only if the
time limit for sending one chunk is not reached.
The time limit is in fact represented by a maxi-
mum number of retransmissions allowed.

If the number of unsuccessful retransmissions
reaches the maximum number, Sender aborts
transfer of the data packet currently being sent.
Sender notifies Producer about abortion of de-
livery by confirmation Iyok or Ipg. The latter is
used if there was an error during the delivery of
the last chunk. After the abortion, Sender also
starts Timersyye and waits for its timeout be-
fore getting ready to deliver a new data packet.
This is needed because Sender must wait until
Receiver properly reacts to abortion.

The protocol uses an alternating bit as a part
of every chunk sent in order to detect dupli-
cates of an already received chunk at Receiver.
If successive received chunks of the same data
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Fig. 1. A shematic view of the BRP specification

packet have equal alternating bits, Receiver as-
sumes such a chunk has already been received
and does not pass it to Consumer. However,
Receiver acknowledges every chunk.

Receiver starts Timerz every time it receives
a new chunk. If Timerzy times out, it means
that no new chunk has arrived for a long time
and therefore, Receiver may be sure that Sender
has aborted the delivery. Receiver notifies
Consumer about the abortion of delivery by
Inok, unless the last received chunk has been
the last one of the data packet, and returns to its
nitial state.

3. Description in Verilog

3.1. Introductory remarks

A description in Verilog consists of one or more
modules. The structure of a model is described
by making instances of modules. All module
instances run in parallel and are synchronized
by an implicit clock. The interval between two
clock signals is called cycle.

Modules have registers where data are stored.
The default range of the data is one bit, but it
can also be specified as vectors of n bits. VIS
extends the standard Verilog to allow symbolic
data using enumerated type, too. To improve
readability of the model, macro definitions can
be used to introduce constants.

Modules communicate with each other through
wires. Each register in a module may drive

one wire. By changing the value of the regis-
ter the value of the wire is changed. The name
of the wire is equal to the name of the regis-
ter. The communication through the wires is
instantaneous. A wire does not store values
and has to be continuously driven. Only syn-
chronous communication can be modeled with
wires. There is a risk that a value disappears
before it is used. Our model ensures that the
values will always be caught with no need of it
being present for more than 1 cycle.

The behaviour of a module is described using
an initial block and an always block. The
initial block gives the registers initial values.
The always block contains assignments, deci-
sions, and other statements. The statements
are sequentially executed on each clock sig-
nal. Outside the initial and always blocks
we may have agign statements that describe the
combinational part of the module. They are
also called continuous assignments as they de-
termine wires which are continuously assigned
the same boolean function of registers and other
wires.

In our Verilog description of the BRP, modules
correspond to entities of the protocol. Each
entity is represented as a finite state machine
(FSM), therefore all modules have a register
named state, where the current state of the
EFSM is stored.

We say that the modules representing the BRP
entities communicate by exchanging signals, in-
dications, and confirmations. The presence of
a signal on a wire 1s represented by value YES.
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Value NO means that there is no signal on the
wire. Wires for carrying indications and con-
firmations are driven with values Irs7, Iog etc.
The value Z means that there is no indication or
confirmation present.

3.2. The BRP model

Our Verilog description of the BRP is about 400
lines long including some comments. In order
to explain the structure of modules we provide
diagrams similar to process diagrams of SDL
(e.g. [Bra96]). Only the channel module is

‘define SUCCESS 2 //macro definition
typedef

enum {YES, NO} boolean;
typedef

enum {START,TRANSFER} channel_state;

module channel (¢lk,IN,0UT);
input clk;
input IN; //input signal
output OUT; //output signal

channel_state reg state;
boolean reg OUT;
boolean wire IN;
wire [2:1] rand; //2-bits vector
initial begin

state = START;

0UT = NO;
end
asign rand = $ND(0,1,2,3);

always @(posedge clk) begin
OUT = NO; //reset output signal
case (state)
START: begin
if (IN==YES) state = TRANSFER;
end
TRANSFER: begin
if (rand<‘SUCCESS) OUT = YES;
state = START;
end
endcase
end
endmodule

Fig. 2. Specification of a lossy channel

given directly in Verilog due to different expres-
sion of nondeterminism in Verilog and SDL.
The presented channel module serves also as
an example of a description in Verilog.

The channel module (Figure 2) has registers
state and OUT. The module communicates with
other modules through wires IN and 0UT, which
carry signals. Wire QUT is driven by the channel
module itself and is used to send signals to other
modules. Wire IN is driven outside the channel
module and is therefore used to get signals from
other modules. The channel module must non-
deterministically decide whether to lose a sig-
nal. In Verilog, this can be achieved by using
a generator of random values. So, the channel
module has a 2-bit wire rand, which 1s con-
tinuously driven by such a generator (construct
$ND). The generator chooses a value between 0
and 3. The meaning of the chosen value de-
pends on constant SUCCESS which is introduced
as a macro. Changing this constant we can
make the channel more or less reliable as it is
explained in the continuation.

Channelg and Channely, are both instances of
the channel module. Initially, both channels are
in the START state with register OUT set to NO.
If wire IN carries value YES, the channel goes
to the TRANSFER state. In this state the channel
checks the value of wire rand. If it is smaller
than constant SUCCESS, the channel “decides”
not to lose the input signal and sets register QUT
to YES. Otherwise the value of register OUT
remains NO. Then the channel returns to the
START state. The assignment OUT = NO at the
beginning of the always block causes that the
signal QUT is present for only one cycle.

The Producer module (Figure 3) produces data
packets. The number of chunks in each data
packet is randomly chosen. It is stored in reg-
ister n during the whole delivery of the packet.
Notice that the contents of chunks is not mod-
elled. Only the delivery request and the number
of chunks in the data packet are transferred from
Producer to Sender.

The Sender module (Figure 4) starts in the IDLE
state. It notifies Producer that it is ready for the
transmission of a new data packet by setting
signal READY. Producer demands delivery of a
data packet by sending signal REQ. When Sender
gets signal REQ, it stores the number of chunks
in the packet to register n. Then it resets the
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MODULE: Producer

’ READY <

[ n=3$ND(1, 234)

DCL
mntn;
Vnumber of chunks

indication_type x;
\received confirmati

(
l

Sout (x}

REQ m STA.RT

MODULE: Consumer

- 5

Rout (X)

DCL
indication_type X;
Wreceived indication

int ¢; \number of received chunks

COUNT

Fig. 3. The Producer and Consumer modules

counter of chunks (i = 1) and the retransmis-
sion counter (rc = 1) and starts delivery of the
first chunk. Sender first writes a proper indi-
cation and alternating bit to registers rind and
rab, respectively. It then sends the chunk to
Channelg by setting signal I. At the same time
it starts Timery. Sender holds registers rind
and rab unchanged during the whole delivery

MODULE: Sender

rind = 1_OK;

rind = |_FST;

rind = I_INC;

F (rind,rab)

Fig. 4.

of the chunk.

If the chunk is not lost, Channelg sends signal
G to the Receiver module (Figure 5). To make
the model more effective we in fact do not send
the accompanying indication and alternating bit
through Channelg. Instead, Receiver looks at
the values of registers rind and rab of Sender

=

DCL
int MAX; W max. retries
int o; \\number of chunks
indication_type rind;

\\ accompanying indicati
reg rab; \\ alternating bit
int i; W chunk number
int re; W number of retries

WAIT

l TimeOut_X
rab=1-rab NO
re<MAX Sout (I_DK)
StopTimer_X YES N
_—1_ rc=rc+1; Sout (I_NOK)
( SUCCESS ) l
NEXT StartTimer_SYNC
YES
ERROR
NO
i=i+11: ‘ Sout (I_OK) Tn-nuOul _SYNC
=1y
NEXT C IDLE ‘ rab=0; ‘

IDLE

The Sender module



316

Exploring Properties of a Bounded Retransmission Protocol with VIS

MODULE: Receiver

C = ) (Rfcl":“i?@

{ G (rind,rab) { ACK

RECEIVED

o

[ G (rind,rab) ! TimeQut_Z

RECEIVED

NEW

DCL
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ACKED

Rout (I_INC)

Fig. 5. The Receiver module

through supplementary wires at the moment it
gets signal G.

Receiver acknowledges every chunk through
Channely, by setting signal ACK. If a new chunk
has arrived, Receiver stops and restarts Timery,
and sends the received indication to the Con-
sumer module. Receiver then waits for new
chunks in the IDLE state. If signal TimeOutz
appears, when Receiver is waiting for a new
chunk, it returns to the NEW state. If the awaited
chunk is not the first of a packet, it sends in-
dication Iypg to Consumer before. In the NEW
state Receiver accepts every chunk as a new one
regardless of its alternating bit.

Sender 1s waiting for an acknowledgement on
wire B or signal TimeQOutx. If it receives an
acknowledgement, it stops Timery. If it has
just sent the last chunk of the packet, it notifies
Producer about successful delivery by confir-
mation Ipg through wire Sout. If there are still
some chunks for delivery, Sender increments
the counter of chunks, resets the retransmission
counter and starts transfer of the next chunk.

If signal TimeOuty appears when Sender is
waiting for an acknowledgement, it aborts de-
livery of the data packet or sends the chunk
again. In the case of abortion Sender notifies

Producer about unsuccessful delivery by con-
firmation Iyox through wire Sout. If the chunk
1s to be sent again, Sender increments the re-
transmission counter and sends signal F.

4. Formal Verification using CTL

CTL formulas are built from atomic proposi-
tions, standard boolean operators, and temporal
operators [Cea86]. Atomic propositions express
state properties of the system (e.g. “signal REQ
is set to YES”). Temporal operators describe
qualitatively, when these properties have to be
satisfied.

Each temporal operator consists of a path quan-
tifier and a temporal modality. The path quan-
tifier A indicates that a property is true “for
all computations” and E denotes that it is true
“for some computation”. The temporal modal-
ity describes the ordering of events in time along
a computation and can be one of the follow-
ing symbols: F (“in a future (possibly current)
state”), G (“globally”, “in every state”), X (“in
the next state”) or U (strong “until”).

With CTL formulas one can easily express prop-
erties like: “p is valid in every state of ev-
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ery computation” or shortly “p is always valid”
(AG p), “p is never valid” (EF p), “it is al-
ways possible for p to be valid” (AG EF p), “p
is valid infinitely often” (AG AF p), and many
others. There is also a very useful CTL template
to express safety properties:

AG(s —> AXA ()pUg)) (1)

Informally, formula (1) says that always, if s is
true at a state, then g is true in a future state (not
in the current one) and p is not true at some state
after s and before g. We use the common textual
notation for boolean operators, ! for negation, *
for conjunction, + for disjunction, and — > for
implication, as in VIS and many other tools.

For our model of the BRP we verified many
different CTL formulas. The most significant
are presented in Figure 6. The notation of our
CTL formulas is very compact, especially due
to VIS, which allows the macro definitions of
subformulas.

The first formula in Figure 6 expresses a gen-
eral liveness property. Producer produces data
packets and Sender starts delivery of them in-
finitely often. This assures that the validity of
other properties of the model is not the conse-
quence of staying in a deadlock state.

Formulas from 2 to including 7 talk about the
order of indications received for a data packet by
Consumer. There are four possible indications:
Iest, Iive, Iog, and Iyog. The first indication
received is Ipst or Ipg (formula 2). It is Ipsy if
a data packet with more than one chunk is be-
ing delivered (formula 4). The last indication
received is Ipg or Iyox (formulas 5,7). If Con-
sumer gets ok, all chunks of the data packet
were delivered (formula 6). All the other indi-
cations are Ijyc as they can neither be Ipgy nor
Iok and Iyok (formula 3,5).

Formulas 8 and 9 require that Producer has to
be informed about success of data packet deliv-
ery with exactly one indication before starting
delivery of a new one. Formula 10 talks about
coincidence of indications got by Consumer and
confirmations got by Producer. Because we did
not want to fix their ordering, we express the
property with 4 CTL formulas.

Formula 11 says that Producer does not get
Inok in the case of transmission error if the data
packet being sent contains only one chunk. On
the other hand, Producer does not get Ipg if the

data packet being sent has more than one chunk
and no chunk has successfuly been delivered
(formula 12).

The last three formulas are stated to discover er-
rors due to the chosen timeout intervals. These
formulas refer more to the protocol realisation
than to its properties. To make these formu-
las possible we introduced supplemental sig-
nals ChunkLost and PacketLost into the channel
module. If Channelg or Channel;, loses the in-
put signal, it sends signal ChunkLost. If this
happens during the last allowed chunk retrans-
mission, it sends signal PacketLost, too.

All CTL formulas from Figure 6 together were
verified with VIS release 1.2 on a HP 715/100
Workstation with 128 MB of RAM in 17 min-
utes of CPU time. The allowed number of
transmissions MAX was set to 2 (i.e. the max-
imum number of retransmissions was MAX - 1 =
1). Data packets were of different length. The
maximum number of chunks in a packet was 4.
We set the smallest timeout intervals possible
for our model: Timex = 9, Timey — 34, and
Timesyne = 32 (see the next section). Constant
SUCCESS was set to 2, which caused that 50% of
delivered chunks and acknowledgements were
lost.

5. Timing Properties of the BRP

The BRP is a time-sensitive protocol due to the
presence of the timers. To ensure its proper
functioning, the timeout intervals must be cho-
sen carefully in order to prevent premature time-
outs.

There are three timers in our model: Timery,
Timerz, and Timersync. Verilog allows us to
model explicit timers which count the number of
cycles (clock signals). Each timer is controlled
by two wires, Startlimer and StopTimer, and
sends timeout signals on wire TimeOut. When
a timer is running, it is incremented by one in
every cycle. Signal StartTimer resets the timer
to zero and then starts incrementation. Sig-
nal StopTimer terminates the incrementation of
the timer. When the timer reaches the given
value, it stops and produces timeout signal. Let
us denote timeout intervals at which Timery,
Timery, and Timersync produce timeout signals
by Timey, Timez, and Timegync, respectively.
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# Macro definitions (a macro starts with a backslash). The absent definitions are similar to these.

\define Rout !(receiver.Rout = Z)

\define Rout_I_FST (receiver.Rout = I_FST)

\define Chunk_I_FST (sender.rind = I_FST)

\define StartPacket ((sender.READY = YES) #* (producer.REQ = YES))

\define ShortPacket (producer.n[4:1] = 1)

\define ChunkLost ({channel_K.ChunkLost = YES) +
(channel_L.ChunkLost = YES))

\define PacketLost ((channel_K.PacketLost = YES) +
(channel _L.PacketLost = YES))
\define StartTimer_x (sender.StartTimer_x = YES)

\define TimeQut_x (timer_x.Timelut = YES)

\define ReceiverReady (receiver.state = NEW)

\define PacketComplete (((consumer.c<1>=1)<->(producer.n<i>=1)) *
((consumer.c<2>=1)<->(producer.n<2>=1)) *
((consumer.c<3>=1)<->(producer.n<3>=1)) *
((consumer.c<4>=1)<->(producer.n<4>=1)))

# 1. The data packets are delivered infinitely often.
AG AF \StartPacket;

# 2. The first indication received for a data packet is Igsr or Ipk.-
AG(\StartPacket -> AX A(!'\Rout U (\Rout_IFST + \Rout_I_OK + \StartPacket)));

# 3. During the delivery of a data packet at most one received indication is Irgy.
AG(\Rout I FST -> AX A(!\Rout IFST U (!\Rout_I.FST * \StartPacket)));

# 4. When delivering a data packet with more than one chunk, the first received indication is Irsr.
AG ((\StartPacket * !\ShortPacket) -> AX A(!\Rout U (\Rout_I_FST + \StartPacket)));

# 5. Iok (Inok, respectively) is the last indication received for a data packet.
AG((\Rout T 0K + \Rout I NOK) -> AX A(!\Rout U (!\Rout * \StartPacket)));

# 6. If Consumer gets Ipg, all chunks are delivered.
AG(\Rout_T 0K -> AX \PacketCemplete);

# 7. Ipst (Iinve, respectively) is not the last indication received for a data packet.
AG ((\Rout I FST + \Rout_I_INC) -> AX A(!\StartPacket U \Rout));

# 8. Producer does not start delivery of a new data packet until it gets a confirmation.
AG(\StartPacket -> AX A(!\StartPacket U \Sout));

# 9. After receiving a confirmation, Producer does not get another one for the same data packet.
AG(\Sout -> AX A(!\Sout U (!'\Sout * \StartPacket)));

# 10. Producer does not get Iyox for the data packet if Consumer gets Ipx, and vice versa.
AG(\Rout_I 0K -> A(!\Sout I.NOK U (!\Sout_I.NCK * \StartPacket)));
AG (\Sout_T NOK -> A('"\Rout I.OK U (!\Rout_I.OK * \StartPacket)));
AG(\Rout_INOK -> A(!\Sout I.0OK U (!\Sout_I_OK * \StartPacket)));
AG(\Sout_I 0K -> A(!\Rout I NOK U (!\Rout I NOK * \StartPacket)));

# 11. If delivering a data packet with a single chunk, Producer does not get Inok.
AG ((\StartPacket * \ShortPacket) ->
AX A(!\Sout I NOK U (!\Sout_INOK * \StartPacket)));

# 12. If delivering a data packet with more than one chunk, Producer does not get Ipg
if no chunk of the packet has successfully been delivered.

AG((\StartPacket * !\ShortPacket) ->
AX A('\Sout_IDK U (\Rout + \StartPacket * !\Sout_IDK)));

# 13. TimeOuty appears only if the chunk is lost.
AG(\StartTimer X -> !'EX E(!\ChunkLost U (!\ChunkLost * \TimeOut X)));

#14. TimeOutz appears only if the data packet is lost.
AG(\StartTimer Z -> !EX E(!\PacketLost U (!\PacketLost * \TimeOut_Z)));

#15. TimeOutsyne appears only if Receiver is ready.
AG(\StartTimer SYNC -> AX A (!\TimeOut SYNC U \ReceiverReady));

Fig. 6. Verified CTL formulas
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Timey has to be greater than the maximum time
needed for a chunk sent by Sender to get to
Receiver and for the acknowledgement to come
back if neither the chunk nor the acknowledge-
ment is lost. By looking at the Verilog descrip-
tion or, respectively, the process diagrams of the
modules, one can see that the round-trip time is
maximal when Receiver awaits the first chunk
of a data packet in the NEW state. It amounts
to 8 cycles. First, 2 cycles pass in Channelg
(Figure 2), then 3 cycles in Receiver (Figure
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Fig. 7. A simulation of the BRP

5), 2 cycles in Channely (Figure 2), and finally
1 cycle in Sender (Figure 4). Therefore, the
minimal value for Timey is 9. This can also be
checked by simulation of the model (see Figure
7, simulation lines from 4, where StartTimery
appears, to 12, where the StopTimery signal is
present).

Determining Timez and Timegyyc optimally ap-
pears to be more difficult. They depend on
Timey, the number of allowed retransmisions of
achunk, and the expected time interval between
the end of delivery of one and start of delivery
of the next data packet. Observing simulation
or runs of the system one cannot be sure that
these timeout intervals have correct values. Itis
safer to prove their correctness.

We verified Timey, Timeyz, and Timegsyye with
model checking (see the last three formulas in
Figure 6). The listed CTL formulas allow us to
determine optimal values with a method of brute
force trying. In the case of a wrong combination
of time constants, the model checker informs us
about an error. VIS can even generate the path
where the error occurs, that invalidates a CTL
formula.

Timez has to be determined before Timegyne.
After fixing Timeyx to 9 we started with large
values for Time; and Timegync, where all CTL
formulas were valid, and decremented them
until an error occurred. We found out the
following optimal values: Timez; = 34 and
Timesyne = 32. The path where an error oc-
curred for smaller Timey is presented in Figure
8. One can see that Timery is stopped 33 cycles
after it is started. Because Timerz must not time
out during successful delivery of a packet, it has
to be at least 34. This resultis valid irrespective
of how unreliable the channels are.

In [Dea96] authors claim that
Timesyne > Timeyz (2)

1s a necessary condition for Timegyyc. Figure
9 shows a sequence of signals in the case of
an abortion of packet delivery. Timerz is started
before Timersyyc. The interval between starting
them (77 ) is not shorter than the time which the
system needs to transfer an acknowledgement
from Receiver to Sender. After Timery times
out, Receiver needs some time (73 ) to become
ready for receiving a new packet. It can be seen
that Timesync > Timez 18 a necessary condition



320

Exploring Properties of a Bounded Retransmission Protocol with VIS

ACK is 2R Chunk is ‘.

lo Lo : lost : :

: ¢ i asl : : ) © REQ . : :

producer - —=--<--<-r-------- 2t it aietat il ot Sl ol ittt Sl At A

‘F ! b ‘F o : : 58 ‘F F ;

sEder =g r na debmes aeen Somhmsbrmhe =B s Bm s e T T Ocimd mmihn

A < i G ¢ i1 READY G

channel. K == e piamns sesnsie e S S S D S RS S RNG, LR s O--=-

) ACK; ACK ! : : :

FEGEIVEL L = mebmm Bl —— mme S i it s imimion i mimri i S e i
: :  StartTimer_Z : : : ‘B : blOp;Tlmer_Z

chutieh, L. eeime deprenn suscs SRR RO SRR T SR SEaas SHEEE SRS e
|OI =T |5| I O O B |2{; L T |301 (S |35| T T cycles

Fig. 8. A path where Timez has to be at least 34

only if Ty < Tp. If T} > T, as in our model,
relation (2) is a sufficient condition, but not a
necessary one.
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Fig. 9. A sequence of signals in the case of a
transmission abortion

6. Conclusion

The work demonstrated in this paper was an
interesting exercise in protocol verification as
the BRP is a nontrivial communication protocol
with bounded number of retransmissions and
real-time aspects. It is reported in [Dea96] that
some tools have had problems with verifying
the BRP because of too much memory con-
sumption. VIS turned out to be a reliable and
capable model checker although it is a general-
purpose tool.

We started exploring properties of the BRP with
a natural-language description of the service
and protocol. For formal specification of the
protocol we used the hardware description lan-
guage Verilog. As in [Dea96] (and partly in
[Mat96] and [ AK96]), we eliminated the sources
of infiniteness, so that automated verification
with finite-state systems verification tool VIS
was possible. We verified the protocol for a
fixed number of retransmissions and neglected
data contents of the chunks. The length of the
packets was limited, but in contrast to [Dea96],

[Mat96], and [AK96] nevertheless variable due
to the use of generator of random values in Ver-
ilog.

We verified control properties of the protocol
by model checking. Because the correctness of
the protocol depends very much on the three
timeout intervals, we studied timing properties
of the BRP especially in detail and found opti-
mal values for them in our model. Due to the
way of modelling devices in Verilog, the delays
between certain events in modules are equal to
some constant number of cycles. For example,
the channel delay in our model happens to be ex-
actly 2 cycles. However, the optimal values for
the timeout intervals could be found in the same
manner if the delays in the channel and other
modules were different. Notice that we also
studied the general relation that should hold be-
tween Timesyne and Timez in more detail than
this has been done in [Dea96].

We found Verilog from many points of view
similar to familiar programming languages. It
allows one to write readable structured specifi-
cations without an extensive study of the lan-
guage itself. Its main drawback is the lack of a
better support for asynchronous communication
between modules.

Simulation, although it is not a formal method,
is from our experiences an excellent aid to the
design of models. It gave us a significant in-
sight into the model. Simulation and the abil-
ity of VIS to produce counterexamples when
model checking fails made finding and correct-
ing errors in the model and CTL formulas much
easier.

Experiences we got by exploring the proper-
ties of the BRP encourage us to explore and
verify even more complex protocols in the fu-
ture. We are also interested in a detailed study
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of VIS (e.g. FSM traversal, dynamic reorder-
ing of variables in BDDs) and in finding other
problems where it may be used. Experiences
with VIS will also help us to make our own
model checker, which we are building, even

better [BCK96).
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