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This paper introduces a novel method of continuous ver-
ification of simulation software used in decision-support
systems for nuclear emergency management (DSNE).
The proposed approach builds on methods from the field
of software reliability engineering, such as N-Version
Programming, Recovery Blocks, and Consensus Recov-
ery Blocks. We introduce a new acceptance test for
dispersion simulation results and a new voting scheme
based on taxonomies of simulation results rather than
individual simulation results. The acceptance test and
the voter are used in a new scheme, which extends the
Consensus Recovery Block method by a database of
result taxonomies to support machine-learning. This
enables the system to learn how to distinguish correct
from incorrect results, with respect to the implemented
numerical schemes. Considering that decision-support
systems for nuclear emergency management are used in
a safety-critical application context, the methods intro-
duced in this paper help improve the reliability of the
system and the trustworthiness of the simulation results
used by emergency managers in the decision making
process. The effectiveness of the approach has been
assessed using the atmospheric dispersion forecasts of
two test versions of the widely used RODOS DSNE
system.
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1. Introduction

An atmospheric dispersion simulation code
(ADSC) is a computer program, which imple-
ments an atmospheric dispersionmodel (ADM).

In the aftermath of the Chernobyl nuclear acci-
dent in 1986, atmospheric dispersion models
and simulation codes were used to assess the
radiological situation in Western Europe, which
was one of the worst affected areas. On this
occasion, at least two important aspects con-
cerning ADMs and ADSCs became evident.

Firstly, atmospheric dispersion models can be
used for (1) assessing the radiological situa-
tion any time after the release of nuclear trace
species, (2) supporting decision-makers in the
process of deciding upon and implementing ap-
propriate counter-measures, such as the distri-
bution of iodine tables or the evacuation of
severely affected areas, while the accident is
unfolding, and (3) training for nuclear emer-
gencies (i.e., drills). These systems produce
forecasts of the atmospheric dispersion of ra-
dioactive materials using input data from var-
ious sources, including nuclear power-plants,
weather forecast centers, and radiological mea-
surement stations. Dispersion forecasts are used
by government emergency response committees
and nuclear power-plant operators in preparing
for and managing nuclear emergencies.

Secondly, the forecasts of different ADMs, as
well as the results of different ADSCs imple-
menting even the same model, differ to a great
extent qualitatively and quantitatively. In re-
sponse to this situation, the InternationalAtomic
Energy Agency (IAEA) recommended the re-
view and inter-calibration of the models and
simulation codes for the short-ranged and long-
ranged atmospheric transport of radioactive nu-
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clides. More recently, the European Commis-
sion also funded a project, called ENSEMBLE
[1] with the aim of developing a methodology
for assessing the reliability of several medium
and long-range atmospheric dispersion models
currently in use in the EuropeanUnion and other
countries of the world. The outcome of this
work was a multi-model approach, called en-
semble dispersion modeling (EDM). The sys-
tem aggregates results produced by different
ADSCs implementing various models, and out-
puts a unified result based on selecting the pth

percentile result from the ensemble for each
time step and each location of the monitored
area.

1.1. Motivation

Germany, as well as other countries, in case
of a significant release of radioactive materi-
als into the atmosphere, the decision on which
countermeasures to take and which sectors of
the monitored area to evacuate first is taken
based on these forecasts. Thus, simulation-
based decision-support software systems must
be regarded as safety critical. Therefore, it is
necessary to investigate the reliability of such
systems from a software reliability point of
view. Section 4.1.1.2 of the NASA-STD-8719.
13B standard for safety-critical software [2] pro-
vides a list of criteria for determining whether
a software component or system must be con-
sidered safety critical. Accordingly, it suffices
for the software component in question to meet
just one of the listed criteria in order for it to be
regarded as safety critical. Paragraph 4.1.1.2.a.
states that as soon as the software “processes
data or analyzes trends that lead directly to
safety decisions”, it must be considered safety
critical. Moreover, note 4 − 1 from the same
standard specifies that “if data is used to make
safety decisions (either by a human or the sys-
tem), then the data is safety-critical, as is all the
software that acquires, processes, and transmits
the data”. Decision support systems for man-
aging nuclear emergencies (henceforth referred
to as DSNE systems) are in use in all Euro-
pean countries producing nuclear energy – see
for example [1] for a comprehensive list. They
are safety critical because erroneous dispersion
simulation results could lead to false assump-
tions about the dispersion of radioactive pollu-
tants and may thus bias evacuation priorities.

1.2. Proposed Approach

Considering the simple fact that ensemble fore-
casting systems are a paradigmatic example of
the software design diversity principle, the pri-
mary aim of this work is to assess the pos-
sibility of detecting latent software faults in
the dispersion models participating in ensem-
ble forecasting systems using a new software
design diversity method. The current approach
helps improve the reliability of ADSCs by al-
lowing the effective automated continuous ver-
ification [3] of these simulation codes. The pro-
posed approached is based on combining the
N-Version Programming (NVP) [4] and Recov-
ery Blocks (RB) [5] methods while developing
a completely new voting scheme as well as a
new acceptance test for dispersion simulation
results.

The remainder of the paper is organized as fol-
lows. We first briefly review the ADMs imple-
mented in the RODOS system [6] and then pro-
vide a literature review on verification methods
for atmospheric dispersion simulation codes.
We then review the current debate concerning
software design diversity methods and argue
that they are well suited for the case of dis-
persion forecasting systems. We introduce a
new acceptance test and taxonomy-based voter,
which enable the application of the NVP and
RB methods for the continuous verification of
dispersion simulation codes. Finally, we evalu-
ate the approach using two ensembles of artifi-
cially generated data and discuss the results of
the evaluation.

2. Materials and Methods

2.1. Atmospheric Dispersion Modeling

The atmospheric dispersion of trace species is
governed by meteorological events. Wind and
turbulence are the most influential forces in the
dispersion process. In the following, three well-
established ADMs will be briefly reviewed.
All these models share the property that they
represent analytical or numerical solutions to
the diffusion-advection (also called transport)
equation [7] – the most common physical model
used to simulate the atmospheric dispersion of



Improving the Reliability of Decision-Support Systems for Nuclear Emergency Management by . . . 47

trace species. This property is an essential pre-
requisite for the applicability of the software
design diversity methods proposed in this work
to the simulation codes implementing any of the
models considered here.

2.1.1. The Gaussian Plume Model

The Gaussian Plume Model (GPM) is the old-
est dispersion model with practical applicabil-
ity. The model is based on an analytical solu-
tion to the transport equation, which accounts
for the airborne transport of trace species. This
transport occurs through the mean air flow (i.e.,
wind), in which case it is called advection, and
through turbulent movement. Turbulence can
disperse trace species in all three directions of
space represented by the three axes of the Carte-
sian system. This process is called diffusion.
Any dispersion of substances which does not
take place along the main flow is referred to as
turbulent diffusion. The substances contained
within an air volume are quantified by their con-
centration per unit volume, c[kg m−3].

2.1.2. The Lagrangian Particle Model

The Lagrangian particle dispersion model
(LPDM) [8] was adopted by the scientific com-
munity and regulatory authorities by the end of
the 90s as the field’s de facto standard [9]. The
DIPCOT [10] simulation code, which is used in
an operational DSNE system, represents an im-
plementation of the Lagrangian particle model.
In thismodel, an ensemble of particles is used to
represent a much higher number of molecules
of substance per particle released into the at-
mosphere (i.e., trace species). The particles
also reflect the physical properties of the trace
species they stand for. The monitored area is
divided into a 3-dimensional regular grid for
which a wind field is computed at the begin-
ning of each time step. Then, according to the
wind velocity and direction, within one time
step each particle can move from one grid cell
to another whereby its location is updated. In
addition to the change of position, the particle
will suffer a change in its mass due to gravity
(dry deposition) and/or precipitation (wet de-
position). Through dry and wet deposition the
air concentration of the trace specie(s) repre-
sented by some particle will decrease according
to first order differential processes.

2.1.3. Puff Models

Puff dispersion models are more accurate than
Gaussian-Plume models and less time-consum-
ing than the Lagrangian particle model. These
models simulate the dispersion of trace species
using a series of Gaussian puffs of different
sizes. A puff contains a quantity of pollutant
(characterized by its concentration) which is
subject to turbulent diffusion and advection by
a wind field in a way that is similar to how par-
ticles are transported. RIMPUFF [11] and AT-
STEP [12] are the two codes implementing puff
models used to evaluate the current approach.

2.2. The Verification and Validation of
Atmospheric Dispersion Simulation
Codes

Much like any other software product, disper-
sion simulation codes must undergo a thorough
verification and validation phase prior to being
integrated into production systems. [13] pro-
vide an extensive overview of the best practices
and methods for the verification and validation
of simulation codes from the fields of compu-
tational engineering and physics. According
to [13], code to code comparisons are only ac-
cepted as verification procedures provided that
traditional and well accepted verification and
validation procedures have been undertaken as
well. An equivalent method to code to code
comparisons has been used for comparing com-
mercial seismic data processing software. In an
extensiveN-version programming study (called
the T-experiments) [14], the authors show that
the different versions of the scientific software
participating to the study compared led to over-
whelming disagreement between results due to
software problems.

TheVDI guideline number 3945 [9] for environ-
mental meteorology and atmospheric dispersion
models proposes a comprehensive list of veri-
fication tests for codes implementing the La-
grangian particle model described in the guide-
line. These tests are aimed at verifying “whether
the algorithm has been correctly implemented
in a computer program (verification)”. All tests
are to be repeated 101 times with a different
sequence of random numbers. One drawback
of this set of verification tests is that it targets
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particle models only. That is, most of the tests
cannot be applied to Puff models. Also, these
tests can only be performed during the test and
integration phase of the system because they re-
quire extensive preparation, many repetitions,
and qualitative assessment of the results. More-
over, none of the tests can be easily automated.
This makes them unsuitable for detecting er-
rors in arbitrary dispersion simulation results
produced by operational DSNE systems. In
practice, the de facto standard method of ver-
ification is that of plausibility checks through
visual inspection.

In [15] the authors propose simple processes and
tests for improving the reliability and usefulness
of models, while in [16] which also provides
a good review of other relevant work target-
ing the software engineering practices within
the EMS community, the authors recommend a
comprehensive 10-step development and eval-
uation process for environmental models. Sci-
entific software often has a lifetime of several
decades and therefore the evolution of scientific
software needs to be studied more thoroughly
[17]. Different studies have pointed out that a
quality-oriented software development culture
may be considered less important in research
institutes than model developments and refine-
ments, considering that researchers are gener-
ally more interested in producing and publish-
ing state-of-the-art research results than high-
quality software [14,18].

In [19] the authors define verification as “the
determination that the code solves the chosen
model correctly” and validation as “the deter-
mination that the model itself captures the es-
sential physical phenomena with adequate fi-
delity”. The same authors further argue that ver-
ification must always precede validation since
otherwise any agreement between its results and
experimental data is likely to be a product of
chance.

In the field of atmospheric dispersion modeling,
validation generally prevails over verification
in most published studies. Perhaps, this is be-
cause most codes are old and verification is usu-
ally done only once in the early testing phase.
Benchmarking (i.e., comparing the output of
the code being verified to the outputs of well-
established codes) is the most common verifica-
tion method used in published work. Different

experimental data sets are also available from
the HARMO website1 along with validation
and verification guidelines. Within the atmo-
spheric dispersion modeling community there
is a strong credo that verification must always
imply comparisons with measurement data. In
this context, considering that in software test-
ing the aim is to also cover possibly unlikely
input cases to the end of finding software faults,
as for example in random testing [20], a para-
dox becomes evident: while measurement data
from experiments and accidents, such as the
ones from Chernobyl and Fukushima, provide
a gold standard for the evaluation of dispersion
models, these datasets are limited in number.
From a software testing perspective, this also
limits the number and variety of input test cases
considered for verification purposes. This prac-
tice contrasts with the software testing princi-
ples based on test case coverage criteria [21].
Test coverage criteria aim at stressing the limits
of the software being tested to the end of find-
ing more faults rather than making the software
behave as expected for a limited set of input
cases.

In [22] and [17] the authors point out that there
are very few published methods and studies
aimed at finding and removing pure code faults
(or mistakes) from scientific software. They
propose a new type of testing activity, called
code scrutinization, which is to be carried out
before verification and validation. The authors
show that random and mutation testing can suc-
cessfully be used for code scrutinization. This
white-box testing method is well suited for the
developers of stand-alone dispersion simulation
codes. However, for DSNE systems, which in-
corporate several functionally redundant disper-
sion simulation codes developed by different in-
stitutes, the source code may not be available.
Therefore, in the case of DSNE systems, most
of the time only gray and black-box testing can
effectively be carried out. The results of these
testing activities are communicated to the devel-
opers of the respective codes in the form of the
input cases that triggered disagreement between
the codes implemented in the DSNE system.

1 Initiative on “Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes”: http://www.harmo.org
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2.2.1. Validation and Benchmarking Studies
with the RODOS System

The RODOS system encompasses three disper-
sion codes-ATSTEP, DIPCOT, and RIMPUFF-
developed at different research institutes around
the world. RODOS is used in several Euro-
pean countries (including Germany) as the offi-
cial decision support system for nuclear disaster
management. All three dispersion simulation
codes used in RODOS have been subjected to
validation using measurement data and to com-
parisons with other systems [23,24,25,26]. In
the most recent validation study targeting the
codes used in the RODOS system based on
inter-code comparisons and comparisons with
experimental data the author states that “the
models should deliver similar results under [the
considered] circumstances,” while some results
proved to be definitely wrong and some cases
revealed significant discrepancies in the results
of different models [27]. RODOS has also been
evaluated using data from the Fukushima ac-
cident and compared to other similar systems
on the basis of the Fukushima case [28,29].
One study also discusses the modifications that
needed to be made to the RODOS system in or-
der to support several release phases spread over
several weeks, as was the case of the Fukushima
accident [30]. This type of release had not been
foreseen by the creators of the system before the
Fukushima accident.

After the Fukushima accident, a large bench-
marking study which comprised 9 atmospheric
dispersion models, including the three RODOS
models, used in Germany and Switzerland has
been carried out [31]. In this study, 8 artificially
generated input cases starting from simple me-
teorological conditions to realistic weather sit-
uations were formulated to define the boundary
conditions for the calculations. This experi-
ment is noteworthy not only because it uses
many atmospheric dispersion codes, but also
because 7 of the 8 input cases are artificially
generated. Only one case, deemed more realis-
tic by the authors, uses weather data predicted
by the COSMO model of the German Weather
Service.

All these studies show that, while RODOS is
a well-regarded validated DSNE system, there
are improvements to be made whenever a new
data set becomes available or new codes are
used in the comparison. This underpins the idea

that continuous verification and better test cov-
erage, which also includes unlikely input cases,
can only improve the system over time.

2.3. Multi-Model Ensemble Forecasting
Systems

Multi-model ensemble dispersion forecasting
systems represent the state of the art approach
in the ensemble dispersion forecasting commu-
nity. In this approach, several functionally re-
dundant simulation codes are used to produce
an aggregated result, which is in fact selected
using a voting scheme. While there is consen-
sus in the community that ensemble systems
produce better results than single version sys-
tems [32], there is a lively debate in literature
about how to identify the models, which have
a bad influence on the other members of the
ensemble to the end of using a more reliable
reduced ensemble of models. One strategy is to
eliminate those results from aggregation which
are deemed redundant with respect to their bias
[33]. This strategy contrasts with the software
design diversity principle discussed in the next
section of this paper. Current best practices in
multi-model dispersion forecasting ensembles
suggest that model diversity and accuracy are
key to providing more realistic and trustwor-
thy results [34]. Here diversity is believed to
be beneficial within a reduced ensemble when
it produces a better result with respect to the
gold standard (i.e., measured data). However
good diversity relies on the accuracy of individ-
ual models, whichmust be assessed beforehand.
The reduced ensemble approach is complemen-
tary to theweighting approach,where the results
of all ensemble members are weighted prior to
being used in computing an aggregated result
[35].

2.4. Software Design Diversity

The Software design diversity principle is based
on developingdissimilar functionally redundant
software versions starting from the same basic
set of requirements. It is conjectured that the
more diverse the solutions, the lower will be
the likelihood of common-cause failures. How-
ever, until now it was not possible to prove that
failure-independence in functionally equivalent
software components can be assured through the
practice of independent development [36,37]. It
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has been argued that failure correlation strongly
depends on the application of software engi-
neering methods and best practices during the
software development process, hence, the possi-
bility of reducing the probability for failure cor-
relation by improving the software development
processes [38]. In [39] the authors proposed a
model for why different developer teams tend to
make the same mistakes based on the notion of
“variation of difficulty” over the demand space.
This model states that greater variation of diffi-
culty increases the failure dependence between
functionally redundant software versions. An-
other approach is to force diversity into the de-
velopment process of the different versions – an
approach which has been used for the Airbus
A320 flight control software [40].

Currently, software design diversity methods
are generally considered to improve the overall
reality of the system, albeit at a cost that cannot
be easily determined a priori [41]. The ongoing
debate concerning the effectiveness of software
design diversity is focused on the costs it in-
volves over the costs of developing a reliable
single version system [42]. In the case of at-
mospheric dispersion forecasting software, the
cost issue is not at stake because dozens of inde-
pendently developed simulation codes already
exist and have been integrated in ENSEMBLE
systems. Here, the problem lies in the way that
simulation results are being compared.

Once several functionally redundant versions,
of a program are available, it is possible to de-
velop a new software design diversity method
based on existing patterns from the domain of
software reliability engineering, such as Recov-
ery Blocks (RB) [5] or N-version programming
(NVP) [43]. Such methods require an accep-
tance test and a voting scheme, both of which
will be introduced in the following sections.

2.5. A New Acceptance Test for Atmospheric
Dispersion Simulation Results

The acceptance test proposed in this paper can
be regarded as both an accounting check and a
reasonableness test – see [44] for a classification
of acceptance tests. The acceptance test checks
that the distribution of the frequency function
of all concentration or dose values obtained
by dropping the spatial information from the

dataset (i.e., by converting 2 and 3-dimensional
matrices into one dimensional arrays of values)
obeys a certain hypothetical distribution. The
frequency function is obtained by generating a
histogram of the values for all cells of the dis-
cretized monitor area. Using simple input cases
for which the activation of software faults is
highly unlikely, we found that the hypothetical
frequency function has the shape of the Weibull
distribution [45], as also noted in [46]. Intu-
itively, this means that (1) in any dispersion
simulation result, the number of high concen-
tration values must be much smaller than the
number of low concentration values and (2) that
the transition from one concentration level to
another must be smooth and gradual. This rep-
resents the hypothesis of the proposed accep-
tance test, which was implemented in R2. After
reducing the two-dimensional matrix contain-
ing the concentration or dose values to a one-
dimensional array (i.e., dropping the spatial in-
formation from the dataset) a goodness of fit
test can be used with the resulting data set. The
Kolmogorov-Smirnov goodness of fit test [47]
proved to be suitable for an automated accep-
tance test for several reasons. The Kolmogorov-
Smirnov (KS) test is a distribution-free good-
ness of fit test, which tests whether or not an em-
pirical cumulative distribution function (CDF)
fits a hypothetical (expected) CDF. Compared
to other statistics, the KS test is more intuitive
and easier to implement. Simplicity is a desir-
able property of an acceptance test in a soft-
ware reliability engineering sense. It also uses
the empirical and hypothetical CDFs functions
directly rather than contingency tables. Also,
the hypothetical distribution of the concentra-
tion and dose values was unknown to us when
we started the tests and, in theory, the KS test
works with any hypothetical distribution. Fi-
nally, not as much emphasis was put on the
selection of a particular statistical test as on the
pragmatic implementation considerations. Any
goodness of fit test that works with this kind of
data and requires a simple implementation can
be used.

Since the Weibull distribution is L-shaped it
makes the application of an automated goodness
of fit test difficult (in an L-shaped histogram the
vast majority of the measurements fall into the
first interval from the left). To overcome this

2 Implementation of the acceptance test: https://clustio.googlecode.com/files/KS Taxonomy R Scripts.pdf
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inconvenience, Weibull-distributed data sam-
ples can be transformed into exponentially dis-
tributed samples before applying the goodness
of fit test. The transformation of the data set
prior to applying a goodness of fit test is very
common in the statistical practice [48].

2.6. A New Taxonomy-Based Voter for
Atmospheric Dispersion Simulation
Results

One way of obtaining taxonomies from arbi-
trary data is through hierarchical clustering [49].
Hierarchical clustering has an important advan-
tage over other clustering methods (such as par-
titional clustering); namely, it allows for ex-
act comparisons between resulting taxonomies.
By relating new results to existing ones, a tax-
onomy of intra-model results can be obtained.
By intra-model results it is meant that all re-
sults participating to the test are produced by
the same dispersion simulation code. The tax-
onomy represents the memory (or history) of
the dispersion code whereas the process of clas-
sifying a new result into an existing taxonomy
may be regarded as a learning process. The
most important thing here is to be certain that
new results which are to be incorporated into a
taxonomy (i.e., what is being learned) are not
flawed; for, once accepted in the taxonomy, they
are taken to be correct.

2.6.1. A New Metric for Atmospheric
Dispersion Simulation Results

A metric is a function d defining a distance be-
tween arbitrary individuals from a population.
A data set with an associated metric is called
a metric space and is denoted by (M, d). Dis-
persion simulation results are provided in form
of two or three-dimensional matrices whereby
each matrix element corresponds to one area
or volume element of the regular grid used to
discretize the monitored area. The values con-
tained in these matrices can be provided in ar-
bitrary units. In the case of radioactive trace
species, the values corresponding to each grid
cell can be one of integrated activities/doses or
as activity/dose rates expressed in either [Bq]
(Bequerel) / [Sv] (Sievert) or [Bq] / [Sv] per
unit of time.

Dispersion plumes can be regarded as distribu-
tions of continuous variables in a finite space

delimited by the monitoring area. In this case
the residual sum of squares (RSS) can be used
as a metric on the result space by letting one of
the plumes account for the observed values yi
and the other one for the estimated values f (xi):

RSS =
∑n

i=1 [yi − f (xi)]
2. (1)

The normalized version of the RSS metric can
be used with the results of arbitrary dispersion
codes, since all of them produce matrix-based
outputs. The use of a normalized metric also
guarantees that the distances between arbitrary
result spaces will be preserved (i.e., isometry).
Since dispersion simulations are iterative, af-
ter each time step a new result matrix becomes
available. When comparing intra-model results,
one can choose to include any number of time
steps in the calculation of the normalized RSS
metric. In statistics it is common practice to per-
form transformations on the data prior to analyz-
ing them. In the case of dispersion simulation
results, applying a power transformation with a
power 0 < p < 1 will smoothen and level the
data since very large values will become smaller
and sub-unitary values will increase. Given a
power 0 < p < 1 and two dispersion simula-
tion results r1 and r2 defined on an N by M cell
monitored area for a number of TS time steps,
the generalized RSS distance is given by:

GRSS(r1, r2)=

√
i≤TS∑
t=1

i≤N∑
i=1

j≤M∑
j=1

(r1[t, i, j]p−r2[t, i, j]p)2

(2)

The advantage of this metric over other metrics
is that it provides a high level of flexibility by
letting the practitioner select the most suitable
value of p.

2.6.2. The Reference Input Case Ensemble

The reference input case ensemble will serve as
the basis for the evaluation of the methods in-
troduced in this work. The main requirements
to the reference input case ensemble are the fol-
lowing:

− It shall cover the entire monitored area sur-
rounding the chosen point of emission;

− Input cases shall be defined such that from
one case to another all of the following in-
put parameters are varied: wind direction
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(WD), wind speed (WS), accident category
(AC), and diffusion category (DC);

− The variation shall be equidistant (where ap-
plicable);

− The wind direction shall be varied such that
neighboring plumes overlap to some extent;

− The number of simulation steps and the sim-
ulated time shall not be varied from one input
case to another.

The “each-used” test case coverage criterion
[21] yielded the list of input cases shown in
Figure 1. The names of the cases are coded as
follows: the first letter represents the turbulent
diffusion category (A to F), the next three digits
represent the wind direction, the number fol-
lowing the letter ‘S’ stands for the wind speed
in m/s, and the number following the letter ‘F’
represents the release (or accident) category ac-
cording to the DSRA risk study [50]. Table 1
contains information about the amount and type
of radioactive substance that is released into the
atmosphere depending on the release category.
The categories are ordered with respect to the
total activity of the released radionuclides. In
consideration of the previously stated require-
ments to the reference input case ensemble, the
point of emission was chosen to be the KKP-
2 (Philippsburg 2) reactor in Germany and the
radius of the monitored area 16 km. The area
surrounding the Philippsburg 2 reactor is rather
flat, so the topography of the monitoring area
does not have great influence. The simulation
duration was chosen to be 2 hours divided into
12 time steps of 10 minutes each. The time win-
dow of 2 hours was chosen in accordance with

Figure 1. Sketch of the reference input ensemble.

the modeling area of 16 km in radius, which is
also within the scale of the Fukushima evacua-
tion area. At the highest considered wind speed
of 8 m/s (28.8 km/h), the trace species emit-
ted at t = 0 would reach the boundary of the
modeling area in less than 30 minutes. This is
sufficient to activate software faults related to
erroneously posed boundary conditions, which
may occur after part of the trace species exit the
monitoring area. Ill-posed boundary conditions
can lead to a violation of the mass conserva-
tion principle. This principle is fundamental
in the numerical simulation of partial differen-
tial equations, such as the transport equation,
and thus provides a suitable verification crite-
rion. The data used in the reference input case
ensemble are generated using the meteorologi-
cal preprocessor of the RODOS system and are
thus artificial. It is a common practice in run-
ning “what if” simulation scenarios for users of

Table 1. The eight release categories and corresponding amounts of radioactive materials with respect to the total
amount present in the reactor according to the DSRA risk study [50]. A star marks the release categories

corresponding to core meltdown accidents.

Release
category

Emission
height
[m]

Duration
[h]

Noble
gas [%]

Iodine
[%]

Alkali
metals
[%]

Tellurium /
Antimony

[%]

Alkaline
earth

metal [%]

Ruthenium
group
[%]

Lanthanides
[%]

F8 100 6 0.02 0.00 0.00 0.00 0.00 0.00 0.00

F6* 100/10 3 2.30 0.00 0.00 0.00 0.00 0.00 0.00

F5* 10 3 2.30 0.11 0.07 0.07 0.01 0.01 0.01

F7 10 1 1.70 0.53 1.30 0.00 0.00 0.00 0.00

F4* 10 3 66.80 1.47 0.34 0.33 0.04 0.33 0.00

F3* 10 3 66.80 4.68 2.93 2.67 0.33 0.22 0.03

F2* 10 3 66.80 27.12 19.32 12.68 2.31 1.13 0.17

F1* 10 1 100 79.60 50.00 35.00 6.70 38.00 0.26
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the system to manually input the wind speed
and direction, as well as the precipitation rate
and the turbulence parameters.

The released activity which is given by the re-
lease category is taken into account when com-
puting the GRSS metric for two arbitrary disper-
sion simulation results. The p parameter of the
GRSS metric allows one to control the influence
(or weight) of the amount of released activity
(i.e., concentration of substance) upon the ref-
erence taxonomy of results. For 0.4 > p > 1,
the weight of the activity is greater than that of
the wind direction. It is therefore justified to
vary the release categories, and thus the amount
of released activity among the input cases from
the reference ensemble.

2.6.3. The Reference Taxonomy of Results

Considering a set of N intra-model dispersion
simulation results (henceforth called ensemble
of results), a distance matrix D is obtained by
computing all possible distances dij between all

result pairs ij. The distances are computed us-
ing the GRSS metric. Starting from the distance
matrix D, a multitude of clustering methods can
be used to build a taxonomic scheme of disper-
sion simulation results.

Figure 2 shows the surface plot of the 24 by
24 distance matrix corresponding to RIMPUFF
results for the ensemble of 24 input cases in-
troduced in the previous section as well as
the taxonomy of results inferred by means of
the centroid method. The results represent
the time-integrated near-ground gamma sub-
mersion dose. The distances have been com-
puted using the GRSS metric (for p = 1) for all
12 time steps accounting for a 2-hour simula-
tion. The results taxonomy is represented as a
phylogram. The lengths of the branches in the
left hand side phylogram reflect the distances
between the elements being clustered as pro-
vided in the distance matrix. By contrast, the
branch lengths of the phylogram on the right-
hand side do not reflect the original distances
from the matrix. Instead, this one’s purpose is
to show the topology of the taxonomic tree.

Figure 2. Surface plot of a 24 × 24 distance matrix computed from RIMPUFF results for the 24 input case reference
ensemble, as well as the corresponding taxonomic tree built by means of the centroid method. The taxonomy is

drawn as a phylogram with (left) and without (right) consideration of edge lengths.
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The phylogram has the topology of a caterpil-
lar tree which reflects the order relations within
the sample. The results are first ordered by
the amount of the released radioactive materi-
als specified by the release category (denoted
“F1” to “F8” in the names of the input cases).
The second ordering criterion appears to be the
atmospheric stability class.

2.6.4. Comparing Taxonomies of Results

Dispersion simulation codes fulfill the two ba-
sic requirements of the N-version programming
paradigm: (1) they are developed and main-
tained by completely independent developer
teams, and (2) they implement dispersion mod-
els which all approximate the solution to the
transport equation. Hence, they start from the
same basic functional requirement – solving
the transport equation numerically. However,
due to the inherent differences in the numerical
schemes used for solving the transport equa-
tion, the results of the various dispersion codes
will differ to such an extent that finding suitable
thresholds and tolerance values to be used by
voters can be rather difficult.

The aim of the current approach is to assess the
degree of similarity (or dissimilarity) between
the results of two or more arbitrary dispersion
codes C1 . . .Cn by first constructing a taxon-
omy of results for each of them starting from the
same ensemble of input cases P = {p1, . . . , pn}
and then by comparing the resulting taxonomies
rather than individual results. Using P as the
input case ensemble, each dispersion code Ck
will produce an ensemble of results R(Ck) =
{r1(Ck), . . . , rn(Ck)}, whereby pi corresponds
to ri(Ck) for i = 1, . . . , n. The next step is to
build taxonomic trees for each result ensemble.

In order to build a taxonomy T{R(Ck)} from
the members of some result ensemble R(Ck),
the pair-wise distances between all of its mem-
bers need to be computed using the metric of
choice d which gives a distance (or dissimilar-
ity) matrix D(Ck) = [di,j] for i, j = 1, . . . , n, as
described in the previous section. In this con-
text, what enables the implementing voters is
the following conjecture:

If C1 and C2 are two dispersion simulation
codes correctly implementing arbitrary numer-
ical schemes for solving the transport equation,

then there exists a distance metric di,j defined
on the metric space (M,d) of the dispersion sim-
ulation results produced by C1 and C2 such that
T{R(C1)} ≡ T{R(C2)}.

A dispersion code is considered to correctly im-
plement a numerical scheme for solving the
transport equation if and only if it conserves
its mathematical properties (i.e., determinism,
strict monotonicity, and continuity). Failing to
do so is taken to be an indication of the presence
of residual software faults in the code caused
by the misinterpretation of the model or some
other programming or computing error. The
same principle applies to post-processing steps,
such as the gamma submersion and effective
dose calculation. Assessing the similarity be-
tween taxonomic trees requires a metric defined
on the tree space. The Robinson-Foulds (RF)
symmetric difference [51] between two taxo-
nomic trees counts the number of branches in
the first tree which are not present in the second
tree plus the number of branches in the second
tree which are not present in the first tree. For
a tree of N leaves, the maximal RF distance is
2N-4 if the trees are rooted and 2N-6 otherwise.

Figure 3 shows the taxonomic trees correspond-
ing to the three codes implemented in the RO-
DOS system. The RF distances between these
trees are as follows (values in brackets represent
percentages from the maximum RF distance for
N = 24):

• AD (p = 0.6) = RF (ATSTEP, DIPCOT,

GRSSp=0.6) = 16 (38%),

• AR (p = 0.6) = RF (ATSTEP, RIMPUFF,

GRSSp=0.6) = 16 (38%), and

• DR (p = 0.6) = RF (DIPCOT, RIMPUFF,

GRSSp=0.6) = 4 (9.52%).

This time, the GRSS distance with p = 0.6 was
used to compute the distance matrix. The 0.6
(optimal) value of pwas found to give the small-
est inter-treeRFdistance for the three dispersion
codes implemented in the RODOS system.
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Figure 3. Taxonomic trees corresponding to the three dispersion codes implemented in RODOS. The trees were
constructed by means of the GRSS distance with p = 0.6.

2.7. New Software Design Diversity
Method for the Continuous Verification
of Simulation Results

The workflow supporting the continuous verifi-
cation of dispersion simulation results depicted
in Figure 4 is based on the consensus recovery
block algorithm [52], which combines the NVP
and Recovery Block methods in one module.
The novelty of the proposed method consists in
using a database of result taxonomies in order
to enable a machine learning process.

The method works as follows: the preprocess-
ing step in the workflow from Figure 4 involves
all computations which are usually required for
preparing a dispersion simulation (wind and
precipitation field computation, source term cal-
culation, etc.) After preprocessing the input
case and data, the simulation is performed by
two or more functionally redundant dispersion
codes. The adjudicator receives the results from
all N ≥ 3 dispersion codes and fetches the refer-
ence taxonomies corresponding to each of them
from the database; then, it computes the dis-
tance between the new result and the ones in the
reference ensemble and reconstructs the taxo-
nomic trees starting from the extended distance
matrix. The new result is now regarded as a
member of the reference ensemble. Next, the
adjudicator computes the RF distance between
the extended taxonomic trees. The following
situations can arise:

- Strict consensus: the RF distances between
all taxonomic trees are zero. All results are
subjected to an acceptance test. The results
passing the acceptance test are forwarded for
post-processing;

- Majority consensus: the RF distance is
zero within a group containing (N/2 + 1)
taxonomic trees (called majority consensus
group). Only the results in the majority con-
sensus group are subjected to an acceptance
test. The results passing the acceptance test
are forwarded for post-processing;

- Disagreement: consensus groups only con-
tain N/2 or fewer trees. The user is informed
about the disagreement and is asked to make
a decision as to which result to take into
consideration. This can be done by visual
inspection, by analyzing the placement of
the new results in the taxonomic trees, or by
subjecting all results to the acceptance test.

In this context, a consensus metric can be de-
fined as follows: the number of results (i.e.,
taxa) present in all the trees divided by the num-
ber of results contained in the reference input
case ensemble provides an indicator (or metric)
for the level of agreement between the partici-
pating simulation codes. For the current refer-
ence input case ensemble, the consensus agree-
ment level (CAL) between ATSTEP, DIPCOT,
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Figure 4. Workflow for a dispersion forecasting system supporting functionally redundant simulation codes
and continuous verification of results.

and RIMPUFF is given by CAL (ATSTEP, DIP-
COT, RIMPUFF) = (20*100) / 24 = 83.33%.
The sub-tree that is identical for all participat-
ing codes will be referred to as the consensus
tree (or taxonomy).

Continuous verification is achieved by imple-
menting the tasks depicted in Figure 4 in the
dispersion simulation workflow. Whenever a
new simulation is carried out using 2 or more
simulation codes, the results are added to the
result taxonomies of each code stored in the tax-
onomy database in Figure 4. This way, for each
new result the user can be informed whether or
not the new result leads to more disagreement
among the simulation codes (i.e., by computing
the CAL metric). If it does, the user can mark
and comment the input case for further investi-
gation by the creators of the simulation codes in
question. Thus, the system helps identify input
cases, which might reveal software faults upon
a more detailed investigation. The results that
do not lead to more disagreement between the
codes are permanently added to the reference
taxonomy database.

3. Experimental Validation
of the Approach

In order to validate the Kolmogorov-Smirnov
acceptance test (KS-AT) and the result-taxono-

my-based voter for dispersion simulation re-
sults, two versions of the RODOS decision sup-
port system have been used. In the following,
these two test versions of the system will be
referred to as RODOS v1 and RODOS v2, re-
spectively. Taking into account that each code
implements a different numerical scheme, the
RODOS systems is suitable for proving the va-
lidity and practical applicability of the conjec-
ture from section 2.6.4 and its implications. An-
other argument in favor of this choice is the
fact that RODOS is being used in several Eu-
ropean countries (including Germany) as the
official decision support system for nuclear dis-
aster management [53]. The tests using the first
version of the RODOS system revealed a num-
ber of flaws in the results produced by the three
dispersion codes implemented in the RODOS
system, notably:

- The gamma dose levels computed by all
three RODOS dispersion codes is not invari-
ant with respect to the wind direction even
when the topology of the monitored area is
leveled;

- For certain input cases, ATSTEP yields zero-
level gammadoses for the first few time steps
despite that radioactive materials were re-
leased in that time as well;

- DIPCOT computes much smaller doses than
ATSTEP and RIMPUFF.
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On the basis of these results the developers of
the RODOS system admitted to have identified
a fault in the ATSTEP dispersion code and car-
ried out improvement works which concerned
DIPCOT as well. These works eventually lead
to a new release of the system (i.e., RODOS v2)
which was afterwards made available to the au-
thors. Using the two versions of the systems the
exact same set of simulations has been carried
out. These simulations were performed using
two input case ensembles. The first one is rep-
resented by the reference input case ensemble
introduced earlier in this work. The second in-
put case ensemble that was used is summarized
in Table 2. It contains 24 input cases which rep-
resent random combinations of the 24 reference
input cases. Two simulated hours are divided

in 12 ten-minute time steps. After one simu-
lated hour, the wind direction and speed change
while all other parameters stay the same. Us-
ing a second input case ensemble with varying
wind direction is motivated by the problems that
dispersion models typically exhibit in rotating
wind situations.

For both versions of the system, the correspond-
ing reference taxonomy was used to verify the
input cases from the second input case ensem-
ble described in Table 2. Each input case from
this ensemble was regarded as a new simulation
result to be verified given the existing opera-
tional taxonomy. The procedure employed for
accomplishing this task is the one depicted in
Figure 4.

Table 2. The second input case ensemble with varying wind speed, direction, and diffusion category.

First simulated hour Second simulated hour
Input Case

Id
Diffusion
category

Wind direction
[degrees]

Wind speed
[m/s]

Diffusion
category

Wind direction
[degrees]

Wind speed
[m/s]

Release
category

A000B015 A 0 1 B 15 2 F1

A165B090 A 165 4 B 165 7 F4

A270B180 A 270 3 B 270 5 F3

B015B285 B 15 2 B 285 4 F2

B090C030 B 90 7 C 30 3 F7

B180C105 B 180 5 C 105 8 F5

B285C195 B 285 4 C 195 6 F4

C030C300 C 30 3 C 300 5 F3

C105D045 C 105 8 D 45 4 F8

C195D120 C 195 6 D 120 1 F6

C300D210 C 300 5 D 210 7 F5

D045D225 D 45 4 D 225 8 F4

D120D315 D 120 1 D 315 6 F1

D210D345 D 210 7 D 345 8 F7

D225E060 D 225 8 E 60 5 F8

D315E135 D 315 6 E 135 2 F6

D345E240 D 345 8 E 240 1 F8

E060E330 E 60 5 E 330 7 F5

E135F075 E 135 2 F 75 6 F2

E240F150 E 240 1 F 150 3 F1

E330F255 E 330 7 F 255 2 F7

F075A000 F 75 6 A 0 1 F6

F150A165 F 150 3 A 165 4 F3

F255A270 F 255 2 A 270 3 F2
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3.1. Results

For each version of the RODOS system the KS
test was first run on the basis of the two in-
put case ensembles. The KS test can be ap-
plied at a significance level (alpha) 0.01, 0.05,
0.1, 0.15, etc. In practical terms, using al-
pha=0.01 provides a less strict assessment than
using alpha=0.05. Tests using alpha=0.05 lead
to the rejection of more input cases than for al-
pha=0.01 and it would have been more difficult
to find correlations between the output of the
voter and that of the acceptance test. However,
we do recommend using a significance level of
0.05 if a more scrutinizing assessment of the
trustworthiness of simulation results is aimed
at, especially when the number of passing cases
is getting closer to 100%.

The results of these tests are summarized in Ta-
ble 3 (figures in boldface indicate an improve-
ment from one version of the simulation code to
another). They show that the KS test is sensitive
to the improvements brought to the RODOS v2
system. The only exception is produced by the
DIPCOT simulation code for the reference in-
put case ensemble. In this case, the develop-
ers might have introduced a new fault while
attempting to correct others. Notably, the net
improvement of ATSTEP v2 over ATSTEP v1
reflects the efforts of the developers to remove
the flaws revealed by our previous verification
analysis of the system.

Next, the consensus taxonomies for the two ver-
sions of the systems were inferred on the basis
on the reference input case ensemble. This is
a prerequisite for performing the tests on the
input case ensemble with rotating wind direc-
tion. This yielded a 20-leaf consensus tree for
the RODOS v1 simulation codes and a 21-leaf

consensus tree for the RODOS v2 simulation
codes. In other words, the consensus agreement
level for the two versions of the system wasCAL
(ATSTEP v1, DIPCOT v1, RIMPUFF v1) =
83.33% and CAL (ATSTEP v2, DIPCOT v2,
RIMPUFF v2) = 87.5%, respectively.

These high consensus agreement levels them-
selves support the argument that the conjecture
from section 2.6.4 holds for the dispersion codes
implemented in both versions of the RODOS
system. Moreover, the increase in the consen-
sus agreement level between the codes from the
second version of the system provides evidence
that the CAL metric is sensitive to the removal
of software faults from the simulation codes
under investigation. Table 4 summarizes the
consensus recovery block’s output for the re-
sults of the two versions of the RODOS system
for the 24 input cases from the test ensemble
with varying weather conditions. In order to
ensure equity for the comparison, an 18-taxon
consensus tree (i.e., a sub-taxonomy of the con-
sensus trees corresponding to the two versions
of the system) correlated with the Kolmogorov-
Smirnov test results was used with both versions
of the RODOS system. The taxonomy based
voter output clearly reveals an improvement of
RODOS v2 over RODOS v1. While the to-
tal RF distance for the pair ATSTEP-DIPCOT
(AD) remains constant from one version to an-
other, the pairs ATSTEP-RIMPUFF (AR) and
DIPCOT-RIMPUFF (DR) yield smaller total
RF distances (i.e., summed up over all input
cases). The improvement for the pair DR
is quite significant. While the improvements
brought to the ATSTEP code were clearly re-
flected by the KS test results, the smaller to-
tal RF distance for the pair DIPCOT-RIMPUFF
reflects the improvements in DIPCOT v2 over
DIPCOT v1.

Table 3. Kolmogorov-Smirnov test results for the two input case ensembles for RODOS v1 and RODOS v2.

Reference Input Case Ensemble

α = 1% ATSTEP v1 ATSTEP v2 DIPCOT v1 DIPCOT v2 RIMPUFF v1 RIMPUFF v2

Passed 16 / 24 22 / 24 20 / 24 19 / 24 21 / 24 21 / 24

Percent 66.67% 91.67% 83.33% 79.17% 87.50% 87.50%

Second Input Case Ensemble

α = 1% ATSTEP v1 ATSTEP v2 DIPCOT v1 DIPCOT v2 RIMPUFF v1 RIMPUFF v2

Passed 17 / 24 20 / 24 15 / 24 19 / 24 20 / 24 23 / 24

Percent 70.83% 83.33% 62.50% 79.17% 83.33% 95.83%
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Table 4. The strict consensus recovery block output for the 24 input cases with varying weather conditions for
RODOS v1 and RODOS v2. Abbreviations: AD = RF(ATSTEP, DIPCOT); AR = RF(ATSTEP, RIMPUFF);

DR = RF(DIPCOT, RIMPUFF); RF = Robinson-Foulds distance; VOTE = output of the taxonomy based voter
for some given input case; AT = results of the Kolmogorov-Smirnov acceptance test; AT&VOTE = intersection
of AT and VOTE output sets; A = ATSTEP; D = DIPCOT; R = RIMPUFF; Zeroes = number of input cases

for which the RF distance between the respective two simulation codes is zero.

RODOS v1 RODOS v2

Input case AD AR DR VOTE AT AT & VOTE AD AR DR VOTE AT AT & VOTE

A000B015 0 0 0 ADR R R 0 0 0 ADR ADR ADR

A165B090 0 2 2 AD AR A 0 0 0 ADR DR DR

A270B180 2 2 4 – AR – 0 0 0 ADR ADR ADR

B015B285 0 2 2 AD ADR AD 2 2 0 DR ADR DR

B090C030 0 2 2 AD ADR AD 0 0 0 ADR ADR ADR

B180C105 2 0 2 AR ADR AR 2 2 0 DR ADR DR

B285C195 4 2 6 – ADR – 0 2 2 AD ADR AD

C030C300 0 0 0 ADR ADR ADR 0 0 0 ADR ADR ADR

C105D045 0 0 0 ADR ADR ADR 0 0 0 ADR ADR ADR

C195D120 0 0 0 ADR R R 2 0 2 AR DR R

C300D210 0 0 0 ADR ADR ADR 0 0 0 ADR ADR ADR

D045D225 0 0 0 ADR DR DR 0 0 0 ADR AR AR

D120D315 0 0 0 ADR – – 0 0 0 ADR ADR ADR

D210D345 0 0 0 ADR DR DR 0 0 0 ADR AR AR

D225E060 2 2 0 DR ADR DR 0 2 2 AD ADR AD

D315E135 0 2 2 AD R – 2 2 0 DR R R

D345E240 0 2 2 AD AR A 0 2 2 AD ADR AD

E060E330 0 0 0 ADR ADR ADR 0 0 0 ADR ADR ADR

E135F075 0 0 0 ADR AD AD 2 2 0 DR ADR DR

E240F150 0 0 0 ADR AD AD 2 0 2 AR A A

E330F255 0 2 2 AD AD AD 0 0 0 ADR A A

F075A000 2 0 2 AR DR R 0 2 2 AD DR D

F150A165 0 0 0 ADR AR DR 0 0 0 ADR ADR ADR

F255A270 0 0 0 ADR AR AR 0 0 0 ADR ADR ADR

Total 12 18 26 12 16 12

Zeroes 19 15 14 18 16 18

Figure 5 shows the exact percentages of the
cases when each of the three possible outcomes
(i.e., strict consensus / majority consensus /
disagreement) is produced by the taxonomy-
based voter for RODOS v1 and RODOS v2.
Thanks to removing some of ATSTEP’s and
DIPCOT’s software faults, the results for RO-
DOS v2 no longer yield any cases of disagree-
ment. The 8% disagreement share is split up
in two fractions; one of them is gained by the
strict consensus share, and the other one by the

majority consensus share. There also appears
to be no improvement/deterioration pattern for
the voter’s output except for the absence of dis-
agreement cases from RODOS v2’s results.

Figure 6 shows the percentage ratios of the 4
possible output types of the consensus recov-
ery block (i.e., AT&VOTE column in ) for both
versions of the system:

- Consensus (labeled “ADR” in Table 4): the
results from all three codes are forwarded for
post-processing;
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Figure 5. Strict consensus / majority consensus / disagreement percentage ratios resulting from the taxonomy-based
voter for the two RODOS versions for the 24 input cases with varying weather conditions.

Figure 6. Consensus / 2 out of 3 / 1 out of 3 / disagreement percentage ratios resulting from the output of the
consensus recovery block (i.e., AT&VOTE column in Table 4) for the two RODOS versions for the 24 input cases

with varying weather conditions.

- 2 out of 3 (labels “AD” for the pair ATSTEP-
DIPCOT, “AR” forATSTEP-RIMPUFF, and
“DR” for DIPCOT-RIMPUFF): the results
from two out of three codes are forwarded
for post-processing;

- 1 out of 3 (labeled “A” for ATSTEP, “D” for
DIPCOT, and “R” for RIMPUFF): the result
from one out of three codes is forwarded for
post-processing;

- Disagreement (labeled “–”): the result from
none of the codes is automatically forwarded
for post-processing. The user is asked to
make a decision.

Once again, for RODOS v2 the consensus re-
covery block’s output does not yield any cases
of disagreement. For RODOS v2, in 79.17% of
the cases the user gets a consensual or “2 out of
3” recommendation from the system. This pos-
itive evolution for RODOS v2 is due to a better
correlation of the voter’s output with the ac-
ceptance test results compared to RODOS v1’s
case.

4. Conclusion

In this paper we argued that DSNE systems
are safety-critical and should thus be treated as
such throughout their lifecycle. For this reason,
means for the continuous verification should be
in place for as long as the system is being de-
veloped, maintained, and used. To this end,
we introduced a new software design diversity
method for continuous verification, which adds
a machine learning capability to a consensus re-
covery block method from the field of software
reliability engineering. To enable the machine
learning capability, we developed a new accep-
tance test and a new taxonomy-based voting
scheme for dispersion simulation results. The
Consensus Recovery Block method was also
modified to support the machine learning capa-
bility of the voting system using a database of
result taxonomy. The experimental validation
of these methods was based on the widely used
RODOS DSNE system. By using two consecu-
tive versions of the RODOS systems we showed
that the acceptance test and the taxonomy based
voter clearly reflect the improvements brought
to the RODOS simulation codes from one ver-
sion to another, thus being able to signal the
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existence of latent software faults in simula-
tion codes. The proposed approach thus helps
finding further latent software faults in existing
DSNE systems, such as the RODOS and the
ENSEMBLE systems.

Considering that real data is the only gold stan-
dard in the evaluation of atmospheric dispersion
simulation software, we intend to repeat the ex-
periment using the post-Fukushima version of
the RODOS and possibly other systems based
on a reference input case ensemble, which in-
cludes the Fukushima data sets. For example,
input case ensembles can be generated by vary-
ing different parameters of the Fukushima data
set. Such a study builds upon the approaches
used in [31] and [30], while providing additional
means for the application of verification crite-
ria (such as the Gaussian boundary condition,
the mass conservation principle, etc.) using the
methods introduced in this work.
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