
271CIT. Journal of Computing and Information Technology, Vol. 24, No. 3, September 2016, 271–282
doi: 10.20532/cit.2016.1002727

Generating an Automated Test Suite
by Variable Strength Combinatorial
Testing for Web Services

Yin Li, Zhi-an Sun and Jian-Yong Fang
Jiangsu Institute of Automation, Lianyungang, China

Testing Web Services has become the spotlight of
software engineering as an important means to as-
sure the quality of Web application. Due to lacking of
graphic interface and source code, Web services need
an automated testing method, which is an important
part in efficiently designing and generating test suite.
However, the existing testing methods may lead to the
redundancy of test suite and the decrease of fault-de-
tecting ability since it cannot handle scenarios where
the strengths of the different interactions are not uni-
form. With the purpose of solving this problem, firstly
the formal tree model based on WSDL is constructed
and the actual interaction relationship of each node is
made sufficient consideration into, then the combina-
torial testing is proposed to generate variable strength
combinatorial test suite based on One-test-at-a-time
strategy. At last test cases are minimized according to
constraint rules. The results show that compared with
conventional random testing, the proposed approach
can detect more errors with the same amount of test
cases which turning out to be more ideal than existing
ones in size.

ACM CCS (2012) Classification: Software and its en-
gineering → Software creation and management →
Software verification and validation → Software de-
fect analysis → Software testing and debugging

Keywords: testing Web Services, automated testing,
combinatorial testing, WSDL, constraint rules

1. Introduction

As a type of implementation technologies for
Service-Oriented Architecture (SOA), Web Ser-
vices (WS) have provided an interoperability
distributed application platform using the stan-
dard Web protocol, to implement the features
such as open standard-based platform, loosely
coupled platform and cross-platform. With the

popularity of this technology, the requirement of
quality and correctness is more and more crit-
ical, however, guaranteeing the Web Services
software quality and reliability has become a
tough issue in software engineering field.
Software testing is an important means of en-
suring software quality. However, in order to
guarantee the quality of Web Services, it must
be tested in detail. Because of the complexity
of Web Services technology specification, the
variability of running state, if different ser-
vices are tested one by one with similar func-
tions, this work would be very repetitive and
easily lead to human errors. Meanwhile, Web
Services are invoked via service interface and
not equipped with a visual graphic user inter-
face which makes manual testing more diffi-
cult. Therefore, traditional test cases approach
by handwork will not meet the requirement of
testing, in order to test it in detail, the automatic
approach is needed.
Regardless of stateless and stateful service, the
testing single operation of Web Services is nec-
essary. The tester can derive black box testing
suite from data description information based
on standard XML specification related files. Up
to now, the researchers have presented a few
approaches discussing automatic generating
test cases based on Web Services Description
Language (WSDL) specification file, however,
testing the single operation of Web Service still
faces some challenges, such as high redundancy
test cases, lack of pertinence after reduction of
use cases and poor fault detection ability. It is
hard to achieve the goal of improving the test
efficiency and Web Services quality.

272 273Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

Therefore this study aims to propose an auto-
matic test data generating approach based on
combinatorial testing and data constraints rules
in order to obtain optimal test cases for a single
operation of Web Service. As Figure 1 shows,
in the overall approach, firstly, a formal type
model for XML schema is constructed by in-
put/output elements of the single operation in
WSDL file. Secondly, test suite is obtained on
the basis of the model built by previous step,
then the test data is optimized by the means of
combinatorial testing, and finally the statements
or paths for Web Services could be covered by
the optimal test cases.
This paper is organized as follows. In addi-
tion to Section 1 mentioned above, Section 2
presents the background and related works in
the area of testing Web Services automatically.
Section 3 demonstrates models and their defi-
nitions. Section 4 studies the generation of test
data based on the model. Section 5 shows how
to obtain the optimal test cases. An application
example and conclusion are presented in Sec-
tion 6 and Section 7 separately.

2. Background and Related Works

Service-Oriented Architecture (SOA) is not a
new concept which has got wide attentions and
applications in the recent years. As one of the
implemented technologies for this architecture,
automatic test for Web Services has become an
important research in software testing area [1],
[2]. Some researchers divide Web Services into
stateless and stateful services and then separate
them into three levels, namely, testing the sin-
gle operation of Web Services, the operations
sequence of Web Services and composite Web
Services [2]-[5].
As the development of Web Services testing,
some approaches have been proposed to gen-
erate test cases for single operation of Web
Services through WSDL-based files. Tsai et al.
[6] showed an approach by extending WSDL
in order to support testing Web Services that
incorporates with sequence specifications as
well as input-output dependencies. Bai et al.
[7] proposed an approach to generate test cases
for Web Services from WSDL, which consisted

methods, some limitations still exist in this re-
search area. On the basis of paper [6]-[9], our
study hereby constructs a formal model of the
type tree by analyzing the WSDL document and
taking full account of the actual interactions be-
tween factors. From a new perspective of test-
ing, this paper provides a concept of test suite
reduction combing variable strength combina-
torial testing and data constraints model, which
ultimately could reduce test cost and improve
test efficiency.

3. Model and Definition

3.1. WSDL Language

Web Services Description Language (WSDL) is
an XML-based language which used to describe
the location of the service, operations, methods
and service information involved in it. Tsai [6]
presented an extension to WSDL, added the
constraint conditions, involved constraint infor-
mation and semantic information. The extended
WSDL files include built-in data types, simple
data types and complex data types. Simple data
types are defined with the element <xs:sim-
pleType> which has representation constraints
with built-in data types. Complex data types are
defined with the element <xs:complexType>
which has integrity constraints with the sub-ele-
ment. There are three indication relationships
among the sub-elements, such as Sequence,
Choice and All. Sequence means that sub-ele-
ments may appear in the same order as they are
defined in the schema file. Choice means that
only one of sub-elements must appear (similar
as enumeration). All means that sub-elements
may appear in any order while the constraining
facets maxOccurs cannot be greater than 1 [19].
According to the relationships between pairs of
nodes and between nodes and data types, XML
Schema classifies constraints as integrity con-
straints and representation constraints, these
constraints can be classified as boundary con-
straints and non-boundary constraints as well,
the detailed classification of these elements is
shown in Table 1.

of test data generation, test operation genera-
tion, operation flow generation and test spec-
ification. [8] firstly proposed the concept to
construct abstract model through WSDL doc-
ument. Subsequently, [9] presented the formal
type tree on the basis of his work, they consid-
ered the data structure of complex data types,
combined the sub-elements in complex data
types and finally generated test data based on
this model. Due to lack of consideration on
test cases reduction in generation phase, test
data tends to result in a combinatorial explo-
sion by Cartesian method, it is not conductive
to carry out large-scale testing. Moreover, some
researchers proposed mutation testing technol-
ogy [10]-[13], Xu and Offutt used data pertur-
bation based on XML data type to generate test
data for Web services. Siblini and Mansour [12]
realized the testing for Web Services by docu-
ment mutation. In China, Jiang [13] proposed
the generation method of Web Services testing
data based on contract mutation which can au-
tomatically generate initial random test data via
using WSDL documents and select test data on
the basis of contract mutation. While mutation
testing needs a lot of computer resource, and
the quality of test cases depends on the mer-
its of the mutation operator, it is not a regular
means of Web Services testing.
In combinatorial testing area, after analyzing
the fault-reporting record of Moliza browser,
Kuhn and Reilly [14] found there were more
than 70% of the errors caused by the interac-
tion of the two parameters and over 90% of the
errors caused by the interaction of three pa-
rameters. Furthermore, Kuhn and Wallace [15]
studied the availability of combinatorial testing
applied into large-scale distributed systems and
found that failures triggered in such system
were generally cased by 4-6 interaction param-
eters at most. Schroeder [16] demonstrated that
the error detection ability of N-dimensional
combinatorial testing is much higher than the
same size of random testing. Currently, combi-
natorial testing is widely used in compatibility
testing, GUI testing and Web application test-
ing [17], [18].
Focusing on the studies mentioned above, al-
though there were a few test cases generation

Figure 1. The workflow of generating test data for individual operation.

272 273Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

Therefore this study aims to propose an auto-
matic test data generating approach based on
combinatorial testing and data constraints rules
in order to obtain optimal test cases for a single
operation of Web Service. As Figure 1 shows,
in the overall approach, firstly, a formal type
model for XML schema is constructed by in-
put/output elements of the single operation in
WSDL file. Secondly, test suite is obtained on
the basis of the model built by previous step,
then the test data is optimized by the means of
combinatorial testing, and finally the statements
or paths for Web Services could be covered by
the optimal test cases.
This paper is organized as follows. In addi-
tion to Section 1 mentioned above, Section 2
presents the background and related works in
the area of testing Web Services automatically.
Section 3 demonstrates models and their defi-
nitions. Section 4 studies the generation of test
data based on the model. Section 5 shows how
to obtain the optimal test cases. An application
example and conclusion are presented in Sec-
tion 6 and Section 7 separately.

2. Background and Related Works

Service-Oriented Architecture (SOA) is not a
new concept which has got wide attentions and
applications in the recent years. As one of the
implemented technologies for this architecture,
automatic test for Web Services has become an
important research in software testing area [1],
[2]. Some researchers divide Web Services into
stateless and stateful services and then separate
them into three levels, namely, testing the sin-
gle operation of Web Services, the operations
sequence of Web Services and composite Web
Services [2]-[5].
As the development of Web Services testing,
some approaches have been proposed to gen-
erate test cases for single operation of Web
Services through WSDL-based files. Tsai et al.
[6] showed an approach by extending WSDL
in order to support testing Web Services that
incorporates with sequence specifications as
well as input-output dependencies. Bai et al.
[7] proposed an approach to generate test cases
for Web Services from WSDL, which consisted

methods, some limitations still exist in this re-
search area. On the basis of paper [6]-[9], our
study hereby constructs a formal model of the
type tree by analyzing the WSDL document and
taking full account of the actual interactions be-
tween factors. From a new perspective of test-
ing, this paper provides a concept of test suite
reduction combing variable strength combina-
torial testing and data constraints model, which
ultimately could reduce test cost and improve
test efficiency.

3. Model and Definition

3.1. WSDL Language

Web Services Description Language (WSDL) is
an XML-based language which used to describe
the location of the service, operations, methods
and service information involved in it. Tsai [6]
presented an extension to WSDL, added the
constraint conditions, involved constraint infor-
mation and semantic information. The extended
WSDL files include built-in data types, simple
data types and complex data types. Simple data
types are defined with the element <xs:sim-
pleType> which has representation constraints
with built-in data types. Complex data types are
defined with the element <xs:complexType>
which has integrity constraints with the sub-ele-
ment. There are three indication relationships
among the sub-elements, such as Sequence,
Choice and All. Sequence means that sub-ele-
ments may appear in the same order as they are
defined in the schema file. Choice means that
only one of sub-elements must appear (similar
as enumeration). All means that sub-elements
may appear in any order while the constraining
facets maxOccurs cannot be greater than 1 [19].
According to the relationships between pairs of
nodes and between nodes and data types, XML
Schema classifies constraints as integrity con-
straints and representation constraints, these
constraints can be classified as boundary con-
straints and non-boundary constraints as well,
the detailed classification of these elements is
shown in Table 1.

of test data generation, test operation genera-
tion, operation flow generation and test spec-
ification. [8] firstly proposed the concept to
construct abstract model through WSDL doc-
ument. Subsequently, [9] presented the formal
type tree on the basis of his work, they consid-
ered the data structure of complex data types,
combined the sub-elements in complex data
types and finally generated test data based on
this model. Due to lack of consideration on
test cases reduction in generation phase, test
data tends to result in a combinatorial explo-
sion by Cartesian method, it is not conductive
to carry out large-scale testing. Moreover, some
researchers proposed mutation testing technol-
ogy [10]-[13], Xu and Offutt used data pertur-
bation based on XML data type to generate test
data for Web services. Siblini and Mansour [12]
realized the testing for Web Services by docu-
ment mutation. In China, Jiang [13] proposed
the generation method of Web Services testing
data based on contract mutation which can au-
tomatically generate initial random test data via
using WSDL documents and select test data on
the basis of contract mutation. While mutation
testing needs a lot of computer resource, and
the quality of test cases depends on the mer-
its of the mutation operator, it is not a regular
means of Web Services testing.
In combinatorial testing area, after analyzing
the fault-reporting record of Moliza browser,
Kuhn and Reilly [14] found there were more
than 70% of the errors caused by the interac-
tion of the two parameters and over 90% of the
errors caused by the interaction of three pa-
rameters. Furthermore, Kuhn and Wallace [15]
studied the availability of combinatorial testing
applied into large-scale distributed systems and
found that failures triggered in such system
were generally cased by 4-6 interaction param-
eters at most. Schroeder [16] demonstrated that
the error detection ability of N-dimensional
combinatorial testing is much higher than the
same size of random testing. Currently, combi-
natorial testing is widely used in compatibility
testing, GUI testing and Web application test-
ing [17], [18].
Focusing on the studies mentioned above, al-
though there were a few test cases generation

Figure 1. The workflow of generating test data for individual operation.

274 275Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

3.2. A Formal Model of Type Tree

This paper focuses on the test data generation
for a single operation of Web Service and then
defines the formal model of type tree based on
the model proposed in Ma et al. [9] research as
shown in Figure 2. However, the model can de-
scribe all the data input elements in the single
operation of Web Service completely.
A formal model of type tree can be defined as
follows:

Definition 1. An input element type model of
the operation can be modeled as a formal tree
set T (N, S, B, nr, IC, RC, EE, ED), where:
N is a finite set of all the sub-elements in the
complex data types; S is a finite set of simple
data types nodes in the input element type def-
inition; B is a set of built-in data type nodes in
input element type definition; nr is a set of root
nodes; IC is a finite set of constraints between
complex data type and its root nodes and be-
tween complex data type and its sub-elements,

namely integrity constraints defined in WSDL
file. RC is a finite set of facet constraints be-
tween simple data type and built-in data type,
namely representation constraints defined in
WSDL file; EE is a finite set of edges: ∀ e ∈
EE, denoted as e (p, x, c), p ∈ N ∪ nr, c ∈ N, x
∈ IC ∪ {∅}; ED is a finite set of edges: ∀ e ∈
ED, denoted as e (p, x, c), p ∈ N ∪ S, c ∈ B, x
∈ RC ∪ {∅}.
According to the definition of model T in Defi-
nition 1, the construct algorithm is presented as
follows:

3.3. Variable Strength
Combinatorial Model

According to the papers [20]-[22], combinato-
rial testing model is defined as follows:
Let the software under testing (SUT) have n
parameters, and each factor fi has ai (1 ≤ i ≤ n)
discrete values. Let F = {f1, f2, ..., fn} denote the
set of factors, and Vi = {1, 2, ..., ai } (1 ≤ i ≤ n)
denote the value set of factor fi.
Definition 2. Combinatorial testing test case set
Let n-tuple
test = (v1, v2, ..., vn) (v1 ∈ V1, v2 ∈ V2, ..., vn ∈ Vn)

Algorithm 1. Obtaining formal model of type tree T.
Input: WSDL document
Output: A type tree formal model of a single operation in WSDL:
 T (N, S, B, nr, IC, RC, EE, ED)
Initial:
N = ∅, S = ∅, B = ∅, nr = ∅, IC = ∅, RC = ∅, EE = ∅, ED = ∅
 // Initialize all data type sets in T model nr ∪ {n};
 // Get new data type node n by analyzing the WSDL document
Generate_T(n); // Generate data type model of Node n
Generate_T(n): // The algorithm of construct data type model of node n
Switch (n)
Case Complex data type: // if n is Complex data type
N = N ∪ {m}, EE = EE ∪ {e}, n = m;
 // m is one of the key words, such as sequence, choice, all, generate edge
 e (n, x, m), x = ∅, take new node m as parent node
For each SubElement in n
 N = N ∪ {m}, EE = EE ∪ {e}, IC = IC ∪ {x}, n = m;
 // Generate edge e (n, x, m) and restriction facet set IC, take new node m as parent node
 Generate_T(SubElement) // iteration traversal every sub-element
 Case Simple data type: // n is simple data type
 If (n has restriction constraints)
 // whether simple data type n contains restriction constraints
 {
 S = S ∪ {n}, ED = ED ∪ {e}, RC = RC ∪ {x}, n = m;
 // m is the next node of n, and the built-in data type. This algorithm generates edge
 e (n, x, m) and user defined restriction constraints set RC as well as take new
 node m as parent node
 }
 else
 {
 B = B ∪ {m}, ED = ED ∪ {e}, RC = RC ∪ {x};
 // m is the next node of n, is built-in data type, algorithm generates edge e (n, x, m)
 and default restriction constraints set RC
 }
 Case built-in data type: // n is built-in data type
 B = B ∪ {m}, ED = ED ∪ {e}, RC = RC ∪ {x};
 // m is the next node of n, and is built-in data type, algorithm generates edge e (n, x, m)
 and default restriction constraints set RC
End for;
Output the T model of single operation

Table 1. Data Constraints Relationship.

Relationship of the Constraints Classification of the Constraints Constraints Facets

Constraints Between Nodes

Integrity Constraints
unique, maxOccurs, minOccurs,

niliable, use, length, maxExclusive,
maxInclusive

Representation Constraints

maxLength, minExclusive,
minInclusive, minLength,
minLength, totalDigits,

fractionDigits, pattern, whitespace,
enumeration

Constraints Between Boundary
Boundary Constraints

maxOccurs, minOccurs, length,
maxExclsive, maxInclusive,
maxLength, minExclsive,
minInclusive, minLength,

totalDigits,

Non-boundary Constraints enumeration, use, fractionDigits,
pattern, nilable, whitespace, unique

Figure 2. Formal model of type tree.

274 275Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

3.2. A Formal Model of Type Tree

This paper focuses on the test data generation
for a single operation of Web Service and then
defines the formal model of type tree based on
the model proposed in Ma et al. [9] research as
shown in Figure 2. However, the model can de-
scribe all the data input elements in the single
operation of Web Service completely.
A formal model of type tree can be defined as
follows:

Definition 1. An input element type model of
the operation can be modeled as a formal tree
set T (N, S, B, nr, IC, RC, EE, ED), where:
N is a finite set of all the sub-elements in the
complex data types; S is a finite set of simple
data types nodes in the input element type def-
inition; B is a set of built-in data type nodes in
input element type definition; nr is a set of root
nodes; IC is a finite set of constraints between
complex data type and its root nodes and be-
tween complex data type and its sub-elements,

namely integrity constraints defined in WSDL
file. RC is a finite set of facet constraints be-
tween simple data type and built-in data type,
namely representation constraints defined in
WSDL file; EE is a finite set of edges: ∀ e ∈
EE, denoted as e (p, x, c), p ∈ N ∪ nr, c ∈ N, x
∈ IC ∪ {∅}; ED is a finite set of edges: ∀ e ∈
ED, denoted as e (p, x, c), p ∈ N ∪ S, c ∈ B, x
∈ RC ∪ {∅}.
According to the definition of model T in Defi-
nition 1, the construct algorithm is presented as
follows:

3.3. Variable Strength
Combinatorial Model

According to the papers [20]-[22], combinato-
rial testing model is defined as follows:
Let the software under testing (SUT) have n
parameters, and each factor fi has ai (1 ≤ i ≤ n)
discrete values. Let F = {f1, f2, ..., fn} denote the
set of factors, and Vi = {1, 2, ..., ai } (1 ≤ i ≤ n)
denote the value set of factor fi.
Definition 2. Combinatorial testing test case set
Let n-tuple
test = (v1, v2, ..., vn) (v1 ∈ V1, v2 ∈ V2, ..., vn ∈ Vn)

Algorithm 1. Obtaining formal model of type tree T.
Input: WSDL document
Output: A type tree formal model of a single operation in WSDL:
 T (N, S, B, nr, IC, RC, EE, ED)
Initial:
N = ∅, S = ∅, B = ∅, nr = ∅, IC = ∅, RC = ∅, EE = ∅, ED = ∅
 // Initialize all data type sets in T model nr ∪ {n};
 // Get new data type node n by analyzing the WSDL document
Generate_T(n); // Generate data type model of Node n
Generate_T(n): // The algorithm of construct data type model of node n
Switch (n)
Case Complex data type: // if n is Complex data type
N = N ∪ {m}, EE = EE ∪ {e}, n = m;
 // m is one of the key words, such as sequence, choice, all, generate edge
 e (n, x, m), x = ∅, take new node m as parent node
For each SubElement in n
 N = N ∪ {m}, EE = EE ∪ {e}, IC = IC ∪ {x}, n = m;
 // Generate edge e (n, x, m) and restriction facet set IC, take new node m as parent node
 Generate_T(SubElement) // iteration traversal every sub-element
 Case Simple data type: // n is simple data type
 If (n has restriction constraints)
 // whether simple data type n contains restriction constraints
 {
 S = S ∪ {n}, ED = ED ∪ {e}, RC = RC ∪ {x}, n = m;
 // m is the next node of n, and the built-in data type. This algorithm generates edge
 e (n, x, m) and user defined restriction constraints set RC as well as take new
 node m as parent node
 }
 else
 {
 B = B ∪ {m}, ED = ED ∪ {e}, RC = RC ∪ {x};
 // m is the next node of n, is built-in data type, algorithm generates edge e (n, x, m)
 and default restriction constraints set RC
 }
 Case built-in data type: // n is built-in data type
 B = B ∪ {m}, ED = ED ∪ {e}, RC = RC ∪ {x};
 // m is the next node of n, and is built-in data type, algorithm generates edge e (n, x, m)
 and default restriction constraints set RC
End for;
Output the T model of single operation

Table 1. Data Constraints Relationship.

Relationship of the Constraints Classification of the Constraints Constraints Facets

Constraints Between Nodes

Integrity Constraints
unique, maxOccurs, minOccurs,

niliable, use, length, maxExclusive,
maxInclusive

Representation Constraints

maxLength, minExclusive,
minInclusive, minLength,
minLength, totalDigits,

fractionDigits, pattern, whitespace,
enumeration

Constraints Between Boundary
Boundary Constraints

maxOccurs, minOccurs, length,
maxExclsive, maxInclusive,
maxLength, minExclsive,
minInclusive, minLength,

totalDigits,

Non-boundary Constraints enumeration, use, fractionDigits,
pattern, nilable, whitespace, unique

Figure 2. Formal model of type tree.

276 277Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

call a test case for SUT, and the set consists of
these test cases called test case set for SUT.
Definition 3. N dimensional combinatorial
coverage
Given A = (ai,j)m×n is m × n array, where jth col-
umn denotes the factor fi of SUT and all ele-
ments of this column come from the finite set
Vi = {1, 2, ..., n}, that is ai,j ∈ Vj. If every
m ∙ n (2 ≤ N ≤ n) sub-arrays contain all value
combinations of such N columns (or factors),
then A is an N-way fixed strength covering
array or a fixed strength covering array with
strength N, and it could be denoted as CA
(m : N : F).
Definition 4. Interaction relation set
A subset rk ∈ R (k = 1, 2, ..., t) could be named
as interaction coverage requirement, or cover-
age requirement for short. And the collection R
could be named as the interaction relationship
of SUT.
Given A = (ai,j)m×n is m × n array, where jth col-
umn denotes the factor fi of SUT and all ele-
ments of this column come from the finite set
Vi = {1, 2, ..., n}, that is ai,j ∈ Vj. For a coverage
requirement rk ∈ R, if the sub-array consists of
all factors, then A satisfies rk, if A satisfies all
coverage requirements in an interaction rela-
tionship R, then A is a variable strength cover-
ing array for R and it could be denoted as VCA
(m, F, R).
Accordingly, the variable strength covering array
for R should cover all combinations in the set:

1

t

k
k

CombSet CombSet
=

=


where the CombSetk (k = 1, 2, ..., t) covers the
coverage requirement rk :
CombSetk = {(vk,1, vk,2, ..., vk,nk)|

 vk,1 ∈ Vk,1, vk,2 ∈ Vk,2, ..., vk,nk ∈ Vk,nk}.

3.4. Data Constraints Model

This paper improves the constraints model
which was proposed by Hou et al. [23]. Firstly,
we construct a new constraints model for the
constraints relationship of simple and com-

plex data types derived from WSDL document,
in order to express the constraint relationship
among data accurately. Secondly, we transform
the existing test cases set built in the previous
steps, and minimize the test cases as well as en-
hance the error detection capability of existing
test cases. There are three kinds of constraints:
Cardinality constraints, ValueRange constraints
and Rules. The constraints models for simple
data types and complex data types are defined
as follows:
Definition 5. Data constraints model
SimpleDataConstrain =
 <Cardinality, ValueRange, Rules>
ComplexDataConstrain =
 <Cardinality, ValueRange, innerRules, Rules>
Cardinality and ValueRange define the con-
straints relationship of data attributes. Cardinal-
ity refers to the constraints of number, including
maximum, minimum and fixed cardinality con-
straints, corresponding to the minOccurs and
maxOccurs attributes in the WSDL file.
ValueRange refers to a range of constraints by
object restriction, corresponding to the Restric-
tion attribute in the WSDL file. Rules refers to
the complex constraints relationship between
the attribute in object restriction. According to
the range, the constraints relationship can be
subdivided into two types: the constraints re-
lationship called innerRules for the same data
between different attributes, and another one
called Rules for the different data between at-
tributes. The above constraints relationship can
be described by the rule language Semantic
Web Rule Language (SWRL) [24].

4. Test Data Generation Based
on T Model

4.1. Test Process Instance

The proposed steps for initial test data genera-
tion based on the model above are as follows:
Step 1. At first, derive service operation and pa-
rameter information by WSDL URL, and then
a formal model of type tree of Section 3.2. will
be constructed by the input element of a single
operation of Web Service.
Step 2. Generate the data constraints model of
Section 3.4. according to the facet constraints

relationships and user-defined rules of a single
operation of Web Service.
Step 3. Divide the input domain by equivalence
partitioning based on the formal model of type
tree and data constraints model constructed by
previous steps. Then select a few representative
data as a test case from data subset and divide
them into valid and invalid equivalence classes.
Step 4. Obtain built-in data types set, including
int, double, string, decimal and other original
input data types, and select factors boundary
based on representation constraints, such as:
(1) Minimum and maximum values of the data

type; (2) Minimum and maximum length of
String; (3) True and false of Boolean.
Step 5. According to the equivalence classes
and boundary values for each data partition,
select boundary value, abnormal value, null
value, normal value and other factors, and then
obtain the initial test suit completely based on
integrity constraints.

4.2. Test Data Generation

According to the formal model of type tree, test
data generation algorithm is presented as fol-
lows:

Algorithm 2. Initial test data generation.
Input: A formal model of type tree of single operation in WSDL:
 T (N, S, B, nr, IC, RC, EE, ED), data constraints set Constraints
Output: initial test data set TestData
TestData = ∅; // Initialize TestData
GetTestData(T): // Test data generation algorithm for T
 For each node ‘m’ in B and e (n, x, m) // Traversal each root node in the T model
 GetData (n, Constraints);
 End for;
GetData (n, Constraints): // Test data generation algorithm
 TD = ∅; // Initial test suite for sub-element in complex data
 If (Constraints = = SimpleConstraint)
 {
 While (x ≠ ∅) {
 According to the domain constraints in data constraints set Constraints,
 generate test data TestData through equivalence class and boundary
 partition, and put it into factors set F;
 m = n;
 GetData (n, Constraints);}
 }
 else
 {
 For each SubElement in n
 TD.add (GetData (SubElement, Constraints))
 d = GetStructure(x) // derive data structure
 If (d = = sequence)
 {TestData = GetSequenceData (TD);
 // Generate test data using equivalence classes and boundary partition based
 on sequence rule and data constraint model Constraint, and put it into
 factors set F;}
 else
 if (d = = choice)
 {TestData = GetChoiceData (TD); // As in the above case, generate test data
 based on Choice}
 else {TestData = GetAllData(TD) // As in the above case, generate test data
 based on All}
 }

276 277Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

call a test case for SUT, and the set consists of
these test cases called test case set for SUT.
Definition 3. N dimensional combinatorial
coverage
Given A = (ai,j)m×n is m × n array, where jth col-
umn denotes the factor fi of SUT and all ele-
ments of this column come from the finite set
Vi = {1, 2, ..., n}, that is ai,j ∈ Vj. If every
m ∙ n (2 ≤ N ≤ n) sub-arrays contain all value
combinations of such N columns (or factors),
then A is an N-way fixed strength covering
array or a fixed strength covering array with
strength N, and it could be denoted as CA
(m : N : F).
Definition 4. Interaction relation set
A subset rk ∈ R (k = 1, 2, ..., t) could be named
as interaction coverage requirement, or cover-
age requirement for short. And the collection R
could be named as the interaction relationship
of SUT.
Given A = (ai,j)m×n is m × n array, where jth col-
umn denotes the factor fi of SUT and all ele-
ments of this column come from the finite set
Vi = {1, 2, ..., n}, that is ai,j ∈ Vj. For a coverage
requirement rk ∈ R, if the sub-array consists of
all factors, then A satisfies rk, if A satisfies all
coverage requirements in an interaction rela-
tionship R, then A is a variable strength cover-
ing array for R and it could be denoted as VCA
(m, F, R).
Accordingly, the variable strength covering array
for R should cover all combinations in the set:

1

t

k
k

CombSet CombSet
=

=


where the CombSetk (k = 1, 2, ..., t) covers the
coverage requirement rk :
CombSetk = {(vk,1, vk,2, ..., vk,nk)|

 vk,1 ∈ Vk,1, vk,2 ∈ Vk,2, ..., vk,nk ∈ Vk,nk}.

3.4. Data Constraints Model

This paper improves the constraints model
which was proposed by Hou et al. [23]. Firstly,
we construct a new constraints model for the
constraints relationship of simple and com-

plex data types derived from WSDL document,
in order to express the constraint relationship
among data accurately. Secondly, we transform
the existing test cases set built in the previous
steps, and minimize the test cases as well as en-
hance the error detection capability of existing
test cases. There are three kinds of constraints:
Cardinality constraints, ValueRange constraints
and Rules. The constraints models for simple
data types and complex data types are defined
as follows:
Definition 5. Data constraints model
SimpleDataConstrain =
 <Cardinality, ValueRange, Rules>
ComplexDataConstrain =
 <Cardinality, ValueRange, innerRules, Rules>
Cardinality and ValueRange define the con-
straints relationship of data attributes. Cardinal-
ity refers to the constraints of number, including
maximum, minimum and fixed cardinality con-
straints, corresponding to the minOccurs and
maxOccurs attributes in the WSDL file.
ValueRange refers to a range of constraints by
object restriction, corresponding to the Restric-
tion attribute in the WSDL file. Rules refers to
the complex constraints relationship between
the attribute in object restriction. According to
the range, the constraints relationship can be
subdivided into two types: the constraints re-
lationship called innerRules for the same data
between different attributes, and another one
called Rules for the different data between at-
tributes. The above constraints relationship can
be described by the rule language Semantic
Web Rule Language (SWRL) [24].

4. Test Data Generation Based
on T Model

4.1. Test Process Instance

The proposed steps for initial test data genera-
tion based on the model above are as follows:
Step 1. At first, derive service operation and pa-
rameter information by WSDL URL, and then
a formal model of type tree of Section 3.2. will
be constructed by the input element of a single
operation of Web Service.
Step 2. Generate the data constraints model of
Section 3.4. according to the facet constraints

relationships and user-defined rules of a single
operation of Web Service.
Step 3. Divide the input domain by equivalence
partitioning based on the formal model of type
tree and data constraints model constructed by
previous steps. Then select a few representative
data as a test case from data subset and divide
them into valid and invalid equivalence classes.
Step 4. Obtain built-in data types set, including
int, double, string, decimal and other original
input data types, and select factors boundary
based on representation constraints, such as:
(1) Minimum and maximum values of the data

type; (2) Minimum and maximum length of
String; (3) True and false of Boolean.
Step 5. According to the equivalence classes
and boundary values for each data partition,
select boundary value, abnormal value, null
value, normal value and other factors, and then
obtain the initial test suit completely based on
integrity constraints.

4.2. Test Data Generation

According to the formal model of type tree, test
data generation algorithm is presented as fol-
lows:

Algorithm 2. Initial test data generation.
Input: A formal model of type tree of single operation in WSDL:
 T (N, S, B, nr, IC, RC, EE, ED), data constraints set Constraints
Output: initial test data set TestData
TestData = ∅; // Initialize TestData
GetTestData(T): // Test data generation algorithm for T
 For each node ‘m’ in B and e (n, x, m) // Traversal each root node in the T model
 GetData (n, Constraints);
 End for;
GetData (n, Constraints): // Test data generation algorithm
 TD = ∅; // Initial test suite for sub-element in complex data
 If (Constraints = = SimpleConstraint)
 {
 While (x ≠ ∅) {
 According to the domain constraints in data constraints set Constraints,
 generate test data TestData through equivalence class and boundary
 partition, and put it into factors set F;
 m = n;
 GetData (n, Constraints);}
 }
 else
 {
 For each SubElement in n
 TD.add (GetData (SubElement, Constraints))
 d = GetStructure(x) // derive data structure
 If (d = = sequence)
 {TestData = GetSequenceData (TD);
 // Generate test data using equivalence classes and boundary partition based
 on sequence rule and data constraint model Constraint, and put it into
 factors set F;}
 else
 if (d = = choice)
 {TestData = GetChoiceData (TD); // As in the above case, generate test data
 based on Choice}
 else {TestData = GetAllData(TD) // As in the above case, generate test data
 based on All}
 }

278 279Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

5. Obtain the Optimal Test Cases

According to the previous algorithm in Section
4.2., the initial test data will be generated for
single operation of Web Service while the test
data is redundant. Additionally, we propose a
test set optimization approach based on com-
binatorial testing and data constraints rules to
solve this problem. The workflow is shown in
Figure 3.

5.1. Test Case Generation Based on
Combinatorial Testing Through
One-Test-at-a-Time

According to variable strength the combinato-
rial testing model proposed in Section 3.3., on
the basis of the data factors F derived from ini-
tial test data from previous work, in this section
test suite is obtained on the basis of combinato-
rial testing through One-test-at-a-time strategy.
This paper defines set CombSet generated by
factors set F and interaction relationship R in
SUT and makes it contain the value of a collec-
tion among all the factors that need to be cov-

ered by the test suite. Through the end, the test
suite is obtained by generating every test case
using One-test-at-a-time strategy proposed in
[21] as shown in algorithm 3.

Algorithm 3. One-test-at-a-time strategy.
Input: Set F of factors and set R of interaction
 relationship in a single operation in
 WSDL document
Output: Test suit based on variable strength
 combinatorial testing
Initial:
 CombSet = ∅
 Initialize T[0..0][1…n]; // initialize a matrix T
 as test suite;
 Generate set CombSet based on F and R;
 UncovCombSet = CombSet;
While (UncovCombSet = ∅);
 Generate a test case called test, add it into
 test suite T;
 Update UncovCombSet, delete the
 combination covered by test;
End while

Due to the particularity of the formal model of
type tree, we should generate variable strength

test suite in the complex data type firstly, after-
wards regard the complex data type as a new
element, and perform the test suite approach
again, based on the interaction relationship.
This process is shown as follows:
Step 1. At first, generate subfactors set and in-
teraction relationship based on type tree formal
model.
Step 2. Generate test suite based on combinato-
rial testing through One-test-at-a-time strategy
for each complex data type.
Step 3. Regard the whole test suite generated
in step 2 as a new data factor by equivalence
classes and boundary values for each data par-
tition. Then add it into set F and delete the sub
-elements in complex data types in test suite T0.
Step 4. After each set for complex data type is
transferred as a new element, generates the test
suite through One-test-at-a-time strategy itera-
tively.

5.2. Reform the Test Suite Based
on Constraints

In this section, the test suite T created by pre-
vious section through constraints rules is re-
formed with the purpose of obtaining optimal
test suite. Test data generation has been con-
sidered by combinatorial testing above and test
cases have been dramatically minimized, but
there are still some limited combinations of fac-
tors in the software which have been considered
in Section 3.4. If there are strength constraints,
the error detection ability of the test data would
be influenced. Regarding the reduction with
limited composition relationships, error detec-
tion capability of test cases will be improved.
The steps are shown as follows:
Step 1. Firstly, obtain the limited combination
of existing test suite through constraints rela-
tionship
Step 2. Clone the existing test cases including
limited combinations
Step 3. Reform the positions of limited com-
binations for test suite from clone, and make
them no longer limited
This approach will refrain from limited combi-
nations, without affecting the coverage of valid
combination by test cases.

6. Case Study

In this section, there is a chosen type of ship
command and control system which was de-
veloped based on Service Oriented Architec-
ture as tested service and treated as verification
example of software testing. Then this section
verifies the effectiveness, efficiency and practi-
cality in data generation for single operation of
Web services by our approach.

The sub-function in operational command mod-
ule software is selected. After deriving the ser-
vice description WSDL document, the T model
and data constraints based on Section 3 are con-
structed at first; then the interaction between el-
ements in T model by source code and the test
cases based on combinatorial testing are gener-
ated separately; finally the final test suite based
on the constraints rules between data types is
achieved. Here, on the basis of comparing the
proposed approach with random test case gen-
eration approach by monitoring and obtain cov-
erage of source code, the results show that our
approach gets a better code converge, specifi-
cally shown in Figure 4.

Figure 4. Comparison of code coverage rate
between datasets.

For the validation of the advantages of test
cases in size, with some existing methods, the
test cases for some operations in tested service
are generated; the results are shown in Figure
5. Meanwhile, Table 2 shows the detected re-
sults for multiple operations in the tested Web
services with the generated test cases, including
the detected faults and execution time.Figure3. The processes of test data optimization.

278 279Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

5. Obtain the Optimal Test Cases

According to the previous algorithm in Section
4.2., the initial test data will be generated for
single operation of Web Service while the test
data is redundant. Additionally, we propose a
test set optimization approach based on com-
binatorial testing and data constraints rules to
solve this problem. The workflow is shown in
Figure 3.

5.1. Test Case Generation Based on
Combinatorial Testing Through
One-Test-at-a-Time

According to variable strength the combinato-
rial testing model proposed in Section 3.3., on
the basis of the data factors F derived from ini-
tial test data from previous work, in this section
test suite is obtained on the basis of combinato-
rial testing through One-test-at-a-time strategy.
This paper defines set CombSet generated by
factors set F and interaction relationship R in
SUT and makes it contain the value of a collec-
tion among all the factors that need to be cov-

ered by the test suite. Through the end, the test
suite is obtained by generating every test case
using One-test-at-a-time strategy proposed in
[21] as shown in algorithm 3.

Algorithm 3. One-test-at-a-time strategy.
Input: Set F of factors and set R of interaction
 relationship in a single operation in
 WSDL document
Output: Test suit based on variable strength
 combinatorial testing
Initial:
 CombSet = ∅
 Initialize T[0..0][1…n]; // initialize a matrix T
 as test suite;
 Generate set CombSet based on F and R;
 UncovCombSet = CombSet;
While (UncovCombSet = ∅);
 Generate a test case called test, add it into
 test suite T;
 Update UncovCombSet, delete the
 combination covered by test;
End while

Due to the particularity of the formal model of
type tree, we should generate variable strength

test suite in the complex data type firstly, after-
wards regard the complex data type as a new
element, and perform the test suite approach
again, based on the interaction relationship.
This process is shown as follows:
Step 1. At first, generate subfactors set and in-
teraction relationship based on type tree formal
model.
Step 2. Generate test suite based on combinato-
rial testing through One-test-at-a-time strategy
for each complex data type.
Step 3. Regard the whole test suite generated
in step 2 as a new data factor by equivalence
classes and boundary values for each data par-
tition. Then add it into set F and delete the sub
-elements in complex data types in test suite T0.
Step 4. After each set for complex data type is
transferred as a new element, generates the test
suite through One-test-at-a-time strategy itera-
tively.

5.2. Reform the Test Suite Based
on Constraints

In this section, the test suite T created by pre-
vious section through constraints rules is re-
formed with the purpose of obtaining optimal
test suite. Test data generation has been con-
sidered by combinatorial testing above and test
cases have been dramatically minimized, but
there are still some limited combinations of fac-
tors in the software which have been considered
in Section 3.4. If there are strength constraints,
the error detection ability of the test data would
be influenced. Regarding the reduction with
limited composition relationships, error detec-
tion capability of test cases will be improved.
The steps are shown as follows:
Step 1. Firstly, obtain the limited combination
of existing test suite through constraints rela-
tionship
Step 2. Clone the existing test cases including
limited combinations
Step 3. Reform the positions of limited com-
binations for test suite from clone, and make
them no longer limited
This approach will refrain from limited combi-
nations, without affecting the coverage of valid
combination by test cases.

6. Case Study

In this section, there is a chosen type of ship
command and control system which was de-
veloped based on Service Oriented Architec-
ture as tested service and treated as verification
example of software testing. Then this section
verifies the effectiveness, efficiency and practi-
cality in data generation for single operation of
Web services by our approach.

The sub-function in operational command mod-
ule software is selected. After deriving the ser-
vice description WSDL document, the T model
and data constraints based on Section 3 are con-
structed at first; then the interaction between el-
ements in T model by source code and the test
cases based on combinatorial testing are gener-
ated separately; finally the final test suite based
on the constraints rules between data types is
achieved. Here, on the basis of comparing the
proposed approach with random test case gen-
eration approach by monitoring and obtain cov-
erage of source code, the results show that our
approach gets a better code converge, specifi-
cally shown in Figure 4.

Figure 4. Comparison of code coverage rate
between datasets.

For the validation of the advantages of test
cases in size, with some existing methods, the
test cases for some operations in tested service
are generated; the results are shown in Figure
5. Meanwhile, Table 2 shows the detected re-
sults for multiple operations in the tested Web
services with the generated test cases, including
the detected faults and execution time.Figure3. The processes of test data optimization.

280 281Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

Figure 5. Comparison of test case size among
different methods.

Table 2. Comparison of detected errors.

Data
Generation

method
Number
of errors

Error
description

Execution
time (s)

Our
Method 12

Boundary
exception,
null values,
combination

of data
processing
error and so

on

230

Ma et al.
[9] 13

Partly
Functional

error
995

Li [25] 5
Partly

boundary
error

125

The approach proposed by Ma et al. is good at
error detection [9]. If the system is too compli-
cated, it will obtain the largest amount of test
cases, at the same time resulting in a combina-
torial explosion which also costs the highest ex-
ecution time. Although the approach proposed
by Li [25] generates the least test cases, the
results show that it cannot meet the test ade-
quacy requirement with poor error detection
capability. Therefore, the proposed algorithms
could leverage the execution effectiveness and
optimality of size of generated test suite.

7. Conclusion

Testing Web Services is one of the hot debates
in software testing area today while test data
generation for Web services has become an
important part of Web services testing. In sum-
mary, this paper proposes an automatic test case
generated approach, integrating combinatorial
testing with data constraint rules technology. In
particular, this study minimizes the test suite,
ultimately solves the problem of test data re-
dundancy and enhances the relevance of testing
and improves test efficiency.
There is a workflow mentioned above for gen-
erating the test cases for Web services based on
combinatorial approaches. Furthermore, testing
Web services is very labor-intensive and time-
consuming because SOAP message must be
sent to invoke Web Service for each test case
which uses a lot of resources. Accordingly, it is
necessary to enhance our work by developing
an automated tool to support our approach.
In the future work, more attentions should be
paid to research on other levels of Web Services
exhaustively, including testing the operations
sequence and composite Web Services as well
as further raise the automation of Web Services
tests.

References

[1] H. He (2003, Sep). What is Service-Oriented
Architecture? [Online]. Available: http://webser-
vices.xml.com/pub/a/ws/2003/09/30/soa.html

[2] G. Canfora and M. Di Penta, "Testing services
and service-centric systems: challenges and op-
portunities", IT Professional, vol. 8, no. 2, pp.
10–17, 2006.
http://dx.doi.org/10.1109/MITP.2006.51

[3] D. Brenner et al., "Strategies for the Run-Time
Testing of Third Party Web Services", in IEEE
International Conference on Service-Oriented
Computing an Applications (SOCA'07), June
2007, pp. 114–121.
http://dx.doi.org/10.1109/SOCA.2007.43

[4] A. Sinha and A. Paradkar, "Model Based Func-
tional Conformance testing of web services oper-
ating on persistent data", in Proceedings of 2006
workshop on Testing, analysis, and verification of
Web services and application, ACM., New York,
NY, USA, 2006, pp. 17–22.
http://dx.doi.org/10.1145/1145718.1145721

[5] C. Keum et al., "Generating test cases for Web
services using extended finite state machine",
Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, pp. 103–117, 2006.
http://dx.doi.org/10.1007/11754008_7

[6] W. T. Tsai et al., "Extending WSDL to Facilitate
Web Services Testing," in Proceedings of IEEE
HASE, 2002, pp. 171–172.
http://dx.doi.org/10.1109/hase.2002.1173119

[7] X. Y. Bai et al., "WSDL-Based automatic test
case generation for Web services testing", in Pro-
ceedings of the 2005 IEEE International Work-
shop on Service-Oriented System Engineering
(SOSE'05), Washington: IEEE Computer Society,
2005, pp. 207–212.

[8] H. Samer and M. Malcolm, "An approach for
specification-based test case generation for Web
Services", in Computer Systems and Applica-
tions, AICCSA '07, IEEE/ACS International Con-
ference on 13–16 May 2007, pp. 16–23.

[9] C. Y. Ma et al., "WSDL-Based automated test
case generation for Web service", in Proceedings
of the Computer Science and Software Engineer-
ing, Washington, 2008, pp. 731–737.

[10] J. Offutt and W. Xu, "Generating Test Cases for
Web Services Using Data perturbation", ACM
SIGSOFT, Software Eng. Notes, vol. 29, no. 5,
pp. 1–10, 2004.
http://dx.doi.org/10.1145/1022494.1022529

[11] W. Xu and J. Offutt, "Testing Web Services by
XML perturbation", in Software Reliability En-
gineering, ISSRE 2005, 16th IEEE International
Symposium, 8–11 Nov. 2005, pp.1–10.

[12] R. Siblini and N. Mansour, "Testing Web Ser-
vices", in 2005 ACS/IEEE International Con-
ference on Computer Systems and Applications
(AICCSA 2005), Cairo, Egypt, 2005.
http://dx.doi.org/10.1109/AICCSA.2005.1387124

[13] Y. Jiang, "A Method of automated test data gen-
eration for web service", Chinese journal of com-
puters, vol. 28, no. 4, Apr. 2005.

[14] D. R. Kuhn and M. J. Reilly, "An investigation of
the applicability of design of experiments to soft-
ware testing", in Proceedings of the 27th NASA/
IEEE Software Engineering Workshop, NASA
Goddard Space Flight Center, 2002, pp. 91–95.

[15] D. R. Kuhn and D. R. Wallace, "Software fault
interaction and implication for software testing",
in IEEE Transactions on Software Engineering,
2004, pp. 1–4.

[16] P. J. Schroeder et al., "Comparing the fault de-
tection effectiveness of n-way and random test
suite", in Proceedings of the 2004 International
Symposium on Empirical Software Engineering
(ISESE2004), Redondo Beach, Califorrnia, 2004,
pp. 49–59.
http://dx.doi.org/10.1109/isese.2004.1334893

[17] S. Sampath et al., "Prioritizing user-session-based
test cases for web application testing", in The 1st
International Conference on Software Testing,
Verification, and Validation, 2008, pp. 141–150.
http://dx.doi.org/10.1109/icst.2008.42

[18] X. Yuan et al., "Covering array sampling of input
event sequences for automated GUI testing", in
The 22nd International Conference on Automated
Software Engineering, 2007, pp. 405–408.
http://dx.doi.org/10.1145/1321631.1321695

[19] W3C. (June, 2007). Web Services Description
Language (WSDL)Version 2.0 [Online]. Avail-
able: http://www.w3.org/TR/2007/REC-wsdl20-
primer-20070626

[20] Z. Y. Wang et al., "Survey of combinatorial test
generation", Journal of Frontiers of Computer
Science and Technology, vol. 2, no. 6, pp. 571–
588, 2008.

[21] Y. Lei, "In-parameter-order: a test generation strat-
egy for pairwise testing", in Proceedings of the
3rd IEEE International Symposium on High-As-
surance Systems Engineering (HASE1998),
Washington, USA, 1998, pp. 254–261.

[22] W. Z. Yuan et al., "Generating variable strength
combinatorial test suite with one-test-at-a-time
strategy", Chinese Journal of computers, vol.12,
no. 35, 2012.

[23] K. J. Hou et al., "Web service test Data Genera-
tion Using Interface Semantic Contract", Journal
of Software, vol. 24, no. 9, pp. 2020–2041, 2013.

[24] I. Horrocks et al., (2004). SWRL:A semantic web
rule language combining OWL and RuleML [On-
line]. Available:
http://www.w3.org/ Submission/SWRL

[25] S.-G. Li, "A method of automatic test data gen-
eration based on extended WSDL", M.S. thesis,
Dept. Computer Science. Southwest University,
Chongqing, China, 2010.

Received: June 2015
Revised: June 2016

Accepted: July 2016

Contact addresses:
Yin Li

Jiangsu Institute of Automation
Jiangsu, Lianyungang, Xin Pu Qu

Hailian E Rd, 42, 222006 China
e-mail: leein121999@126.com

Zhi-an Sun
Jiangsu Institute of Automation

Jiangsu, Lianyungang, Xin Pu Qu
Hailian E Rd, 42, 222006 China
e-mail: 18036671781@189.com

Jian-Yong Fang
Jiangsu Institute of Automation

Jiangsu, Lianyungang, Xin Pu Qu
Hailian E Rd, 42, 222006 China
e-mail: 18036673735@189.com

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://dx.doi.org/10.1109/MITP.2006.51
http://dx.doi.org/10.1109/SOCA.2007.43
http://dx.doi.org/10.1145/1145718.1145721
http://dx.doi.org/10.1007/11754008_7
http://dx.doi.org/10.1109/hase.2002.1173119
http://dx.doi.org/10.1145/1022494.1022529
http://dx.doi.org/10.1145/1022494.1022529
http://dx.doi.org/10.1109/isese.2004.1334893
http://dx.doi.org/10.1109/icst.2008.42
http://dx.doi.org/10.1145/1321631.1321695
http://www.w3.org/ Submission/SWRL

280 281Y. Li et al. Generating an Automated Test Suite by Variable Strength Combinatorial Testing for Web Services

Figure 5. Comparison of test case size among
different methods.

Table 2. Comparison of detected errors.

Data
Generation

method
Number
of errors

Error
description

Execution
time (s)

Our
Method 12

Boundary
exception,
null values,
combination

of data
processing
error and so

on

230

Ma et al.
[9] 13

Partly
Functional

error
995

Li [25] 5
Partly

boundary
error

125

The approach proposed by Ma et al. is good at
error detection [9]. If the system is too compli-
cated, it will obtain the largest amount of test
cases, at the same time resulting in a combina-
torial explosion which also costs the highest ex-
ecution time. Although the approach proposed
by Li [25] generates the least test cases, the
results show that it cannot meet the test ade-
quacy requirement with poor error detection
capability. Therefore, the proposed algorithms
could leverage the execution effectiveness and
optimality of size of generated test suite.

7. Conclusion

Testing Web Services is one of the hot debates
in software testing area today while test data
generation for Web services has become an
important part of Web services testing. In sum-
mary, this paper proposes an automatic test case
generated approach, integrating combinatorial
testing with data constraint rules technology. In
particular, this study minimizes the test suite,
ultimately solves the problem of test data re-
dundancy and enhances the relevance of testing
and improves test efficiency.
There is a workflow mentioned above for gen-
erating the test cases for Web services based on
combinatorial approaches. Furthermore, testing
Web services is very labor-intensive and time-
consuming because SOAP message must be
sent to invoke Web Service for each test case
which uses a lot of resources. Accordingly, it is
necessary to enhance our work by developing
an automated tool to support our approach.
In the future work, more attentions should be
paid to research on other levels of Web Services
exhaustively, including testing the operations
sequence and composite Web Services as well
as further raise the automation of Web Services
tests.

References

[1] H. He (2003, Sep). What is Service-Oriented
Architecture? [Online]. Available: http://webser-
vices.xml.com/pub/a/ws/2003/09/30/soa.html

[2] G. Canfora and M. Di Penta, "Testing services
and service-centric systems: challenges and op-
portunities", IT Professional, vol. 8, no. 2, pp.
10–17, 2006.
http://dx.doi.org/10.1109/MITP.2006.51

[3] D. Brenner et al., "Strategies for the Run-Time
Testing of Third Party Web Services", in IEEE
International Conference on Service-Oriented
Computing an Applications (SOCA'07), June
2007, pp. 114–121.
http://dx.doi.org/10.1109/SOCA.2007.43

[4] A. Sinha and A. Paradkar, "Model Based Func-
tional Conformance testing of web services oper-
ating on persistent data", in Proceedings of 2006
workshop on Testing, analysis, and verification of
Web services and application, ACM., New York,
NY, USA, 2006, pp. 17–22.
http://dx.doi.org/10.1145/1145718.1145721

[5] C. Keum et al., "Generating test cases for Web
services using extended finite state machine",
Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, pp. 103–117, 2006.
http://dx.doi.org/10.1007/11754008_7

[6] W. T. Tsai et al., "Extending WSDL to Facilitate
Web Services Testing," in Proceedings of IEEE
HASE, 2002, pp. 171–172.
http://dx.doi.org/10.1109/hase.2002.1173119

[7] X. Y. Bai et al., "WSDL-Based automatic test
case generation for Web services testing", in Pro-
ceedings of the 2005 IEEE International Work-
shop on Service-Oriented System Engineering
(SOSE'05), Washington: IEEE Computer Society,
2005, pp. 207–212.

[8] H. Samer and M. Malcolm, "An approach for
specification-based test case generation for Web
Services", in Computer Systems and Applica-
tions, AICCSA '07, IEEE/ACS International Con-
ference on 13–16 May 2007, pp. 16–23.

[9] C. Y. Ma et al., "WSDL-Based automated test
case generation for Web service", in Proceedings
of the Computer Science and Software Engineer-
ing, Washington, 2008, pp. 731–737.

[10] J. Offutt and W. Xu, "Generating Test Cases for
Web Services Using Data perturbation", ACM
SIGSOFT, Software Eng. Notes, vol. 29, no. 5,
pp. 1–10, 2004.
http://dx.doi.org/10.1145/1022494.1022529

[11] W. Xu and J. Offutt, "Testing Web Services by
XML perturbation", in Software Reliability En-
gineering, ISSRE 2005, 16th IEEE International
Symposium, 8–11 Nov. 2005, pp.1–10.

[12] R. Siblini and N. Mansour, "Testing Web Ser-
vices", in 2005 ACS/IEEE International Con-
ference on Computer Systems and Applications
(AICCSA 2005), Cairo, Egypt, 2005.
http://dx.doi.org/10.1109/AICCSA.2005.1387124

[13] Y. Jiang, "A Method of automated test data gen-
eration for web service", Chinese journal of com-
puters, vol. 28, no. 4, Apr. 2005.

[14] D. R. Kuhn and M. J. Reilly, "An investigation of
the applicability of design of experiments to soft-
ware testing", in Proceedings of the 27th NASA/
IEEE Software Engineering Workshop, NASA
Goddard Space Flight Center, 2002, pp. 91–95.

[15] D. R. Kuhn and D. R. Wallace, "Software fault
interaction and implication for software testing",
in IEEE Transactions on Software Engineering,
2004, pp. 1–4.

[16] P. J. Schroeder et al., "Comparing the fault de-
tection effectiveness of n-way and random test
suite", in Proceedings of the 2004 International
Symposium on Empirical Software Engineering
(ISESE2004), Redondo Beach, Califorrnia, 2004,
pp. 49–59.
http://dx.doi.org/10.1109/isese.2004.1334893

[17] S. Sampath et al., "Prioritizing user-session-based
test cases for web application testing", in The 1st
International Conference on Software Testing,
Verification, and Validation, 2008, pp. 141–150.
http://dx.doi.org/10.1109/icst.2008.42

[18] X. Yuan et al., "Covering array sampling of input
event sequences for automated GUI testing", in
The 22nd International Conference on Automated
Software Engineering, 2007, pp. 405–408.
http://dx.doi.org/10.1145/1321631.1321695

[19] W3C. (June, 2007). Web Services Description
Language (WSDL)Version 2.0 [Online]. Avail-
able: http://www.w3.org/TR/2007/REC-wsdl20-
primer-20070626

[20] Z. Y. Wang et al., "Survey of combinatorial test
generation", Journal of Frontiers of Computer
Science and Technology, vol. 2, no. 6, pp. 571–
588, 2008.

[21] Y. Lei, "In-parameter-order: a test generation strat-
egy for pairwise testing", in Proceedings of the
3rd IEEE International Symposium on High-As-
surance Systems Engineering (HASE1998),
Washington, USA, 1998, pp. 254–261.

[22] W. Z. Yuan et al., "Generating variable strength
combinatorial test suite with one-test-at-a-time
strategy", Chinese Journal of computers, vol.12,
no. 35, 2012.

[23] K. J. Hou et al., "Web service test Data Genera-
tion Using Interface Semantic Contract", Journal
of Software, vol. 24, no. 9, pp. 2020–2041, 2013.

[24] I. Horrocks et al., (2004). SWRL:A semantic web
rule language combining OWL and RuleML [On-
line]. Available:
http://www.w3.org/ Submission/SWRL

[25] S.-G. Li, "A method of automatic test data gen-
eration based on extended WSDL", M.S. thesis,
Dept. Computer Science. Southwest University,
Chongqing, China, 2010.

Received: June 2015
Revised: June 2016

Accepted: July 2016

Contact addresses:
Yin Li

Jiangsu Institute of Automation
Jiangsu, Lianyungang, Xin Pu Qu

Hailian E Rd, 42, 222006 China
e-mail: leein121999@126.com

Zhi-an Sun
Jiangsu Institute of Automation

Jiangsu, Lianyungang, Xin Pu Qu
Hailian E Rd, 42, 222006 China
e-mail: 18036671781@189.com

Jian-Yong Fang
Jiangsu Institute of Automation

Jiangsu, Lianyungang, Xin Pu Qu
Hailian E Rd, 42, 222006 China
e-mail: 18036673735@189.com

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://dx.doi.org/10.1109/MITP.2006.51
http://dx.doi.org/10.1109/SOCA.2007.43
http://dx.doi.org/10.1145/1145718.1145721
http://dx.doi.org/10.1007/11754008_7
http://dx.doi.org/10.1109/hase.2002.1173119
http://dx.doi.org/10.1145/1022494.1022529
http://dx.doi.org/10.1145/1022494.1022529
http://dx.doi.org/10.1109/isese.2004.1334893
http://dx.doi.org/10.1109/icst.2008.42
http://dx.doi.org/10.1145/1321631.1321695
http://www.w3.org/ Submission/SWRL

282 Y. Li et al.

Yin Li was born in 1988. He received the MS degree from Soochow
University in 2014. He is an engineer master at Jiangsu Institute of Au-
tomation. His research interests include data mining, software testing.

Zhi-an Sun was born in 1966. He received the MS degree from Bei-
jing University of Aeronautics and Astronautics. He is a researcher at
Jiangsu Institute of Automation. His research interests include software
reliability, software testing.

Jian-Yong Fang was born in 1982. He received the MS degree from
Beijing University of Aeronautics and Astronautics. He is a senior en-
gineer at Jiangsu Institute of Automation. His research interests include
command control, software testing.

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20161011144957

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

