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Cloud computing is an Internet-based computing. In
cloud computing, the service is fully served by the
provider. Users need nothing but personal devices and
Internet access. Computing services, such as data,
storage, software, computing, and application, can be
delivered to local devices through Internet. The major
security issue of cloud computing is that cloud providers
must ensure that their infrastructure is secure, and pre-
vent illegal data accesses from outsiders, other clients,
or even the unauthorized cloud employees. In this
paper, we deal with key agreement and authentication
for cloud computing. By using Elliptic Curve Diffie
Hellman (ECDH) and symmetric bivariate polynomial
based secret sharing, we design a secure cloud com-
puting (SCC). Two types of SCC are proposed. One
requires a trusted third party (TTP), and the other does
not need a TTP. Additionally, via the homomorphism
property of polynomial based secret sharing, our SCC
can be extended to multi-server SCC (MSCC) to fit
an environment where a multi-server system contains
multiple servers to collaborate for serving applications.

Keywords: cloud computing, authentication, secret shar-
ing; key agreement, symmetric bivariate polynomial,
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1. Introduction

Cloud computing is a type of Internet-based
computing, and it is one of the foundations of the
next generation of computing. Computing ser-
vices, such as data storage, software, comput-
ing, and application, are delivered to local de-
vices through Internet [1, 2]. In cloud comput-
ing, the service is fully served by the provider.

Clients need nothing but personal devices and
Internet access. The cloud computing can either
be hosted on-site by the company or off-site
such as Microsoft’s SkyDrive, Google Drive,
Samsung’s S-Cloud service, Apple’s iCloud,
Amazon’s Cloud Drive. Recent applications,
e.g., multimedia streaming, virtual reality, and
robotics [3, 4, 5], have used cloud computing
to provide the services. Additionally, platforms
like Google Apps (e.g., Gmail, Google Groups,
Google Calendar, . . . , etc.), YouTube, Vimeo,
Flickr, Slideshare and Skype, have adopted the
cloud computing technology. As cloud com-
puting becomes more and more popular, how
to secure cloud computing and protect data se-
curity deserves studying. Some security issues
in cloud computing are surveyed and studied in
[6–16].

For providing cloud services, the sensitive data
for all clients should be stored in the cloud host.
At this time, the data security and the personal
privacy are assured. The cloud provider guaran-
tees these data and personal information in host
database against all accesses of the unauthorized
insiders or the malicious outsiders. Accord-
ingly, some secure cloud computing schemes
based on secret sharing approach were proposed
[17–20]. For example, Yeh’s PASS (Privacy
by Authentication and Secret Sharing) prevents
client’s data privacy from the unauthorized ac-
cess [17]. PASS adopts public key cryptosys-
tem to encrypt its share. So, in Yeh’s PASS,
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the client cannot recover the secret key. En-
cryption/decryption in PASS should be accom-
plished with the help of encryption server and
query server. If we easily store the secret key in
the client side, the secret key will be leaked out
when the client’s device is compromised.

In this paper, we deal with cloud security ser-
vices including key agreement and authentica-
tion described in [17], and solve the aboveweak-
nesses of PASS. By using symmetric bivariate
polynomial based secret sharing, we design the
secure cloud computing (SCC). Two types of
SCC are proposed. One requires a trusted third
party (TTP) in cloud like the scheme in [7], and
the other does not need a TTP. Meantime, our
SCC provides mutual authentication to avoid
connecting the faked server. The proposed SCC
can be extended to multi-server SCC (MSCC)
to fit a multi-server environment [21].

The paper is organized as follows. Section 2
gives some preliminaries. Two types of SCC
are introduced in Section 3, and the MSCC is
proposed in Section 4. Performance evaluation,
security analysis, and applications are shown in
Section 5, and Section 6 is conclusion.

2. Preliminary

2.1. Elliptic Curve Diffie Hellman Protocol
and Elliptic Curve Cryptography

EllipticCurveDiffieHellman (ECDH) key agree-
ment protocol is based on elliptic curve discrete
logarithm problem. On the same security level,
the computation by elliptic curve discrete log-
arithm is faster than the multiplicative group
discrete logarithm, and thus has the computa-
tional advantage. In ECDH, Alice randomly
selects nA and computes PA = nA×G, where G
is a point on elliptic curve. Then, Alice sends
PA to Bob through public channel. By the same
approach, Bob sends PB = nB × G to Alice.
Finally Alice and Bob can share a same secret
key by calculating K = nA × PB = nB × PA.

On the other hand, Elliptic Curve Cryptography
(ECC) can implement encryption and decryp-
tion. Alice and Bob choose the public/private
key (PA, nA) and (PB, nB), respectively. Alice
encrypts the message m by using Bob’s public
key PB and a random number k as C = {k ×G,

m + k × PB}. After receiving C, Bob decrypts
this ciphertext by subtracting (nB×k×G) from
(M + k × PB) to decrypt the message m.

2.2. (k,n) Secret Sharing

Secret sharing is one of main research topics
in modern cryptography and it has been stud-
ied extensively in literature. In 1979, Shamir
[22] and Blakley [23] independently proposed
secret sharing solutions for safeguarding cryp-
tographic keys. In a (k, n) secret sharing, the
dealer divides the secret into n shares and dis-
tributes shares among n shareholders in such a
way that any k or more than k shares can recon-
struct this secret; but any (k − 1) or fewer than
(k− 1) shares cannot obtain any information of
the secret.

In this paper, we use Shamir’s (k, n) secret shar-
ing in a bivariate polynomial type to imple-
ment our SCC and MSCC. Thus, we describe
Shamir’s (k, n) secret sharing (univariate poly-
nomial based secret sharing) and the notion of
bivariate polynomial based secret sharing.

2.2.1. (k,n) Secret Sharing Based on
Univariate Polynomial

Apolynomial based (k, n) secret sharing scheme
was firstly proposed by Shamir [22]. By taking
the secret data as g0 (constant term) in the fol-
lowing (k − 1)-degree polynomial g(x) where
p is a prime number and gi is integer in GF(p),
the dealer could construct n shares (xi, g(xi))
by choosing n different xi, i ∈ [1, n], and sends
them to shareholders.

g(x) = (g0+g1x+. . .+gk−1x
k−1) mod p (1)

In secret reconstruction, any k shares (say k
shares (x1, g(x1)), (x2, g(x2)), . . . , (xk, g(xk)) are
used for reconstructing g(x) via Lagrange inter-
polation formula in (2), and the secret is ob-
tained from g0 = g(0).

g(x)=g(x1)
(x−x2)(x−x3). . .(x−xk)

(x1−x2)(x1−x3). . .(x1−xk)

+g(x2)
(x−x1)(x−x3). . .(x−xk)

(x2−x1)(x2−x3) . . . (x2−xk)
+·s

+g(xk)
(x−x1)(x−x2). . .(x−xk−1)

(xk−x1)(xk−x2) . . . (xk−xk−1)
mod p

(2)
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The univariate polynomial based secret shar-
ing schemes can be used for cloud computing
which many users share and distribute their data
to servers. For example, in [24], the authors
adopted Shamir’s (k, n) secret sharing to de-
sign a new secret sharing that can reduce the
amount of shares in cloud computing environ-
ment. The system in [24] has four entities, users,
key-servers, data-servers, and a dealer. Users
have multiple secrets (say m pieces secrets)
and distribute these secrets in the cloud sys-
tem. Key-server keeps only an initial and uses
a keyed pseudo-random number generator to
generate all the shares, and meanwhile the data-
servers store all the required shares for these m
pieces secrets. Actually, in this cloud system,
the key-servers are composed of small-capacity
servers (because they store only the initial) but
the data-servers are composed of large-capacity
servers (they store all the shares for m pieces se-
crets). By subdividing servers into key-server
and data-servers, this secret sharing scheme can
reduce the amount of shares stored in servers.

2.2.2. (k,n) Secret Sharing Based on
Bivariate Polynomial

There are two types of secret sharing using bi-
variate polynomial. Some of them [25, 26, 27]
use an asymmetric bivariate polynomial, and
some [28, 29, 30] use a symmetric bivariate
polynomial. All polynomials in [25–30] are of
degree (k − 1) for both variables. In [25, 26,
27], the dealer selects an asymmetric (k − 1)-
degree bivariate polynomial F(x, y), and sends
two univariate polynomials gi(x) = F(x, i) and
f i(y) = F(i, y) to each shareholder Pi. On the
other hand, in [28, 29, 30], the dealer uses a bi-
variate polynomial F(x, y), with the symmetric
property F(x, y) = F(y, x), and sends only one
univariate polynomial f i(y) to the shareholder
Pi. When using symmetric bivariate polyno-
mial, both polynomials gi(x) and f i(y) have
the same coefficients (the symmetric property).
Notice that this is why the dealer sends only
one polynomial f i(y) to Pi. For most bivari-
ate polynomial based schemes, using bivariate
polynomial is to adopt the advantageous fea-
tures f i(j) = gj(i) when using the asymmetric
polynomial, and f i(j) = f j(i) when using the
symmetric polynomial, respectively.

A (k − 1)-degree bivariate polynomial in (3)
is symmetric, where F(x, y) = F(y, x). Ob-
viously, we can select aij = aji to construct
this symmetric bivariate polynomial because∑

0≤i,j≤(k−1) aijxiyj =
∑

0≤i,j≤(k−1) ajixiyj.

F(x, y) =
∑

0≤i,j≤k−1
aijx

iyj (3)

Same as Shamir’s secret sharing [22], we em-
bed the secret in a00 = F(0, 0). The dealer
selects a symmetric bivariate polynomial, and
sends a (k − 1)-degree univariate polynomial
f(IDi, y) = bi0 + bi1y + . . . + bi(k−1)y

k−1, 1 ≤
i ≤ n, to the shareholder Pi, where IDi is
his/her identification. This bivariate polyno-
mial based secret sharing also has the thresh-
old value k, and this can be proven by Van-
dermonde matrix. When k shareholders collab-
orate, they reconstruct the polynomial F(x, y)
from k shares. Then, the secret can be deter-
mined from a00 = F(0, 0). In this paper, we
use the symmetric bivariate polynomial based
secret sharing to adopt its symmetric property
to design SCC and MSCC.

2.3. Yeh’s PASS

By secret sharing approach, Yeh’s PASS [17]
recovers the secret key from the received share
from client and the share stored in Authenti-
cation Server (AS). After deriving the secret
key, AS authenticate the client by verifying the
hash value of this key. Meantime, Encryption
Server (ES) encrypts the client’s data based on
this secret key. If the authentication succeeds,
AS forwards the query along with the secret
key, to the Query Server (QS). Finally, QS re-
turns either encrypted query or non-encrypted
results to the client. Encryption/decryption in
PASS should be accomplished with the help of
ES and QS. If we easily store the secret key in
the client side, the secret key will be leaked out
when the client’s device is compromised.

The above weakness comes from that AS does
not send the share to the client (note: only the
client inYeh’s PASSuses the public key of cloud
server to encrypt its share and sends it to the
server). This weakness of Yeh’s PASS cannot
be solved by simply sending the shares to the
client by AS using public key cryptosystem, be-
cause knowing public keys of all clients by AS
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is hard to achieve but all clients know the public
key of server is reasonable.

Our SCC avoids using public key cryptosys-
tem to send the shares, and achieves the mu-
tual authentication between the server and the
client. To demonstrate our improvements, we
only briefly describe the following phases in
Yeh’s PASS: (i) secret key agreement, (ii) se-
cret shares agreement, and (iii) client authen-
tication between AS and the client. One can
refer to other phases between AS, ES, and QS
in Figure 1 of [17].

Secret Key Agreement:

Each client i and AP agree on a secret key Ki
and two secret shares CSi (known by the client)
and SSi (known by AS). The shares CSi and SSi
are used for deriving the secret key Ki. ECDH
algorithm, which adopts y2 = x3 + ax + b over
a prime p, is used for this key agreement.

(Step 1) AS and the client i choose a random
number rs ∈ GF(p) and ri ∈ GF(p), respec-
tively.

(Step 2) AS computes a point Rs = rs × G and
sends it to the client. Also, the client computes
and sends a point Ri = ri × G to AS.

(Step 3) AS and the client respectively compute
a point Qi = rs × Ri = ri × Rs.

(Step 4)ASand the client choose the x-coordinate
of Qi as the shared secret key Ki.

Secret Shares Agreement:

After Ki is determined, two secret shares CSi
and SSi are then generated separately by the
client i and AS, respectively.

(Step 1) AS and the client i computes a point
(Qi + Di), where Di is the public key of client
i, and let a be the x-coordinate of this point.

(Step 2) AS and the client can construct a same
polynomial f(x) = Ki + ax (note: this one-
degree polynomial can be used in a (2,2) secret
sharing).

(Step 3) AS and the client i randomly gener-
ate their secret shares as SSi = (x1, f(x1)) and
SSi = (x2, f(x2)), respectively.

(Step 4) After the secret shares are chosen, AS
and the client remove Qi and f(x) from their
storages.

(Step 5) In a later query, the client i presents
his share CSi to AS by using the public key
of AS. AS uses CSi and its own share SSi to
reconstruct the polynomial f(x) and determine
the key Ki = f(0).

Client Authentication:

When receiving an authentication request from
a client, AS starts client authentication proce-
dure. After the successful authentication, the
client can access his own data.

(Step 1) The client i sends an authentication
request to AS, ENCDs(client’s counter ‖ CSi),
which is encrypted by AS’s public key Ds.

(Step 2) AS uses its own private key ds to de-
crypt the received request by DECds (ENCDs

(client’s counter ‖ CSi)), and then retrieves the
client’s counter and the secret share CSi.

(Step 3) AS uses the decrypted CSi and the
stored SSi to recover the secret key Ki using
Shamir’s (2, 2) secret sharing, as described in
(Step 5) of Secret Key Agreement.

(Step 4) AS computes the hash value h(Ki),
and verifies whether this hash value equals the
stored hash value or not. Also, the client’s
counter should be the same as the server’s
counter. Suppose that all the above are true
Then the client i is successfully authenticated.

3. The Proposed SCC

Yeh’s PASS scheme chooses not to store the se-
cret key in the cloud server, but recovers this se-
cret key from the received share from client and
the share stored in server. For such key recov-
ery, the client should use the public key of cloud
server to encrypt and send its share to the server.
Actually, ECC encryption/decryption was used
in [17]. To avoid using public key cryptosys-
tem, and achieving the mutual authentication
between the server and the client, we use the
symmetric property of secret sharing.

The main security features for the proposed
SCC are shown as follows: (1) Even though the
cloud server and the local client device are com-
promised, the secret key cannot be obtained.
(2) Malicious insiders in cloud server and out-
siders cannot determine the secret key. (3)
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Client does not need the complex public cryp-
tosystem to send the share to cloud server, but
only uses the symmetric encryption instead. (4)
The mutual authentication between client and
server is achieved. (5) SCC can be extended to
MSCC, and the authentication and key recovery
of MSCC can be efficiently accomplished.

Two types of SCC are proposed. One requires
a trusted third party (TTP), and the other does
not. Both types of SCC can provide the mu-
tual authentication between the client and the
cloud server. In the proposed SCC without TTP,
ECDH is used to share the same secret key and
the same bivariate polynomial. Besides, we do
not use the public cryptosystem to send the se-
cret shares. Subsequently, both types of SCC
are described. Notations in these protocols are
first defined in Table 1.

Notation Description

nc, ns

random numbers used in ECDH for
client and server, respectively, where
nc < n and ns < n

Pc, Ps

Public values used in ECDH for
client and server, respectively, where
Pc = nc × G and Ps = ns × G

Ki
secret key shared between Client i and
cloud server

Sc, Ss shares for client and server, respectively

IDi ID of Client i

h(·) one-way hash function

r random number used in mutual authen-
tication

Kint
intermediate key used in mutual au-
thentication and secret key recovery

EK(·)/DK(·) symmetric encryption/decryption with
the secret key K

Table 1. Notations in the Proposed SCC.

3.1. Key Agreement Protocol without TTP

There are three phases, key sharing phase, mu-
tual authentication phase, and key recovery phase
in the key agreement without TTP. In this pro-
tocol, we use ECDH to generate the bivariate
polynomial, which is used in secret sharing to
establish the key agreement.

Key Sharing Phase:

In this phase, client IDi and the cloud server
generate their respective shares Sc and Ss. After

successfully generating the shares, they discard
all sensitive information that could be used for
compromising the secret. Also, both sides store
the hash value of secret key h(Ki) for mutual
authentication. Figure 1 shows the key sharing
phase, and all the details are described step by
step as follows.

Figure 1. Key sharing phase in the key agreement
without TTP.

(Step 1) Client selects a random nc and calcu-
lates Pc = nc ×G. Then, it sends it to the cloud
server.

(Step 2) The cloud server selects a random ns
and calculates Ps = ns × G, and sends it to the
client.

(Steps 3 and 4) Client and the cloud server cal-
culate a point Q on elliptic curve by nc ×Ps and
ns × Pc, respectively.

(Steps 5 and 6) Client and the cloud server,
respectively, choose the one-degree bivariate
polynomialF(x, y) = a00+a01x+a10y+a11xy,
where coefficients are determined in Eq. (4).
The value of a00 is used as the secret key Ki.
Also, we choose a01 = a10 to get the symmet-
ric F(x, y).

{
a00 = x-coordinate of Q,
a01 = a01 = x-coordinate of (Q + Pc),
a11 = y-coordinate of (Q + Pc)

(4)

(Step 7) The client selects a random Xc and
computes F(Xc, y) = f c(y). Then, client uses
Sc = (Xc, f c(y)) as his share.
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(Step 8) The cloud server selects a random Xs
and computes F(Xs, y) = f s(y). Then, server
uses Ss = (Xs, f s(y)) as its share.

(Step 9) The client discards Q and F(x, y), and
stores Sc and h(Ki).

(Step 10) The cloud server discards Q and
F(x, y), and stores IDi, Ss and h(Ki) in database.

Mutual Authentication Phase:

In Yeh’s PASS, the authentication is accom-
plished by verifying the hash value of secret
key. Instead of reconstructing the polynomial,
we use the symmetric property in bivariate poly-
nomial to share an intermediate key Kint. Then
the mutual authentication is finished by using
this intermediate key. This mutual authentica-
tion can protect the privacy of client, and only
allows the authenticated client to access his own
data. Meantime, the client can assure that he
connects the real server not a faked one. All
steps are shown in Figure 2, and the details are
briefly described below.

Figure 2. Mutual authentication phase in the key
agreement without TTP.

(Step 1) The client sends {IDi, Xc} to the cloud
server.

(Step 2) The cloud server uses IDi to find
the corresponding f s(y) from database. Then,
it determines the intermediate key Kint from
h(f s(Xc)).

(Step 3) The cloud server sends Xs to the client.

(Step 4) The client also obtains the intermedi-
ate key Kint from h(f c(Xs)). Because f s(Xc) =
f c(Xs) (the symmetric property of F(x, y)), the
client and the cloud server can share the same
intermediate key Kint.

(Step 5) The client selects a random r and com-
putes EKint(r).

(Step 6) The client sends {r, EKint(r)} to the
cloud server.

(Step 7) The cloud server authenticates client

by verifying DK(EK(r)) ?
= r.

(Step 8) The cloud server sends back EK(r +1)
to the client.

(Step 9)The client authenticates the cloud server

by verifying DK(EK(r + 1)) ?
= (r + 1).

Key Recovery Phase:

In Yeh’s PASS, encryption and decryption are
accomplished with the help of ES and QS. If we
easily store the secret key in the client side, the
client will risk losing his secret key when the
local device is compromised. In the proposed
SCC, we do not store the secret key Ki in the
client. In SCC, we use the intermediate key to
share the shares Sc and Ss. Finally, the secret
key Ki is recovered, respectively, by the client
and the server. All steps are shown in Figure 3,
and the details are briefly described below.

Figure 3. Key recovery phase in the key agreement
without TTP.

(Step 1 – Step 4) Same as the steps in mutual
authentication, client and server share the inter-
mediate key Kint.

(Step 5) The client sends EKint(Sc) to the cloud
server.

(Step 6) The cloud server sends EKint(Ss) to the
client.

(Step 7) The cloud server computes F(x, y)
from Sc and Ss, and derives F(0, 0) to verify

h(F(0, 0)) ?
= h(Ki).
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(Step 8) The client does the same operation as
in (Step 7).

(Step 9) Server and client use F(0, 0) as the se-
cret key Ki, and then use EKi(·) to secure their
transmission.

(Step 10) Moreover, the server can use EKi(·)
to encrypt the stored data in the cloud server to
protect the client’s privacy.

3.2. Key Agreement Protocol with TTP

Suppose that we have a TTP in SCC system
model [7]. Then, the polynomial F(x, y) =
a00 + a01 + a10y + a11xy can be generated by
TTP. Afterwards, TTP sends {Sc, h(Ki)} and
{Ss, h(Ki)} to the client and the cloud server, re-
spectively, through a secure VPN channel. The
mutual authentication phase and the key recov-
ery phase in the key agreement with TTP are
the same as those in the key agreement without
TTP. As shown in Figure 4, we only describe
the key sharing phase.

Figure 4. Key sharing phase in the key agreement with
TTP.

(Step 1) If the client IDi wants to share the se-
cret key with the cloud server Serj, the client
sends a request {IDi, Serj} to TTP.

(Step 2) TTP forwards this request to the cloud
server Serj.

(Step 3) The server responds a positive ac-
knowledgement ACK to TTP for agreeing the
request.

(Step 4) TTP generates a symmetric bivariate
polynomial F(x, y) = a00+a01x+a10y+a11xy,

where a00 = Ki, a01(= a10), and a11 are ran-
domly generated. Then, TTP computes Sc =
(Xc, f c(y)) and Ss = (Xs, f s(y)).

(Steps 5 and 6) TTP sends {Ss, h(Ki)} and
{Sc, h(Ki)} to the cloud server and the client,
respectively, through a secure channel.

4. Multi-Server Environment

A cloud service provider may build appropriate
multi-server systems, and provides different ser-
vices to clients. Each multi-server system con-
tains multiple servers, which collaborate to pro-
vide various services. Suppose that M servers
(say Server #1, Server #2, . . . , Server #M) are
devoted to serve a service application. If we
use SCC approaches in Figure 2 and Figure 3,
respectively, to perform authentication and key
recovery, the client will repeat M times mutual
authentication, and apply M times of key re-
coveries to share M different secret keys with
M servers, respectively. The proposed multi-
server environment SCC (MSCC) takes the ad-
vantage of summation homomorphism property
of polynomial based secret sharing to efficiently
finish authentication and key recovery, respec-
tively, by a single operation.

Consider the case of multi-server environment
that includes N servers, Serj, 1 ≤ j ≤ N, and
n clients, IDi, 1 ≤ i ≤ n. Some notations
in SCC should be modified for use in MSCC.
For example, the share of client Sc is modified
as the share of client IDi with the correspond-
ing cloud server Serj S(i,j)

c = (X(i,j)
c , f (i,j)

c (y)).
The selected polynomial between IDi and Serj

is F(i,j)(x, y), and f (i,j)
c (y) = F(i,j)(X(i,j)

c , y),
where Xc used in SCC is changed to X(i,j)

c . For
the share of server, the notation Ss is modified
as S(i,j)

s = (X(i,j)
s , f (i,j)

s (y)), where f (i,j)
s (y) =

F(i,j)(X(i,j)
s , y). Also, the notation Ki,j denotes

the secret key shared between IDi and Serj.

Before describing the proposed MSCC, we first
prove that the symmetric property of bivari-
ate polynomial has homomorphism property
(Lemma1), and that bivariate polynomial based
secret sharing also has homomorphismproperty
(Lemma 2). These two homomorphism prop-
erties are the whys our MSCC can reduce the
operations in a multi-server environment.
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Lemma 1: If F(i,j)(x, y), 1≤ j ≤ M, is symmet-

ric, then FM(x, y) =
M∑

j=1
F(i,j)(x, y) is symmet-

ric.

Proof: We want to prove that the polyno-
mial FM(x, y) is symmetric, i.e., FM(x, y) =
FM(y, x). Because F(i,j)(x, y) is symmetric, it
implies F(i,j) (x, y) = F(i,j)(y, x). Therefore, we

haveFM(x, y)=
M∑

j=1
F(i,j)(x, y) =

M∑
j=1

F(i,j)(y, x) =

FM(y, x). The proof is completed. �

Lemma 2: Suppose that M secret sharing sche-
mes are constructed by polynomials F(i,j)(x, y),
1≤ j ≤ M, respectively. The homomorphism
property implies that the additive sum of shares
of F(i,1)(x, y), F(i,2)(xi, y), . . . , and F(i,M)(xi, y)
(i.e.,F(i,1)(xi, y)+F(i,2)(xi, y)+. . .+F(i,M)(xi, y))
is the share of secret sharing constructed from
the additive sum of polynomials FM(x, y) =
M∑

j=1
F(i,j)(x, y).

Proof: Construct a secret sharing scheme by

FM(x, y) =
M∑

j=1
F(i,j)(x, y), and a share of this se-

cret sharing scheme is FM(xi, y). Since FM(x, y)

=
M∑

j=1
F(i,j)(x, y), we have FM(xi, y) =

M∑
j=1

F(i,j)

(xi, y). The proof is completed. �

The above homomorphism property of bivariate
polynomial is similar to the homomorphism in
[31]. Additionally, there were some researches
[32, 33] dedicated to authentication problem for
multi-server. In this paper, we adopt the sum-
mation homomorphism of polynomial to eas-
ily and quickly finish authentication for multi-
server environment in the proposed MSCC.

As we know, the difference between SCC with
TTP and SCC without TTP is the way of gener-
ating polynomial F(x, y). Here, we only show
MSCC with TTP to describe key sharing phase,
mutual authentication phase, and key recovery
phase.

Key Sharing Phase:

All steps in MSCC are same as those in Figure
4. Additionally, every IDi selects a common

number X(i)
c for all cloud servers, and then com-

putes the multi share S(i,j)
1 = (X(i)

c , f (i,j)
1 (y)),

where f (i,j)
1 (y) = F(i,j)(X(i)

c , y). Also, all servers

select a common number X(i)
s for the client

IDi and then compute the multi share S(i,j)
2 =

(X(i)
s , f (i,j)

2 (y)), where f (i,j)
2 (y) = F(i,j)(X(i)

s , y).
Finally, both sides storemulti shares S(i,j)

1 (client)
and S(i,j)

2 (server). Figures 5(a) and (b) are the
contents stored in the client IDi and the cloud
server Serj, respectively.

Figure 5. The contents stored in (a) the client IDi
(b) the cloud server Serj.

Mutual Authentication Phase:

Suppose that the client IDi wants to log in a
multi-server system including M servers (say
Ser1, Ser2, . . . , SerM). The common numbers

X(i)
c and X(i)

s are used in MSCC to achieve the
mutual authentication for theseM servers simul-
taneously in one authentication operation. All
steps in this mutual authentication are shown in
Figure 6, and the details are briefly described
below.

Figure 6. Mutual authentication phase in MSCC.

(Step 1)The client sends {IDi, X
(i)
c } to the cloud

server.
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(Step 2)The cloud servers (Ser1, Ser2, . . ., SerM)
use IDi to find the corresponding f (i,1)

2 (y), f (i,2)
2

(y), . . . , f (i,M)
2 (y), and computeF2(y) =

M∑
j=1

f (i,j)
2

(y). Then, determineKint fromKint=h(F2(X
(i)
c )).

(Step 3)The cloud server sends X(i)
s to the client.

(Step 4) The client also obtains Kint from h(F1

(X(i)
s )), where F1(y) =

M∑
j=1

f (i,j)
1 (y). Because

F1(X
(i)
s ) = F2(X

(i)
c ) (see Theorem 1), the client

and the cloud server can share the same inter-
mediate key Kint.

(Step 5 – Step 9) Same as the steps in SCC.

Theorem 1: The values F1(X
(i)
s ) and F2(X

(i)
c )

used in MSCC are equal.

Proof: Because F1(X
(i)
s ) =

M∑
j=1

f (i,j)
1 (X(i)

s ) and

f (i,j)
1 (y) = F(i,j)(X(i)

c , y), we have F1(X
(i)
s ) =

M∑
j=1

F(i,j)(X(i)
c , X(i)

s ). Additionally, because

F2(X
(i)
c ) =

M∑
j=1

f (i,j)
2 (X(i)

c ) and f (i,j)
2 (y) = F(i,j)

(X(i)
s , y), we have F2(X

(i)
c ) =

M∑
j=1

F(i,j)(X(i)
s ,

X(i)
c ). F(i,j)(x, y) is a symmetric bivariate poly-

nomial, and thus F(i,j)(X(i)
c , X(i)

s ) = F(i,j)(X(i)
s ,

X(i)
c ). FromLemma1,wehave

M∑
j=1

F(i,j)(X(i)
c , X(i)

s )

=
M∑

j=1
F(i,j)(X(i)

s , X(i)
c ), and imply F1(X

(i)
s ) = F2

(X(i)
c ). �

Key Recovery Phase:

In our MSCC, multiple servers collaborate to-
gether to provide services. After the key re-
covery phase, these multiple servers can share a
common secret key with the client to secure the
transmission and protect data privacy.

All steps in key recovery phase are shown in
Figure 7, and the details are briefly described
below.

Figure 7. Key recovery phase in MSCC.

(Step 1 – Step 4) Same as the steps of mutual
authentication in MSCC, client and server share
the intermediate key Kint.

(Step 5–1) From Ser1, Ser2, . . . , and SerM,

client finds f (i,j)
1 and then computes F1(y) =

M∑
j=1

f (i,j)
1 (y). Let S1 = (X(i)

c , F1(y)).

(Step 5–2) These M servers find f (i,j)
2 for IDi,

and then compute F2(y) =
M∑

j=1
f (i,j)
2 (y). Let

S2 = (X(i)
s ,F2(y)).

(Step 6) The client sends EKint(S1) to the cloud
servers.

(Step 7) The cloud servers send EKint(S2) to the
client.

(Step 8) The cloud servers compute Fm(x, y)

from S1 and S2. Use Fm(0, 0) =
M∑

j=1
Ki,j as the

secret key Ki (note: the proof of Fm(0, 0) =
M∑

j=1
Ki,j is given in Theorem 2).

(Step 9) The client does the same operation as
in (Step 8).

(Step 10) Use EKi(·) to secure the transmission
between the client and this multi-server system.

(Step 11) Moreover, we can use EKi(·) to en-
crypt the stored data in this multi-server system
to protect the client’s privacy.

Theorem 2: The constant term in Fm(x, y) is
M∑

j=1
Ki,j, i.e., Fm(0, 0) =

M∑
j=1

Ki,j.
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Proof: Obviously, we can generate two shares
of F(i,j)(x, y) by selecting x = X(i)

c and X(i)
s .

These two shares are (X(i)
c , F(i,j)(X(i)

c , y)) and

(X(i)
s , F(i,j)(X(i)

s , y)). Lemma 2 implies that the

additive sum of shares, (X(i)
c ,

M∑
j=1

F(i,j)(X(i)
c , y))

and (X(i)
s ,

M∑
j=1

F(i,j)(X(i)
s , y)) are two shares of ad-

ditive sum of polynomials
M∑

j=1
F(i,j)(x, y). Since

S1=(X(i)
c ,

M∑
j=1

f (i,j)
1 (y)) = (X(i)

c ,
M∑

j=1
F(i,j)(X(i)

c , y))

and S2 = (X(i)
s ,

M∑
j=1

f (i,j)
2 (y)) = (X(i)

s ,
M∑

j=1
F(i,j)

(X(i)
s , y)) (see (Step 5–1) and (Step 5–2)). We

can reconstruct the polynomial Fm(x, y) =
M∑

j=1

F(i,j)(x, y), and thusFm(0, 0) =
M∑

j=1
F(i,j)(0, 0) =

M∑
j=1

Ki,j. �

5. Performance, Security Analysis, and
Applications

5.1. Performance Evaluation

Next, we discuss the following issues to com-
pare Yeh’s PASS, the proposed SCC, and the
proposed MSCC in detail.

Shares sent from server and client:

Although Yeh’s PASS [17] also uses secret shar-
ing approach, its univariate polynomial does not
have the symmetric property. Via the symmet-
ric property of bivariate polynomial, our SCC
and MSCC can share an intermediate key Kint
between the client and the cloud servers. The
client can use the symmetric encryption (e.g.,
AES) to send his share to the cloud server (i.e.
the client sends EKint(S1) to the cloud server).
Also, the cloud server can send EKint(S2) to the
client. However, inYeh’s PASS, the client needs
to use the public key of AS (Ds) to send its share
ENCDs (client’s counter ‖ CSi) to AS. Instead

of using public cryptosystem, our scheme only
uses symmetric encryption to transmit share be-
tween AS and the client. Finally, we save the
encryption/decryption cost.

Secret key:

A weakness of PASS using public cryptosys-
tem to send the share is that the cloud server
cannot send the server’s share SSi to the client.
All clients know the public key of AS is rea-
sonable, but AS knows public keys of all clients
in cloud system are hard to achieve. Therefore,
in PASS, the cloud server cannot send its share
to the client by using public key cryptosystem.
This causes that the client cannot recover the
secret key from shares. Encryption/decryption
in Yeh’s PASS should be accomplished with the
help of ES and QS. If we easily store the se-
cret key in the client side, the secret key will
be leaked out when the client’s device is com-
promised. For example, the local computer or
the smart card is cracked. In our schemes, the
cloud server can also send its share using the in-
termediate key, and thus the client can recover
the secret key using his own share and the re-
ceived share from the cloud server. Therefore,
the client does not need to store the secret key.

Authentication cost:

In Yeh’s PASS, AS decrypts CSi and then uses
the stored SSi to recover the secret key Ki by
Shamir’s (2, 2) secret sharing, as described in
(Step 5) of Secret KeyAgreement. By checking
the hash value h(Ki), AS can verify the client.
Our scheme adopts the symmetric property of
F(x, y) (i.e., f s(Xc) = f c(Xs)) to share the in-
termediate key, on which the authentication can
be easily accomplished.

Mutual Authentication:

By the same intermediate key and using chal-
lenge/response handshake, our scheme can achi-
eve mutual authentication. However, the PASS
can only finish the authentication of client.

Homomorphism property in MSCC:

In the present cloud environment, some appli-
cations may need different collaborated severs.
When directly applying SCC for multi-server
environment, the authentication should be re-
peatedM times for amulti-server system includ-
ingM servers. Via the homomorphism property,
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our MSCC can authenticate M servers simulta-
neously in one operation. For key recovery,
if using SCC for multi-server environment, we
need M secret keys for these M servers. In
MSCC, the homomorphism property lets the
client share one common secret key with these
M servers.

According to the above discussions, the com-
parison among PASS, SCC and MSCC is sum-
marized in Table 2.

5.2. Security Analysis

Our SCC has two types: one is with TTP and
the other is without TTP. It is reasonable that
TTP is assumed to be honest and is trusted by
the client and the cloud server. For the SCC
without TTP, we adopt ECDH to securely share
the bivariate polynomial. Both types assure of
securely sharing bivariate polynomial between
the client and the cloud server. The main objec-
tive of the proposed SCC/MSCC is to prevent
malicious insiders in cloud server and outsiders
to login the authorized account and determine
the secret key.

We first define the scope of the security issues
that our SCCandMSCCdiscuss: (i) outsider at-
tack, (ii) insider attack. (iii) server side attack,
and (iv) client side attack. Here, we use out-
sider and insider to represent the attacker who is
unauthorized and authorized to the cloud server.
For example, a hacker in the Internet is an out-
sider, while a malicious cloud employee is an
insider.

The difference between the protocols with TTP
and without TTP is only the generation of bi-
variate polynomial. So, we only give security
analysis for SCC and MSCC for each security
issue.

Outsider Attack:

An attacker from outside the perimeter is not
authorized to access the cloud database. He can
only intercept the information from the public
channel, i.e., can only collect x-coordinates of
the shares for the client and the cloud server.

SCC: As shown in Figure 2, the outsider can
obtain the x-coordinate of client’s share Xc in
(Step 1) and the x-coordinate of client’s share
Xs in (Step 3). However, he does not have f c(y)
and f s(y), and thus he cannot recover the in-
termediate key Kint = h(f c(Xs)) = h(f s(Xc)).
Because the shares and random number are en-
crypted by Kint, the malicious attacker cannot
obtain any information.

MSCC: All steps in MSCC are same as those in
SCC except that every client IDi selects a com-
mon x-coordinate X(i)

c for M cloud servers and
cloud servers also select a common x-coordinate
X(i)

s for the client IDi. By the same approach
in SCC, we use the symmetric property to de-

termine Kint = h(F2(X
(i)
c )) = h(F1(X

(i)
s )) (see

(Step 2) and (Step 4) in Figure 6). Although

the attacker can get the X(i)
c and X(i)

s from pub-
lic channel, he does not have F1(y) and F2(y).
Thus, attackers cannot recover the intermediate
key. Same as SCC, the shares and random num-
ber are encrypted by Kint, finally the malicious
attacker cannot obtain any information.

PASS
the proposed scheme

SCC MSCC

share sent from server using public key cryptosys-
tem

using symmetric encryption using symmetric encryption

share sent from client NO using symmetric encryption using symmetric encryption

secret key stored in client side non-stored anywhere non-stored anywhere

authentication cost using secret sharing using symmetric property using symmetric property

mutual authentication NO YES YES

multi-server environment applying operation for each
server

applying operation for each
server

applying operation formul-
tiple servers simultane-
ously

Table 2. Comparison of Cloud Computing Schemes.
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Insider Attack:

Suppose that malicious cloud employees can
effectively acquire the access to an authorized
database. So they can obtain the contents in
Figure 5(b), i.e., they have server’s shares.

SCC: The share of the client i and the server j

in SCC is S(i,j)
s . Although the insider has S(i,j)

s ,
he does not have the client’s share S(i,j)

c . Due
to the threshold of secret sharing, the malicious
cloud employee cannot recover the polynomial
F(i,j)(x, y). So, he cannot get the intermedi-
ate key (using the symmetric property of poly-
nomial) and the secret key (using the constant
term of polynomial). The insider can get the
hash value h(Ki,j) in database, but it is useless
to recover the secret key. On the other hand,
the data of client is encrypted and protected by
the secret key (see (Step 10) in key recovery
phase of SCC). Finally, even though the mali-
cious cloud employee can access the server, he
gains nothing.

MSCC: The insider can get the share S(i,j)
s from

each server, and thus he can obtain the multi
share S(i,j)

2 used in MSCC. However, he does

not have the multi share S(i,j)
1 in client side. So,

the malicious cloud employee cannot recover
the polynomial Fm(x, y) in MSCC. Thus, same
as SCC, the insider cannot get the intermedi-
ate key and the secret key. Moreover, the hash
value of secret key h(Ki,j) in database is useless

to recover the secret key Ki =
M∑

j=1
Ki,j. The data

of client can be encrypted and protected by the
secret key ((Step 11) in key recovery phase of
MSCC).

Server Side Attack:

The server side attack is defined as that the au-
thorized cloud database is cracked by illegiti-
mate users. Therefore, the contents in database
(see Figure 5(b)) are revealed. The analysis
of server side attack is same as that in insider
attack. Illegitimate users gain nothing even
though the cloud server is compromised.

Client Side Attack:

Client side attack implies that the local devices
(computer, smart phone, IC card, . . . , etc.) are
cracked.

SCC: The attacker compromises the client side
and gets the client’s share S(i,j)

c and the hash
value h(Ki,j) in client side (see Figure 5(a)).
However, the attacker does not have the share
S(i,j)

s , and thus he cannot recover the polynomial
F(i,j)(x, y) due to the threshold of secret sharing.
The analysis of MSCC is similar.

Man-in-the-Middle-Attack:

The so-called man-in-the-middle attack [34] is
that attackers can intercept messages and then
either relay this message or substitute another
message. Because ECDH algorithm is vulner-
able to the man-in-the-middle attack, thus our
SCC without TTP based on ECDH may also be
vulnerable to such attack. In fact, this vulnera-
bility comes from that server and client do not
use identity authentication for each other in Fig-
ure 1. It can be overcome with the use of digital
signature and public-key certificate. Here, we
adopt the approach of identification authentica-
tion in [35] to resist man-in-the-middle attack in
our scheme.

Our identification authentication is based on
that server has saved a hash value of temporary
IDi(TIDi) for each client IDi. Note: this TIDi
is effective for a period, and should be renewed
at the end of its lifetime. Also, the client has his
own TIDi. The concept of TIDi is similar to the
temporary mobile station identification (TMSI)
in mobile communication protocol.

Steps (1)–(4) in Figure 1 are modified as the
following five steps in Figure 8 to resist man-
in-the-middle attack.

(Step 1) Client provides a service request.

Figure 8. Resistant to man-in-the-middle attack using
identity authentication.
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(Step 2) Cloud server selects a random Rs and
sends it to the client.

(Step 3) Client randomly selects nc and calcu-
lates Pc = nc×G. Also, he uses his own TIDi to
calculate h(h(TIDi)‖Rs‖Pc). Then, he selects a
random Rc, and sends (Pc, h(h(TIDi)‖Rs‖Pc),
Rc) to the cloud server.

(Step 4) Cloud server selects ns and calculates
Ps = ns × G. Also, it uses h(TIDi) to cal-
culate h(h(TIDi)‖Rc‖Ps). Then, it sends (Ps,
h(h(TIDi)‖Rc‖Ps) to the client.

(Steps 5) Both sides verify whether the hash
value is correct or not. If the verification is cor-
rect, the client and the cloud server calculate a
point Q on elliptic curve by nc×Ps and ns×Pc,
respectively.

5.3. Applications

In this paper, we propose two types of secure
cloud computing: one is SCC and the other is
MSCC. Also, the key sharing in both SCC and
MSCC can be implemented with using TTP and
without using TTP, respectively.

Here, we show two scenarioswhere our schemes
can be applied: (i) single server or multi server
(SCC or MSCC) (ii) using TTP or not using
TTP (with TTP or w/o TTP) for key sharing.

SCC or MSCC:

In SCC, a cloud server can provide services to
customers alone. For some applications, the ser-
vices need to be accomplished through different
servers. In MSCC, a service provider may or-
ganize resources and builds appropriate multi-
server systems to provide various services to
customers. Each multi-server system contains
multiple servers, which can be devoted to serve
one type of service requests and applications.
However, more servers increase authentication
cost when using SCC approach. Our MSCC
is based on SCC, and uses the same approach
through summation homomorphism. There-
fore, when customers submit service requests
to a service provider, the service provider deter-
mines adopting SCC (single server) or MSCC
(multiple servers) for providing services.

As we know, everything on one server (single-
server environment) is easy for setting up an
application quickly. However, it offers little in

the way of scalability and component isolation.
Suppose that application and database contend
for the same server resources. This case may
cause poor performance. To prevent this prob-
lem, a multiple-server environment is the most
common application scenario. For example, we
may install Microsoft Internet Information Ser-
vices (IIS) and Microsoft SQL Server on dif-
ferent computers. On the other hand, cloud
computing is a large-scale distributed comput-
ing paradigm where computing resources are
available to users. Therefore, a multi-server
environment has the good scalability.

Here, we use an example of integrating multi
servers to improve the performance in cloud
computing [36] to demonstrate our advantage.
For example, we can adopt the approach of us-
ing load balancers to implement the server se-
tups in cloud computing. Via distributing the
workload across multiple servers, we can en-
hance not only the performance but also the
reliability. When one of the servers fails, other
servers will handle the traffic until it recovers
from a server failure.

With TTP or w/o TTP:

When using TTP to implement the key sharing
phase, we need a secure channel, e.g., VPN,
and this enhances the transmission cost. Also,
we need a third party in SCC/MSCC. If we
use ECDH in key sharing phase, we do not
need TTP. However, Diffie Hellman-like proto-
col will be compromised by the so-called clog-
ging attack, in which an opponent sends a pub-
lic Diffie Hellman key to the AS. The AS then
computes the secret key. Repeated messages of
this type can clog AS with useless work. As
a result, AS spends considerable computing re-
sources for doing useless computation.

6. Conclusion

In this paper, we propose two types of SCC:
one is with TTP and the other is without TTP.
The main objective of our schemes is to pro-
tect the data privacy and security in the cloud
server. We add the symmetric property in secret
sharing to successfully reduce the cost to share
the shares between the client and the server.
Additionally, by the homomorphism property
of polynomial based secret sharing, we extend
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SSC to MSCC, fitting the multi-server environ-
ment. When compared with the previous PASS,
our schemes have the better security and perfor-
mance.
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