
195CIT. Journal of Computing and Information Technology, Vol. 24, No. 2, June 2016, 195–207
doi: 10.20532/cit.2016.1002774

Liveness and Reachability
Analysis of BPMN Process Models

Anass Rachdi, Abdeslam En-Nouaary and Mohamed Dahchour
Institut National des Postes et Télécommunication, Rabat, Morocco

Business processes are usually defined by business
experts who require intuitive and informal graphical
notations such as BPMN (Business Process Manage-
ment Notation) for documenting and communicating
their organization activities and behavior. However,
BPMN has not been provided with a formal semantics,
which limits the analysis of BPMN models to using
solely informal techniques such as simulation. In order
to address this limitation and use formal verification,
it is necessary to define a certain “mapping” between
BPMN and a formal language such as Concurrent Se-
quential Processes (CSP) and Petri Nets (PN). This
paper proposes a method for the verification of BPMN
models by defining formal semantics of BPMN in
terms of a mapping to Time Petri Nets (TPN), which
are equipped with very efficient analytical techniques.
After the translation of BPMN models to TPN, verifi-
cation is done to ensure that some functional properties
are satisfied by the model under investigation, namely
liveness and reachability properties. The main advan-
tage of our approach over existing ones is that it takes
into account the time components in modeling Busi-
ness process models. An example is used throughout
the paper to illustrate the proposed method.

ACM CCS (2012) Classification: Applied computing
→ Enterprise computing → Business process manage-
ment → Business process modeling

Keywords: business process modeling, BPMN, Time
Petri Nets, V&V, algorithm, distributed systems

1. Introduction

Business process modeling (BPM) is an ap-
proach to describe the way organizations con-
duct current or future business processes. It is
a fundamental prerequisite for any organization
that wishes to be engaged in business process
improvement or business process management
initiatives (BPMI) [1]. Usually, process mod-
els describe in an informal graphical way the
activities, events, dataflow and control flow

logic that constitute a business process. There-
fore, business process models are considered
essential for the analysis and design of process
aware information systems, organizational doc-
umentation and re-engineering as well as for
service oriented architecture implementation
and enterprise application integration [1]. All
these features make it possible for an organiza-
tion to align internal business operations with
its business strategy and customer needs, and
helps managers determine the right way to di-
rect, monitor and measure company resources.
In other words, business process management,
if properly implemented, is a powerful means
for reducing costs, enhancing efficiency and
productivity, and minimizing errors and risks.
Given the numerous benefits and advantages
of business process modeling, the challenging
question for organization remains how to cre-
ate correct, strong, and yet flexible, business
processes. This could not be answered without
conducting two essential steps. On one hand,
adequate languages should be adopted for mod-
eling business processes in terms of the organi-
zation’s structure, constraints and behavior. On
the other hand, the resulting models should be
analyzed and verified to make sure that some
desirable (respectively undesirable) properties
are (respectively are not) satisfied.
One of the languages proposed in literature to
model business processes, is the Business Pro-
cess Modeling Notation (BPMN 2.0) [2]. It is
an adopted standard in both academia and in-
dustry that was designed to provide a graphi-
cal notation for XML-based business process
languages, like Business Process Execution
Language (BPEL) [3]. Business analysts can
take advantage of this feature to automatically

196 197A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

generate executable BPEL code from BPMN
graphical models [4] using some tools such as
bpmn2bpel eclipse plugin [5].
Unfortunately, BPMN is informal and leaves
room for ambiguities, inconsistencies (exis-
tence of superfluous attributes, deviations be-
tween process definition and its execution se-
mantics...) [6] and misinterpretations of several
concepts (lifecycle, interruptions, expression
evaluation, and completion of processes…) [7].
Hence, business process model analysis is con-
sidered a critical step in BPM’s life cycle. It is
closely related to the modeling phase where the
use of intuitive languages as BPMN is highly
sought by business experts. Currently, there are
several implementations of BPMN, but the one
developed by BPMI and adopted by the OMG
specification does not have a formal semantics.
The formal semantics helps us avoid undesired
situations as well as control flow anomalies
(livelock, deadlock, dead activities or paths…).
In order to analyze BPMN diagrams formally,
we have to extract a formal model that respects
the specifications on which the initial model was
based. Usually, we define a “mapping” from the
graphical notation to a formal language such as
Communication Sequential Processes (CSP) or
Petri Nets (PN). If we consider CSP as a target
language, we will have to deal with some syn-
chronization mechanisms defined within one
participant (one pool) that are not necessarily
needed in a functional analysis. On the other
hand, standard Petri nets lack temporal aspects
that are required for a more complete analysis
of distributed systems.
In this paper, we basically propose a method for
the verification of BPMN models by defining
the formal semantics of BPMN in terms of a
mapping to Time Petri Nets (TPN). The reason
we have chosen TPN (in which time is asso-
ciated to transitions) among other semantics
(Place-TPN, Arc-TPN) is that transitions de-
termine the elapsed time and it is more natural
to associate time to transitions. Transitions rep-
resent activities which normally take time. Af-
ter the translation of BPMN models into TPN,
verification is done to ensure that some func-
tional properties are satisfied by the model un-
der investigation. Contrary to existing mapping
methods found in literature, our method takes
into consideration the time concepts in BPMN
models and defines the fundamental verifica-

tion properties, such as liveness and reachabil-
ity.
The remainder of this paper is organized as fol-
lows. The next section proposes the work re-
lated to our approach. Section 3 presents the
technical background needed for the rest of the
paper; it is divided into two major parts. The
first one introduces a core subset of BPMN el-
ements, explores some problems found in the
standard, and presents a formal definition of
time based on the abstract syntax defined in
[8]. The second one captures the essence of
the Time Petri net language which constitutes
a pre-requisite for the next sections. Section 3
presents our contribution to the analysis and
the verification of BPMN models by proposing
a formal mapping from BPMN to Time Petri
Nets. Section 5 proposes a new algorithm for
the reachability analysis of TPN. The latter
is inspired by the algorithm introduced in [9]
which verifies the executability of transitions in
Timed Automata (TA). In our case it will help
us detect control flow anomalies such as dead
paths (dead transitions). Section 6 concludes
the paper and presents future work.

2. Related Work

Many methods found in literature have ad-
dressed the problem of defining a formal se-
mantics for BPMN. Dijkman et al. in [8] have
proposed a formal semantics of BPMN defined
in terms of a mapping to Standard Petri nets.
The proposed mapping has been implemented
as a tool that generates PNML (Petri Net
Markup Language) code. The latter could be
verified by ProM tool.
Another proposal was made in [10] by Wong
and Gibbons in which the authors used CSP‘s
semantics to principally map participants
(pools) to CSP processes and actions. These
CSP processes are analyzed by FDR tool to de-
tect dead and live locks.
Another interesting contribution was intro-
duced in [11] where the authors opted for a BP-
MN-YAWL mapping to check functional prop-
erties. YAWL has been chosen to overcome
some limits found in BPMN-PN mapping. In
fact YAWL has introduced The “nofi” activity
to denote the multi-instance activities and the

tor V = (v1, v2, …, vn) and a rational number
d ∈ +, we define the sum of V and d (written
V + d) as a vector V2 obtained by adding d to
each element in V; i.e., V2 = V1 + d = (v1 + d,
v2 + d, …, vn + d). We denote V1 ≥ V2 if V3
= V1 – V2 and V3 ≥ 0 (i.e for i = 1, …, n,
v1i – v2i ≥ 0)

3.2. Business Process Management
Notation (BPMN)

3.2.1. General Notions

BPMN is an emerging modeling method for
business people. It has received a lot of inter-
est and support from academia, industry and
tool vendors as an open standard for modeling
business processes. Besides being one of the
most recent modeling notations standardized
by OMG and BPMI, BPMN is considered us-
er-friendly to all organization stakeholders
(managers, analysts, developers…) and allows
a business process to be modeled with a single
diagram type, avoiding the fragmentation prob-
lem inherent in other modeling languages like
UML. As such, BPMN also helps improve and
facilitate communication between business pro-
cess stakeholders (managers, analysts, devel-
opers…). Processes are represented in BPMN
using constructs that can be grouped into four
categories: flow objects (events, activities, and
gateways), connection objects (control flow,
message flow and associations), artefact objects
(data objects, data stores, data input and data
output) and swim lanes (pools and lanes within
pools), as illustrated in Figure 1. Events can be
partitioned into disjoint sets of start events, in-
termediate events and end events. Intermediate
events can be further partitioned into disjoint
sets of intermediate message events, interme-
diate time events and intermediate error events.
A start event is used to indicate the start of a
process while an end event represents the end
of a process. An intermediate event is basically
something that might happen during the execu-
tion of a process.
An activity is either a task or a subprocess that
can be used to provide some business service,
wait for a message from another participant, or
send a message to another participant [14]. A
gateway is a connector used to control sequence

Adhoc subprocesses. In [12], Ouyang et al.
present a mapping to BPEL in order to facili-
tate the execution of the BP diagrams. Unfortu-
nately, all the aforementioned methods have not
included the time dimension in their analysis.
In this paper, the approach we propose takes
into consideration the time concepts in BPMN
models and proposes a formal semantics of
BPMN defined in terms of a mapping to Time
Petri Nets (TPN) which are equipped with very
efficient analytical techniques

3. Background

This section introduces the specification mod-
els used in this paper, namely BPMN and
TPN. It also presents some problems found in
the BPMN standard as well as a formal defi-
nition of time that will help us constitute the
BPMN-TPN mapping explained in Section 3.
Throughout this section we use simple exam-
ples to illustrate these two modeling languages.

3.1. Preliminaries

The following notations and definitions are
used to present the rest of this paper.  denotes
the set of natural numbers while + is used for
 \{0}. + denotes the set of non-negative ra-
tional numbers while + stands for the set of
non-negative real numbers. C denotes the set of
all possible conditions. A condition is a bool-
ean function operating over a set of proposi-
tional variables. It is assumed that a condition
evaluates to true or false [8]. A vector of nat-
ural numbers is a collection V = (v1, v2, …, vn),
where n ∈  and vi ∈  for i = 1, …, n; n is
called the cardinality of V. For two vectors V1
= (v11, v12, …, v1n) and V2 = (v21, v22, …, v2n)
of cardinality n, we define the subtraction of
V2 from V1 (written V1 – V2) as a vector V3 of
cardinality n, obtained by subtracting each ele-
ment in V2 from its pair-wise element in V1; i.e.,
V3 = V1 – V2 = (v11 – v21, v12 – v22, …, v1n – v2n).
Similarly, the sum of two vectors V1 = (v11, v12,
…, v1n) and V2 = (v21, v22, …, v2n) of cardinality
n, written V1 + V2, is a vector V3 of cardinal-
ity n, obtained by adding each element in V2 to
its pair-wise element in V1; i.e., V3 = V1 + V2
= (v11 + v21, v12 + v22, …, v1n + v2n). For a vec-

196 197A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

generate executable BPEL code from BPMN
graphical models [4] using some tools such as
bpmn2bpel eclipse plugin [5].
Unfortunately, BPMN is informal and leaves
room for ambiguities, inconsistencies (exis-
tence of superfluous attributes, deviations be-
tween process definition and its execution se-
mantics...) [6] and misinterpretations of several
concepts (lifecycle, interruptions, expression
evaluation, and completion of processes…) [7].
Hence, business process model analysis is con-
sidered a critical step in BPM’s life cycle. It is
closely related to the modeling phase where the
use of intuitive languages as BPMN is highly
sought by business experts. Currently, there are
several implementations of BPMN, but the one
developed by BPMI and adopted by the OMG
specification does not have a formal semantics.
The formal semantics helps us avoid undesired
situations as well as control flow anomalies
(livelock, deadlock, dead activities or paths…).
In order to analyze BPMN diagrams formally,
we have to extract a formal model that respects
the specifications on which the initial model was
based. Usually, we define a “mapping” from the
graphical notation to a formal language such as
Communication Sequential Processes (CSP) or
Petri Nets (PN). If we consider CSP as a target
language, we will have to deal with some syn-
chronization mechanisms defined within one
participant (one pool) that are not necessarily
needed in a functional analysis. On the other
hand, standard Petri nets lack temporal aspects
that are required for a more complete analysis
of distributed systems.
In this paper, we basically propose a method for
the verification of BPMN models by defining
the formal semantics of BPMN in terms of a
mapping to Time Petri Nets (TPN). The reason
we have chosen TPN (in which time is asso-
ciated to transitions) among other semantics
(Place-TPN, Arc-TPN) is that transitions de-
termine the elapsed time and it is more natural
to associate time to transitions. Transitions rep-
resent activities which normally take time. Af-
ter the translation of BPMN models into TPN,
verification is done to ensure that some func-
tional properties are satisfied by the model un-
der investigation. Contrary to existing mapping
methods found in literature, our method takes
into consideration the time concepts in BPMN
models and defines the fundamental verifica-

tion properties, such as liveness and reachabil-
ity.
The remainder of this paper is organized as fol-
lows. The next section proposes the work re-
lated to our approach. Section 3 presents the
technical background needed for the rest of the
paper; it is divided into two major parts. The
first one introduces a core subset of BPMN el-
ements, explores some problems found in the
standard, and presents a formal definition of
time based on the abstract syntax defined in
[8]. The second one captures the essence of
the Time Petri net language which constitutes
a pre-requisite for the next sections. Section 3
presents our contribution to the analysis and
the verification of BPMN models by proposing
a formal mapping from BPMN to Time Petri
Nets. Section 5 proposes a new algorithm for
the reachability analysis of TPN. The latter
is inspired by the algorithm introduced in [9]
which verifies the executability of transitions in
Timed Automata (TA). In our case it will help
us detect control flow anomalies such as dead
paths (dead transitions). Section 6 concludes
the paper and presents future work.

2. Related Work

Many methods found in literature have ad-
dressed the problem of defining a formal se-
mantics for BPMN. Dijkman et al. in [8] have
proposed a formal semantics of BPMN defined
in terms of a mapping to Standard Petri nets.
The proposed mapping has been implemented
as a tool that generates PNML (Petri Net
Markup Language) code. The latter could be
verified by ProM tool.
Another proposal was made in [10] by Wong
and Gibbons in which the authors used CSP‘s
semantics to principally map participants
(pools) to CSP processes and actions. These
CSP processes are analyzed by FDR tool to de-
tect dead and live locks.
Another interesting contribution was intro-
duced in [11] where the authors opted for a BP-
MN-YAWL mapping to check functional prop-
erties. YAWL has been chosen to overcome
some limits found in BPMN-PN mapping. In
fact YAWL has introduced The “nofi” activity
to denote the multi-instance activities and the

tor V = (v1, v2, …, vn) and a rational number
d ∈ +, we define the sum of V and d (written
V + d) as a vector V2 obtained by adding d to
each element in V; i.e., V2 = V1 + d = (v1 + d,
v2 + d, …, vn + d). We denote V1 ≥ V2 if V3
= V1 – V2 and V3 ≥ 0 (i.e for i = 1, …, n,
v1i – v2i ≥ 0)

3.2. Business Process Management
Notation (BPMN)

3.2.1. General Notions

BPMN is an emerging modeling method for
business people. It has received a lot of inter-
est and support from academia, industry and
tool vendors as an open standard for modeling
business processes. Besides being one of the
most recent modeling notations standardized
by OMG and BPMI, BPMN is considered us-
er-friendly to all organization stakeholders
(managers, analysts, developers…) and allows
a business process to be modeled with a single
diagram type, avoiding the fragmentation prob-
lem inherent in other modeling languages like
UML. As such, BPMN also helps improve and
facilitate communication between business pro-
cess stakeholders (managers, analysts, devel-
opers…). Processes are represented in BPMN
using constructs that can be grouped into four
categories: flow objects (events, activities, and
gateways), connection objects (control flow,
message flow and associations), artefact objects
(data objects, data stores, data input and data
output) and swim lanes (pools and lanes within
pools), as illustrated in Figure 1. Events can be
partitioned into disjoint sets of start events, in-
termediate events and end events. Intermediate
events can be further partitioned into disjoint
sets of intermediate message events, interme-
diate time events and intermediate error events.
A start event is used to indicate the start of a
process while an end event represents the end
of a process. An intermediate event is basically
something that might happen during the execu-
tion of a process.
An activity is either a task or a subprocess that
can be used to provide some business service,
wait for a message from another participant, or
send a message to another participant [14]. A
gateway is a connector used to control sequence

Adhoc subprocesses. In [12], Ouyang et al.
present a mapping to BPEL in order to facili-
tate the execution of the BP diagrams. Unfortu-
nately, all the aforementioned methods have not
included the time dimension in their analysis.
In this paper, the approach we propose takes
into consideration the time concepts in BPMN
models and proposes a formal semantics of
BPMN defined in terms of a mapping to Time
Petri Nets (TPN) which are equipped with very
efficient analytical techniques

3. Background

This section introduces the specification mod-
els used in this paper, namely BPMN and
TPN. It also presents some problems found in
the BPMN standard as well as a formal defi-
nition of time that will help us constitute the
BPMN-TPN mapping explained in Section 3.
Throughout this section we use simple exam-
ples to illustrate these two modeling languages.

3.1. Preliminaries

The following notations and definitions are
used to present the rest of this paper.  denotes
the set of natural numbers while + is used for
 \{0}. + denotes the set of non-negative ra-
tional numbers while + stands for the set of
non-negative real numbers. C denotes the set of
all possible conditions. A condition is a bool-
ean function operating over a set of proposi-
tional variables. It is assumed that a condition
evaluates to true or false [8]. A vector of nat-
ural numbers is a collection V = (v1, v2, …, vn),
where n ∈  and vi ∈  for i = 1, …, n; n is
called the cardinality of V. For two vectors V1
= (v11, v12, …, v1n) and V2 = (v21, v22, …, v2n)
of cardinality n, we define the subtraction of
V2 from V1 (written V1 – V2) as a vector V3 of
cardinality n, obtained by subtracting each ele-
ment in V2 from its pair-wise element in V1; i.e.,
V3 = V1 – V2 = (v11 – v21, v12 – v22, …, v1n – v2n).
Similarly, the sum of two vectors V1 = (v11, v12,
…, v1n) and V2 = (v21, v22, …, v2n) of cardinality
n, written V1 + V2, is a vector V3 of cardinal-
ity n, obtained by adding each element in V2 to
its pair-wise element in V1; i.e., V3 = V1 + V2
= (v11 + v21, v12 + v22, …, v1n + v2n). For a vec-

198 199A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

flows. We distinguish between multiple types
of gateways: an AND-split gateway is used to
create parallel flows and an AND-join gate-
way is used to synchronize incoming parallel
flows [14]. A XOR data-based gateway defines
a set of alternative paths; each of them is as-
sociated with a conditional expression [14].
Based on this condition, only one path can be
taken during the execution of the process [14].
Conditions can be based either on data-base en-
tries or on external events [14]. An exclusive
merge gateway is used as a merge for alterna-
tive sequence flows. Finally, an inclusive merge
gateway synchronizes all tokens produced up-
stream. Sequence flows determine the execu-
tion order between two objects in the same pool
[14]. However, message flows represent mes-
sage exchange between two objects in different
pools.

While a start message event indicates that a
message arrives from a pool (participant) and
triggers the start of the process, an end message
event represents the fact that a message is sent
to another participant at the end of the process
[14]. An intermediate message event indicates
that a message arrives from or is sent to a par-
ticipant during the process execution [14]. A
timer event indicates a specific time-date being
reached. An error message is for error handling.
If the error is part of a normal flow, it throws
an error; if it is attached to the boundary of an
activity, it catches the error [14]. The behavior
of a process could be described by tracking the
path(s) of a token through a process [14]. A
token, in BPMN, is an abstract object that tra-
verses the sequence flow passing through the
objects of the process [14].

An example of BP is shown in Figure 2. It rep-
resents the visa application process with two
participants, namely the visa applicant and
the visa application center. The process goes
through the following steps:

1. The process is triggered by the arrival of
a visa application folder (in the form of a
message sent by the visa applicant). The
visa application folder contains all the re-
quired documents (passport, visa applica-
tion form…)

2. To facilitate the tracking of the visa appli-
cation, the front office must scan and in-
tegrate the requested documents in the In-
formation System (IS) within a maximum
period of one day.

3. Once the documents are present in the sys-
tem, the back office starts processing the
visa application by verifying the presence
of all requested documents, financial sta-
tus, social status… The verification dura-
tion cannot exceed 13 days.

4. If the applicant is accepted, the back of-
fice starts printing the visa on the passport
within a maximum period of one day. Oth-
erwise, the visa application center has to
inform the applicant that he/she is refused.
The visa processing time cannot exceed 15
days, whether the applicant is accepted or
rejected.

Despite the richness and the simplicity of its
graphical notation, BPMN (1.0 and 2.0) has
always been subject to much criticism relative
to its lack of formal semantics. In fact, BPMN
suffers from many problems that limit the mod-
el’s verification to informal techniques such as
simulation. We focused in this paper on some
problems that are related to the flow control
analysis [7]. These problems are detailed in the
following:

 ● Lack of state representation: BPMN re-
mains unable to model state-related as-
pects of business processes. Therefore,
some functional properties such as live-
ness and reachability cannot be verified on
the BPMN model unless it is mapped to
another formal language that supports state
modeling, e.g. Time Petri Net.

 ● Weak conceptual support for essential no-
tions such as concurrent process communi-
cation/interaction, resources… [7].

 ● Lack of important attributes: BPMN lacks
attributes in the specification, which plays
an important role in flow control analysis,
e.g. BPMN standard should add the acti-
vation time attribute in the activities and
timer properties in order to obtain more
complete analysis.

Other problems related to artefacts, swimlanes
and connection objects can be found in [7] and
[6].

Figure 1. A core subset of BPMN elements [13].

Figure 2. A simple visa application processing Process System modeled in BPMN.

198 199A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

flows. We distinguish between multiple types
of gateways: an AND-split gateway is used to
create parallel flows and an AND-join gate-
way is used to synchronize incoming parallel
flows [14]. A XOR data-based gateway defines
a set of alternative paths; each of them is as-
sociated with a conditional expression [14].
Based on this condition, only one path can be
taken during the execution of the process [14].
Conditions can be based either on data-base en-
tries or on external events [14]. An exclusive
merge gateway is used as a merge for alterna-
tive sequence flows. Finally, an inclusive merge
gateway synchronizes all tokens produced up-
stream. Sequence flows determine the execu-
tion order between two objects in the same pool
[14]. However, message flows represent mes-
sage exchange between two objects in different
pools.

While a start message event indicates that a
message arrives from a pool (participant) and
triggers the start of the process, an end message
event represents the fact that a message is sent
to another participant at the end of the process
[14]. An intermediate message event indicates
that a message arrives from or is sent to a par-
ticipant during the process execution [14]. A
timer event indicates a specific time-date being
reached. An error message is for error handling.
If the error is part of a normal flow, it throws
an error; if it is attached to the boundary of an
activity, it catches the error [14]. The behavior
of a process could be described by tracking the
path(s) of a token through a process [14]. A
token, in BPMN, is an abstract object that tra-
verses the sequence flow passing through the
objects of the process [14].

An example of BP is shown in Figure 2. It rep-
resents the visa application process with two
participants, namely the visa applicant and
the visa application center. The process goes
through the following steps:

1. The process is triggered by the arrival of
a visa application folder (in the form of a
message sent by the visa applicant). The
visa application folder contains all the re-
quired documents (passport, visa applica-
tion form…)

2. To facilitate the tracking of the visa appli-
cation, the front office must scan and in-
tegrate the requested documents in the In-
formation System (IS) within a maximum
period of one day.

3. Once the documents are present in the sys-
tem, the back office starts processing the
visa application by verifying the presence
of all requested documents, financial sta-
tus, social status… The verification dura-
tion cannot exceed 13 days.

4. If the applicant is accepted, the back of-
fice starts printing the visa on the passport
within a maximum period of one day. Oth-
erwise, the visa application center has to
inform the applicant that he/she is refused.
The visa processing time cannot exceed 15
days, whether the applicant is accepted or
rejected.

Despite the richness and the simplicity of its
graphical notation, BPMN (1.0 and 2.0) has
always been subject to much criticism relative
to its lack of formal semantics. In fact, BPMN
suffers from many problems that limit the mod-
el’s verification to informal techniques such as
simulation. We focused in this paper on some
problems that are related to the flow control
analysis [7]. These problems are detailed in the
following:

 ● Lack of state representation: BPMN re-
mains unable to model state-related as-
pects of business processes. Therefore,
some functional properties such as live-
ness and reachability cannot be verified on
the BPMN model unless it is mapped to
another formal language that supports state
modeling, e.g. Time Petri Net.

 ● Weak conceptual support for essential no-
tions such as concurrent process communi-
cation/interaction, resources… [7].

 ● Lack of important attributes: BPMN lacks
attributes in the specification, which plays
an important role in flow control analysis,
e.g. BPMN standard should add the acti-
vation time attribute in the activities and
timer properties in order to obtain more
complete analysis.

Other problems related to artefacts, swimlanes
and connection objects can be found in [7] and
[6].

Figure 1. A core subset of BPMN elements [13].

Figure 2. A simple visa application processing Process System modeled in BPMN.

200 201A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

3.2.2. Formal Definition of Time in BPMN

Time in BPMN is defined through TimerEvent-
Definition [2] element which has three attrib-
utes that are mutually exclusive. These attrib-
utes are timeDuration (TiDur), timeDate (TiDat)
and timeCycle.
Based on the abstract syntax of BPMN notation
given in [8], we can formalize Time in BPMN
by adding a new function called “Tim” that
assigns to each timer a time duration. Conse-
quently, we can define the BPMN Core BPMN
Process as follows:
Definition 1. (Core BPMN Process): A core
BPMN process is a tuple P = (OP, FP, CondP,
ExcpP, TimP) where [8]:

 ● OP is a set of flow objects which can be
partitioned into disjoint sets of activities
AP, events EP, and gateways GP, [8]

 ○ AP can be partitioned into disjoint sets
of tasks TP and subprocess invocation
activities SP, we denote R

P PT T⊆ the set
of receive tasks, [8]

 ○ EP can be partitioned into disjoint sets
of start event S

PE , intermediate events
I
PE and end events E

PE , we denote
ST S
P PE E⊆ the set of timer start events.
I
PE can be partitioned into disjoint sets

of intermediate message events IM
PE ,

intermediate timer events IT
PE , and in-

termediate error events IR
PE [8].

 ○ GP can be partitioned into disjoint sets
of parallel fork gateways F

PG , parallel
joint gateways J

PG , data-based XOR de-
cision gateways X

PG , event-based XOR
decision gateways V

PG , and XOR merge
gateways M

PG [8],

 ● P P PF O O⊆ × is the control flow relation,
i.e. a set of sequence flows connecting ob-
jects [8],

 ● CondP: ()X
P P PF G O C∩ × → is a function

which maps sequence flows emanating
from data-based XOR gateways to condi-
tions [8],

 ● ExcpP: I
P PE A→ is a function which as-

signs an activity to an intermediate event
such that the occurrence of the event sig-

nals an exception and thus interrupts the
performance of the activity [8].

 ● TimP: { }IT ST
P PE E α+∪ → ∪ is a func-

tion assigning a positive rational number
or the symbol α to a timer event. The posi-
tive rational number represents the timer’s
duration. The latter specifies the time to
be elapsed before the timer gives the flow
control to its successor. We denote Tiact
the instant the timer was last activated.

The timer duration can be static or dynamic: it
is static when timeDuration attribute is set, oth-
erwise it is dynamic. In this case it is calculated
in two ways:

 ● If timeDate attribute is set, then TiDur
= TiDat – Tiact

 ● If timeCycle attribute is set, then TiDur
= Tinext-trigger – Tiact where Tinext-trigger is the
next time the timer will trigger

If TiDur ≥ 0 then TimP returns a rational num-
ber, otherwise it returns α which means that the
timer no longer has an impact on the control
flow.
A core BPMN process P is a directed graph
with nodes (objects) OP and arcs (sequence
flows) FP. For any node x ∈ OP, input nodes
of x are given by in(x) = {y ∈ OP | yFPx}
and output nodes of x are given by out(x) =
{y ∈ OP | xFPy} [8].

3.3. Time Petri Nets (TPN)

Petri nets were proposed in 1962 by Carl Adam
Petri [15] as a modeling formalism to be used
in computer science, system engineering and
many other disciplines [16]. Petri nets combine
a well defined mathematical theory and tool
support with a graphical representation for a
precise modeling and analysis of system behav-
ior [16]. Nevertheless, Petri nets were initially
proposed as a formal language with no con-
cept of time or probability. However, for many
practical applications (in particular time criti-
cal systems), time is a mandatory aspect that
designers should take into account to analyze
correctly the behavior and performance of their
distributed information systems. To cope with
timing behavior of distributed information sys-
tems, time Petri nets [17] have been proposed

as an extension of standard Petri nets by add-
ing clocks and timing constraints to transitions
in order to help describe and analyze properly
time dependent systems. Time Petri nets are
obtained from standard Petri nets by simply
associating a firing time interval [a, b] to each
transition t, where a and b are rational numbers
such that 0 ≤ a ≤ b and a ≠ ∞. The times a and
b, for a transition t, are relative to the moment at
which t was last enabled; they are referred to as
the earliest firing time and the latest firing time
of t, respectively.
Formally, a time Petri net [17] is defined as a
7-tuple Y = (P, T, F, W, M0, fS) where :

 ● P = {p1, p2, ..., pm} is a finite non-empty
set of places ;

 ● T = {t1, t2, ..., tn} is a finite non-empty set
of transitions, where P ∩ T = ∅;

 ● F ⊆ (P ´ T) ∪ (T ´ P) is the set of arcs that
connect transitions and places. Two types
of arcs are usually used to connect places to
transitions: usual arcs are denoted by small
arrow next to transitions and inhibitor arcs
are marked by a small circle next to tran-
sitions. Let •t = {p ∈ P et pFt} (resp t• =
{p ∈ P et tFp}) be the set of pre-places
(resp post-places) of t.

 ● W: (P ´ T) ∪ (T ´ P) → + is the weight
function for the directed arcs of Y. This
function is very important for the execu-
tion of the Petri net, as will be explained
later. For a transition t, we use W(•t) to de-
note the vector of tokens required to fire
the transition t. Similarly, we use W(t•) to
denote the vector of tokens produced by
firing the transition t. Formally, W(•t) =
áW(p1, t), W(p2, t), …, W(pm, t)ñ and W(t•) =
áW(t, p1), W(t, p2), …, W(t, pm)ñ.

 ● M0 ∈ m is the initial marking of Y, which
indicates the initial configuration of the
Petri net at the beginning of its execution.

 ● fs: T → + ´ + ∪ {∞} is the function that
associates each transition to a firing time
interval. For any transition t ∈ T, we write
fs(t) = (l, u) where l is the earliest firing
time of t (denoted by eft(t)), whereas u is
the latest firing time (denoted by lft(t)); if
u is infinite, then the transition is said not
to have a latest firing time.

In order to study the dynamic behavior of TPN,
we need to define its operational semantics.
Such semantics is given by a state transition
system obtained by using the concepts of mark-
ing, state and firing of transitions.
A marking M of a TPN is basically a vector
of natural numbers that tells us how many to-
kens each place holds. Tokens are a primitive
concept for Petri nets in addition to places and
transitions. The presence or absence of a token
in a place can indicate, for instance, whether a
condition associated with this place holds or not
[16]. The number and position of tokens may
change during the execution of a Petri net. For
a marking M in P, M(p) is used to denote the
number of tokens in place p. A state of a TPN
is given by (M, V), where M is a marking and
V: T → + ∪ {ω} is a valuation such that each
value V(t) is the time elapsed since the transi-
tion t was last enabled. V(t) is considered as a
clock associated with the transition t. The tran-
sition is said to be disabled if there exists p in
P such as M(p) < W(p, t), in this case the clock
remains off (V(t) = ω). V0 is the initial valuation

with { 0
0

0 ()() otherwiseω
M W tV t •≥= for each transi-

tion t in TPN. Using the concept of state, the
execution of a TPN can be stated as follows. A
Petri net is executed by firing enabled transi-
tions, following these two rules:

 ● Enabling rule: A transition t is enabled in a
state (M, V) if each input place p of t con-
tains at least the number of tokens equal to
the weight of the directed arc connecting p
to t (i.e. M(p) ≥ W(p, t) for any p in P). If
an inhibitor arc connects an input place p
to transition t, then enabling of transition t
also requires the input place p not to have
W(p, t) tokens. As soon as t becomes en-
abled, V(t) is set to 0; otherwise it remains
ω.

 ● Firing rule: A transition t is ready to fire if
it is enabled and eft(t) ≤ V(t) ≤ lft(t), and
such firing consists of removing from each
input place p of t the number of tokens
equal to the weight of the directed arc con-
necting p to t, and adding in each output
place p' of t the number of tokens equal to
the weight of the directed arc connecting
t to p'. In other words, the firing of an ex-

200 201A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

3.2.2. Formal Definition of Time in BPMN

Time in BPMN is defined through TimerEvent-
Definition [2] element which has three attrib-
utes that are mutually exclusive. These attrib-
utes are timeDuration (TiDur), timeDate (TiDat)
and timeCycle.
Based on the abstract syntax of BPMN notation
given in [8], we can formalize Time in BPMN
by adding a new function called “Tim” that
assigns to each timer a time duration. Conse-
quently, we can define the BPMN Core BPMN
Process as follows:
Definition 1. (Core BPMN Process): A core
BPMN process is a tuple P = (OP, FP, CondP,
ExcpP, TimP) where [8]:

 ● OP is a set of flow objects which can be
partitioned into disjoint sets of activities
AP, events EP, and gateways GP, [8]

 ○ AP can be partitioned into disjoint sets
of tasks TP and subprocess invocation
activities SP, we denote R

P PT T⊆ the set
of receive tasks, [8]

 ○ EP can be partitioned into disjoint sets
of start event S

PE , intermediate events
I
PE and end events E

PE , we denote
ST S
P PE E⊆ the set of timer start events.
I
PE can be partitioned into disjoint sets

of intermediate message events IM
PE ,

intermediate timer events IT
PE , and in-

termediate error events IR
PE [8].

 ○ GP can be partitioned into disjoint sets
of parallel fork gateways F

PG , parallel
joint gateways J

PG , data-based XOR de-
cision gateways X

PG , event-based XOR
decision gateways V

PG , and XOR merge
gateways M

PG [8],

 ● P P PF O O⊆ × is the control flow relation,
i.e. a set of sequence flows connecting ob-
jects [8],

 ● CondP: ()X
P P PF G O C∩ × → is a function

which maps sequence flows emanating
from data-based XOR gateways to condi-
tions [8],

 ● ExcpP: I
P PE A→ is a function which as-

signs an activity to an intermediate event
such that the occurrence of the event sig-

nals an exception and thus interrupts the
performance of the activity [8].

 ● TimP: { }IT ST
P PE E α+∪ → ∪ is a func-

tion assigning a positive rational number
or the symbol α to a timer event. The posi-
tive rational number represents the timer’s
duration. The latter specifies the time to
be elapsed before the timer gives the flow
control to its successor. We denote Tiact
the instant the timer was last activated.

The timer duration can be static or dynamic: it
is static when timeDuration attribute is set, oth-
erwise it is dynamic. In this case it is calculated
in two ways:

 ● If timeDate attribute is set, then TiDur
= TiDat – Tiact

 ● If timeCycle attribute is set, then TiDur
= Tinext-trigger – Tiact where Tinext-trigger is the
next time the timer will trigger

If TiDur ≥ 0 then TimP returns a rational num-
ber, otherwise it returns α which means that the
timer no longer has an impact on the control
flow.
A core BPMN process P is a directed graph
with nodes (objects) OP and arcs (sequence
flows) FP. For any node x ∈ OP, input nodes
of x are given by in(x) = {y ∈ OP | yFPx}
and output nodes of x are given by out(x) =
{y ∈ OP | xFPy} [8].

3.3. Time Petri Nets (TPN)

Petri nets were proposed in 1962 by Carl Adam
Petri [15] as a modeling formalism to be used
in computer science, system engineering and
many other disciplines [16]. Petri nets combine
a well defined mathematical theory and tool
support with a graphical representation for a
precise modeling and analysis of system behav-
ior [16]. Nevertheless, Petri nets were initially
proposed as a formal language with no con-
cept of time or probability. However, for many
practical applications (in particular time criti-
cal systems), time is a mandatory aspect that
designers should take into account to analyze
correctly the behavior and performance of their
distributed information systems. To cope with
timing behavior of distributed information sys-
tems, time Petri nets [17] have been proposed

as an extension of standard Petri nets by add-
ing clocks and timing constraints to transitions
in order to help describe and analyze properly
time dependent systems. Time Petri nets are
obtained from standard Petri nets by simply
associating a firing time interval [a, b] to each
transition t, where a and b are rational numbers
such that 0 ≤ a ≤ b and a ≠ ∞. The times a and
b, for a transition t, are relative to the moment at
which t was last enabled; they are referred to as
the earliest firing time and the latest firing time
of t, respectively.
Formally, a time Petri net [17] is defined as a
7-tuple Y = (P, T, F, W, M0, fS) where :

 ● P = {p1, p2, ..., pm} is a finite non-empty
set of places ;

 ● T = {t1, t2, ..., tn} is a finite non-empty set
of transitions, where P ∩ T = ∅;

 ● F ⊆ (P ´ T) ∪ (T ´ P) is the set of arcs that
connect transitions and places. Two types
of arcs are usually used to connect places to
transitions: usual arcs are denoted by small
arrow next to transitions and inhibitor arcs
are marked by a small circle next to tran-
sitions. Let •t = {p ∈ P et pFt} (resp t• =
{p ∈ P et tFp}) be the set of pre-places
(resp post-places) of t.

 ● W: (P ´ T) ∪ (T ´ P) → + is the weight
function for the directed arcs of Y. This
function is very important for the execu-
tion of the Petri net, as will be explained
later. For a transition t, we use W(•t) to de-
note the vector of tokens required to fire
the transition t. Similarly, we use W(t•) to
denote the vector of tokens produced by
firing the transition t. Formally, W(•t) =
áW(p1, t), W(p2, t), …, W(pm, t)ñ and W(t•) =
áW(t, p1), W(t, p2), …, W(t, pm)ñ.

 ● M0 ∈ m is the initial marking of Y, which
indicates the initial configuration of the
Petri net at the beginning of its execution.

 ● fs: T → + ´ + ∪ {∞} is the function that
associates each transition to a firing time
interval. For any transition t ∈ T, we write
fs(t) = (l, u) where l is the earliest firing
time of t (denoted by eft(t)), whereas u is
the latest firing time (denoted by lft(t)); if
u is infinite, then the transition is said not
to have a latest firing time.

In order to study the dynamic behavior of TPN,
we need to define its operational semantics.
Such semantics is given by a state transition
system obtained by using the concepts of mark-
ing, state and firing of transitions.
A marking M of a TPN is basically a vector
of natural numbers that tells us how many to-
kens each place holds. Tokens are a primitive
concept for Petri nets in addition to places and
transitions. The presence or absence of a token
in a place can indicate, for instance, whether a
condition associated with this place holds or not
[16]. The number and position of tokens may
change during the execution of a Petri net. For
a marking M in P, M(p) is used to denote the
number of tokens in place p. A state of a TPN
is given by (M, V), where M is a marking and
V: T → + ∪ {ω} is a valuation such that each
value V(t) is the time elapsed since the transi-
tion t was last enabled. V(t) is considered as a
clock associated with the transition t. The tran-
sition is said to be disabled if there exists p in
P such as M(p) < W(p, t), in this case the clock
remains off (V(t) = ω). V0 is the initial valuation

with { 0
0

0 ()() otherwiseω
M W tV t •≥= for each transi-

tion t in TPN. Using the concept of state, the
execution of a TPN can be stated as follows. A
Petri net is executed by firing enabled transi-
tions, following these two rules:

 ● Enabling rule: A transition t is enabled in a
state (M, V) if each input place p of t con-
tains at least the number of tokens equal to
the weight of the directed arc connecting p
to t (i.e. M(p) ≥ W(p, t) for any p in P). If
an inhibitor arc connects an input place p
to transition t, then enabling of transition t
also requires the input place p not to have
W(p, t) tokens. As soon as t becomes en-
abled, V(t) is set to 0; otherwise it remains
ω.

 ● Firing rule: A transition t is ready to fire if
it is enabled and eft(t) ≤ V(t) ≤ lft(t), and
such firing consists of removing from each
input place p of t the number of tokens
equal to the weight of the directed arc con-
necting p to t, and adding in each output
place p' of t the number of tokens equal to
the weight of the directed arc connecting
t to p'. In other words, the firing of an ex-

202 203A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

plicit transition t in state (M, V) results in
changing the state (M, V) to (M ', V ').

(,) (', ')tM V M V→ . The new state (M ', V ') is
calculated as follows:

 ○ M ' = M – W(•t) + W(•t), and

 ○

if
'() (, ')

(') if
' , '(') () (, '),

'() (, '),

0 otherwise

p P
M p W p t

V t p P
t T V t M p W p t

M p W p t
t t

ω

•

∃ ∈
 <
 ∀ ∈
∀ ∈ = ≥
 ≥

∩ = ∅





Other transitions that are based on time delay
are called implicit transitions. They reflect
state change on time progress when a transition
is last enabled and before it becomes enabled
again. Their semantics is explained as follows:

 ● Implicit transitions on time delay
d: (,) (', ')dM V M V→ iff:

 ○ M = M ',
 ○ V(t) + d ≤ lft(t) for any transition t, and
 ○ V ' = V + d for any enabled transition in

TPN.

Figure 3 shows an example of TPN Y = (P, T, I,
O, M0, fS), with three places (p1, p2 and p3) and
two transitions (t1 and t2), such that:

 ● P = {p1, p2, p3},
 ● T = {t 1, t 2},
 ● I(t1) = {p1},
 ● I(t2) = {p1},

Figure 3. A Simple Time Petri Net.

 ● O(t1) = {p2},
 ● O(t2) = {p3},
 ● M0 = (1, 0, 0),
 ● fS (t 1) = [0, 3], and fS (t 2) =[0, 3].

After introducing the specification languages
used in this paper, we present in the next section
our method for the analysis of BPMN based on
TPN.

4. Our Approach for BPMN
Model Analysis

As mentioned so far, BPMN is an adopted stan-
dard used in academia and industry for modeling
business processes. However, BPMN is informal
and leaves room for misinterpretations, ambigui-
ties, and inconsistencies about the execution and
operation of business processes being modeled.
Hence, we need to define semantics for BPMN
in order to analyze business processes properly
and remove any possible errors before imple-
mentations. To this end, we chose TPN as target
formalism. This choice is motivated by several
reasons. First, TPN is a well-founded seman-
tics; it has a mathematical background and is
equipped with very efficient analytical tools
(TINA). Secondly, it takes into consideration the
time concepts that are essential to obtain a more
complete functional analysis.
Our approach for the analysis of BPMN mod-
els basically consists of two main steps. First,
we transform the BPMN into a TPN; secondly,
we do formal verification on the resulting TPN.
Such verification consists of checking the
marking reachability and the liveness of transi-
tions of TPN. These properties can be defined
as follows:

 ● A state z = (M,V) is reachable from
z0 = (M0,V0) iff there exist w ∈ T (a se-
quence of transitions) and ξ ∈ length(w)+1

(implicit transitions) such as 'wz z
ξ

→ .

We can limit ourselves to the definition of
reachability that is just related to the mark-
ings and not to the state in general (the
same definition found in standard Petri net
[15]): A marking M ' (in state z ') is reach-
able from a marking M (in state z) if there
exists a sequence of transitions w ∈ T such
as 'wM M→ .

 ● In order to define liveness in TPN [16], we
will need to introduce RY (z) as the set of all
reachable states from the state z = (M, V).
We denote z0 = (M0, V0) the initial state in
TPN. ∀z = (M, V) ∈ RY (z0)

 ○ t is live in z iff: ∀ z ' ∈ RY (z) → ∃ z '' ∈
RY (z ') such as t is ready to fire in z ''

 ○ t is dead iff ∀z ' ∈ RY (z0) t is not ready
to fire in z '.

4.1. Mapping of BPMN Silent Events
and Gateways

Contrary to what is used in the classical map-
ping of BPMN-PN [8], we will not use two
notations to differentiate the silent transitions

from the timed ones. One type of transition is
capable of capturing both the external and in-
ternal actions that cannot be observed by users.
We can differentiate the silent transitions from
those consuming time based on the time inter-
vals that are associated to these transitions.
Figure 4 illustrates the mapping of silent events
and gateways to TPN. The same principle ap-
plies to complex and event-based gateways.

4.2. Timed Activities and Events

Figure 5 illustrates the mapping of timed tasks
and events to Time Petri Net. The “Timer” com-
ponent is highlighted in this mapping; its main
function is to determine the maximum execu-

Figure 4. Mapping of silent events
and gateways to TPN.

Figure 5. Mapping timed activities
and events to TPN.

202 203A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

plicit transition t in state (M, V) results in
changing the state (M, V) to (M ', V ').

(,) (', ')tM V M V→ . The new state (M ', V ') is
calculated as follows:

 ○ M ' = M – W(•t) + W(•t), and

 ○

if
'() (, ')

(') if
' , '(') () (, '),

'() (, '),

0 otherwise

p P
M p W p t

V t p P
t T V t M p W p t

M p W p t
t t

ω

•

∃ ∈
 <
 ∀ ∈
∀ ∈ = ≥
 ≥

∩ = ∅





Other transitions that are based on time delay
are called implicit transitions. They reflect
state change on time progress when a transition
is last enabled and before it becomes enabled
again. Their semantics is explained as follows:

 ● Implicit transitions on time delay
d: (,) (', ')dM V M V→ iff:

 ○ M = M ',
 ○ V(t) + d ≤ lft(t) for any transition t, and
 ○ V ' = V + d for any enabled transition in

TPN.

Figure 3 shows an example of TPN Y = (P, T, I,
O, M0, fS), with three places (p1, p2 and p3) and
two transitions (t1 and t2), such that:

 ● P = {p1, p2, p3},
 ● T = {t 1, t 2},
 ● I(t1) = {p1},
 ● I(t2) = {p1},

Figure 3. A Simple Time Petri Net.

 ● O(t1) = {p2},
 ● O(t2) = {p3},
 ● M0 = (1, 0, 0),
 ● fS (t 1) = [0, 3], and fS (t 2) =[0, 3].

After introducing the specification languages
used in this paper, we present in the next section
our method for the analysis of BPMN based on
TPN.

4. Our Approach for BPMN
Model Analysis

As mentioned so far, BPMN is an adopted stan-
dard used in academia and industry for modeling
business processes. However, BPMN is informal
and leaves room for misinterpretations, ambigui-
ties, and inconsistencies about the execution and
operation of business processes being modeled.
Hence, we need to define semantics for BPMN
in order to analyze business processes properly
and remove any possible errors before imple-
mentations. To this end, we chose TPN as target
formalism. This choice is motivated by several
reasons. First, TPN is a well-founded seman-
tics; it has a mathematical background and is
equipped with very efficient analytical tools
(TINA). Secondly, it takes into consideration the
time concepts that are essential to obtain a more
complete functional analysis.
Our approach for the analysis of BPMN mod-
els basically consists of two main steps. First,
we transform the BPMN into a TPN; secondly,
we do formal verification on the resulting TPN.
Such verification consists of checking the
marking reachability and the liveness of transi-
tions of TPN. These properties can be defined
as follows:

 ● A state z = (M,V) is reachable from
z0 = (M0,V0) iff there exist w ∈ T (a se-
quence of transitions) and ξ ∈ length(w)+1

(implicit transitions) such as 'wz z
ξ

→ .

We can limit ourselves to the definition of
reachability that is just related to the mark-
ings and not to the state in general (the
same definition found in standard Petri net
[15]): A marking M ' (in state z ') is reach-
able from a marking M (in state z) if there
exists a sequence of transitions w ∈ T such
as 'wM M→ .

 ● In order to define liveness in TPN [16], we
will need to introduce RY (z) as the set of all
reachable states from the state z = (M, V).
We denote z0 = (M0, V0) the initial state in
TPN. ∀z = (M, V) ∈ RY (z0)

 ○ t is live in z iff: ∀ z ' ∈ RY (z) → ∃ z '' ∈
RY (z ') such as t is ready to fire in z ''

 ○ t is dead iff ∀z ' ∈ RY (z0) t is not ready
to fire in z '.

4.1. Mapping of BPMN Silent Events
and Gateways

Contrary to what is used in the classical map-
ping of BPMN-PN [8], we will not use two
notations to differentiate the silent transitions

from the timed ones. One type of transition is
capable of capturing both the external and in-
ternal actions that cannot be observed by users.
We can differentiate the silent transitions from
those consuming time based on the time inter-
vals that are associated to these transitions.
Figure 4 illustrates the mapping of silent events
and gateways to TPN. The same principle ap-
plies to complex and event-based gateways.

4.2. Timed Activities and Events

Figure 5 illustrates the mapping of timed tasks
and events to Time Petri Net. The “Timer” com-
ponent is highlighted in this mapping; its main
function is to determine the maximum execu-

Figure 4. Mapping of silent events
and gateways to TPN.

Figure 5. Mapping timed activities
and events to TPN.

204 205A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

tion time of the BPMN task. The “Timer” event
does not specify the maximal execution time of
the BPMN task unless its output sequence flow
form with the task’s one , the input of a gateway
of type “XOR-MERGE”.
If this condition is not fulfilled, the “Timer”
event will constitute a normal exception. The
mapping of the exception was already covered
in BPMN-PN mapping [8]. Nevertheless, we
must associate a time interval to the transi-
tion representing the “Timer” event (line 5 in
Figure 5).The timer can also determine the min-
imum execution time of a task (in case min > 0)
if its input node is a timer (line 7 in Figure 5).

4.3. Formal Definition of
BPMN-TPN Mapping

We will define a formal BPMN-TPN mapping
based on the BPMN-PN mapping established
in [8]. We enrich the latter (The Petri net PNM
= (PM, TM, FM)) by adding the time dimension
in the form of a time function that has as a do-
main the transition set. By Z we denote the set
of well-formed core BPMN processes [8].
Fs: TM → +× + ∪ {∞} is a function assigning
to each transition a rational interval. It remains
to point out that the set of tasks of all well-
formed core BPMN processes is a part of the
resulting Petri net transitions. (∪P∈Z TP ⊂ TM)

 ● Fs(tm) = [0, m] if ∃P ∈ Z, ∃(et, gx) ∈
IT X
P PE G× such as tm ∈ Tp, in(tm) ≠ ∅,

excp(et) = tm, Tim(et) = m and in(gx) =
{tm, et}. (cf. Figure 5 line 4)

 ● Fs(tm) = [0, 0] if ∃P ∈ Z such as tm ∈
{ta | a ∈

F
PG ∪ J

PG } ∪{t (a, b) | a ∈
X
PG , b ∈

out(a)} ∪ {t (a, b) | a ∈ M
PG , b ∈ in(a)} ∪ {ta

| a ∈ S
PE } ∪ {tb | b ∈ E

PE } (cf. Figure 4)

 ● Fs(tm) = [n, m] if ∃P ∈ Z, ∃(et, et', gx) ∈
(IT

PE)2 × X
PG such as tm ∈ Tp, excp(et) = tm,

Tim(et) = m, in(tm) = et', in(gx) = {tm, et} and
Tim (et') = n , with n ≤ m. (cf. Figure 5 line 6)

 ● Fs(tm) = [n, ∞] if ∃P ∈ Z, ∃et ∈ IT
PE ∪ ST

PE
such as tm ∈ Tp, in(tm) ≠ ∅, Tim(et) = n and
in(tm) = et. (cf. Figure 5 line 7)

 ● Fs(tm) = [0, ∞] if ∃P ∈ Z, tm ∈ Tp and
∀et ∈ IT

PE ∪ ST
PE in(tm) ≠ et and excp(et)

≠ tm. (cf. Figure 5 line 3)

After the translation of BPMN models into
TPN, verification is done to ensure that some
functional properties are satisfied by the model
under investigation, such as liveness and mark-
ing reachability. In the next section we present
a new algorithm that helps us verify these prop-
erties.

5. Algorithm for Liveness and
Reachability Analysis of TPN

The algorithm used to check the liveness (resp
reachability) of TPN’s transitions (resp mark-
ings) is shown in Algorithm 1. The algorithm
takes as input the TPN and returns a Boolean
value for each transition that says whether or
not the transition is live. The algorithm starts
by calculating the initial state of the TPN and
initializing all the variables to be used, namely
RS (the set of reachable states) and HS (the set
of the handled states among RS) as well as TF
(the set of firable transitions).

Then, it goes through all the states in RS and
handles all the outgoing transitions from each
of these states. Indeed, for each reachable state,
the algorithm checks all of the outgoing tran-
sitions from the marking of the state and ver-
ifies if they are firable by calculating the min-
imum lft of all enabled transitions (let us have
A = {t ∈ TM / VZ(t) ≠ ω} and Td ⊆ A such as Td
= {ts ∈ A / lft(ts) = min(lft(t))(t ∈A)}) then the
minimum eft of all enabled transitions except
for the ones in Td (min(eft(t))(t ∈ A/Td) = e). If e is
greater than l, then the Td‘s transitions are the
only firable transitions and added to TF, and the
resulting state is calculated and added to RS if it
is not already there. Otherwise, All the enabled
transitions are firable, they are added to TF and
the resulting state for each transition is calcu-
lated and added to RS if it is not already there.
When the algorithm terminates the handling
of all the reachable states (i.e., all the states in
RS), it goes through all the transitions to check
if they have been marked so far, if a transition
has not been marked then the transition is de-
clared dead.

To illustrate the advantages of TPN as semantics
as well as the algorithm elaborated above, we
consider again the example of BPMN model in
Figure 2. The resulting TPN obtained by apply-
ing our approach is shown in Figure 6. A sim-
ple investigation of the obtained TPN makes it
possible to notice that a mistake has been made
in modeling the fourth specification of the
visa application processing business process
in Figure 2. Indeed, the second timer in the
BPMN model that is linked to the activity

 “Verify documents and status” can never be
triggered because the maximum time this action
can last is 13 days; therefore the visa applicant
will never be notified if he/she is not accepted.
To make this analysis formal, we will base our
study on the TPN semantics defined above, we
can verify the liveness and reachability of tran-
sitions and states as follows. By executing the
Algorithm 1 detailed above, we get results as
shown in Table 1.

Algorithm 1. Our algorithm for the reachability analysis of a TPN.
___ ___

Reachability Analysis (INPUT: TPN)
Z0 = (M0, V0) with for each transition t ∈ TM, V0(t) = 0 if t is enabled, ω otherwise
RS ← Z0 // RS is the set of reachable states.
RY ← M0 // RY is the set of reachable markings.
HS ← ∅ // HS is the set of handled states.
TF ← ∅ // TE is the set of firable transitions.
Function Pre(t) // the function that returns the set of preplaces of a transition t.
While (RS ≠ HS)
 Take Z = (M,V) ∈ RS
 Add Z to HS
 A ← { t ∈ TM / VZ(t) ≠ ω }
 Calculate min (lft(t))(t ∈A) = l ∈ Q+ ∪ {∞}
 Td ← {ts ∈ A / lft(ts) = l} and TG ← A / Td
 Calculate min (eft(t)) (t ∈ TG) = e
 If l < e then
 B ← Td // B is a variable
 Else
 B ← A
 End if
 For each (t ∈ B)
 t is firable t(M, V) (M ', V ')→
 M' = M + W(O(t)) – W(I(t))
 Add Z'=(M',V') to RS, t to TF and M' to RY
 For each (t' ∈ TM)
 If W(I(t')) > M' then V'(t') = ω
 End if.
 If(M ≥ W(I(t')) and M' ≥ W(I(t')) and pre(t) ∩ pre(t’) ≠ ∅ then V’(t’) = V(t')
 Else
 V'(t') = 0
 End if
 End for
 End for
End while.
For each (t ∈ TM / TF)
 t is dead. // the notion of transition death as explained in the fourth section.
End for___ ___

204 205A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

tion time of the BPMN task. The “Timer” event
does not specify the maximal execution time of
the BPMN task unless its output sequence flow
form with the task’s one , the input of a gateway
of type “XOR-MERGE”.
If this condition is not fulfilled, the “Timer”
event will constitute a normal exception. The
mapping of the exception was already covered
in BPMN-PN mapping [8]. Nevertheless, we
must associate a time interval to the transi-
tion representing the “Timer” event (line 5 in
Figure 5).The timer can also determine the min-
imum execution time of a task (in case min > 0)
if its input node is a timer (line 7 in Figure 5).

4.3. Formal Definition of
BPMN-TPN Mapping

We will define a formal BPMN-TPN mapping
based on the BPMN-PN mapping established
in [8]. We enrich the latter (The Petri net PNM
= (PM, TM, FM)) by adding the time dimension
in the form of a time function that has as a do-
main the transition set. By Z we denote the set
of well-formed core BPMN processes [8].
Fs: TM → +× + ∪ {∞} is a function assigning
to each transition a rational interval. It remains
to point out that the set of tasks of all well-
formed core BPMN processes is a part of the
resulting Petri net transitions. (∪P∈Z TP ⊂ TM)

 ● Fs(tm) = [0, m] if ∃P ∈ Z, ∃(et, gx) ∈
IT X
P PE G× such as tm ∈ Tp, in(tm) ≠ ∅,

excp(et) = tm, Tim(et) = m and in(gx) =
{tm, et}. (cf. Figure 5 line 4)

 ● Fs(tm) = [0, 0] if ∃P ∈ Z such as tm ∈
{ta | a ∈

F
PG ∪ J

PG } ∪{t (a, b) | a ∈
X
PG , b ∈

out(a)} ∪ {t (a, b) | a ∈ M
PG , b ∈ in(a)} ∪ {ta

| a ∈ S
PE } ∪ {tb | b ∈ E

PE } (cf. Figure 4)

 ● Fs(tm) = [n, m] if ∃P ∈ Z, ∃(et, et', gx) ∈
(IT

PE)2 × X
PG such as tm ∈ Tp, excp(et) = tm,

Tim(et) = m, in(tm) = et', in(gx) = {tm, et} and
Tim (et') = n , with n ≤ m. (cf. Figure 5 line 6)

 ● Fs(tm) = [n, ∞] if ∃P ∈ Z, ∃et ∈ IT
PE ∪ ST

PE
such as tm ∈ Tp, in(tm) ≠ ∅, Tim(et) = n and
in(tm) = et. (cf. Figure 5 line 7)

 ● Fs(tm) = [0, ∞] if ∃P ∈ Z, tm ∈ Tp and
∀et ∈ IT

PE ∪ ST
PE in(tm) ≠ et and excp(et)

≠ tm. (cf. Figure 5 line 3)

After the translation of BPMN models into
TPN, verification is done to ensure that some
functional properties are satisfied by the model
under investigation, such as liveness and mark-
ing reachability. In the next section we present
a new algorithm that helps us verify these prop-
erties.

5. Algorithm for Liveness and
Reachability Analysis of TPN

The algorithm used to check the liveness (resp
reachability) of TPN’s transitions (resp mark-
ings) is shown in Algorithm 1. The algorithm
takes as input the TPN and returns a Boolean
value for each transition that says whether or
not the transition is live. The algorithm starts
by calculating the initial state of the TPN and
initializing all the variables to be used, namely
RS (the set of reachable states) and HS (the set
of the handled states among RS) as well as TF
(the set of firable transitions).

Then, it goes through all the states in RS and
handles all the outgoing transitions from each
of these states. Indeed, for each reachable state,
the algorithm checks all of the outgoing tran-
sitions from the marking of the state and ver-
ifies if they are firable by calculating the min-
imum lft of all enabled transitions (let us have
A = {t ∈ TM / VZ(t) ≠ ω} and Td ⊆ A such as Td
= {ts ∈ A / lft(ts) = min(lft(t))(t ∈A)}) then the
minimum eft of all enabled transitions except
for the ones in Td (min(eft(t))(t ∈ A/Td) = e). If e is
greater than l, then the Td‘s transitions are the
only firable transitions and added to TF, and the
resulting state is calculated and added to RS if it
is not already there. Otherwise, All the enabled
transitions are firable, they are added to TF and
the resulting state for each transition is calcu-
lated and added to RS if it is not already there.
When the algorithm terminates the handling
of all the reachable states (i.e., all the states in
RS), it goes through all the transitions to check
if they have been marked so far, if a transition
has not been marked then the transition is de-
clared dead.

To illustrate the advantages of TPN as semantics
as well as the algorithm elaborated above, we
consider again the example of BPMN model in
Figure 2. The resulting TPN obtained by apply-
ing our approach is shown in Figure 6. A sim-
ple investigation of the obtained TPN makes it
possible to notice that a mistake has been made
in modeling the fourth specification of the
visa application processing business process
in Figure 2. Indeed, the second timer in the
BPMN model that is linked to the activity

 “Verify documents and status” can never be
triggered because the maximum time this action
can last is 13 days; therefore the visa applicant
will never be notified if he/she is not accepted.
To make this analysis formal, we will base our
study on the TPN semantics defined above, we
can verify the liveness and reachability of tran-
sitions and states as follows. By executing the
Algorithm 1 detailed above, we get results as
shown in Table 1.

Algorithm 1. Our algorithm for the reachability analysis of a TPN.
___ ___

Reachability Analysis (INPUT: TPN)
Z0 = (M0, V0) with for each transition t ∈ TM, V0(t) = 0 if t is enabled, ω otherwise
RS ← Z0 // RS is the set of reachable states.
RY ← M0 // RY is the set of reachable markings.
HS ← ∅ // HS is the set of handled states.
TF ← ∅ // TE is the set of firable transitions.
Function Pre(t) // the function that returns the set of preplaces of a transition t.
While (RS ≠ HS)
 Take Z = (M,V) ∈ RS
 Add Z to HS
 A ← { t ∈ TM / VZ(t) ≠ ω }
 Calculate min (lft(t))(t ∈A) = l ∈ Q+ ∪ {∞}
 Td ← {ts ∈ A / lft(ts) = l} and TG ← A / Td
 Calculate min (eft(t)) (t ∈ TG) = e
 If l < e then
 B ← Td // B is a variable
 Else
 B ← A
 End if
 For each (t ∈ B)
 t is firable t(M, V) (M ', V ')→
 M' = M + W(O(t)) – W(I(t))
 Add Z'=(M',V') to RS, t to TF and M' to RY
 For each (t' ∈ TM)
 If W(I(t')) > M' then V'(t') = ω
 End if.
 If(M ≥ W(I(t')) and M' ≥ W(I(t')) and pre(t) ∩ pre(t’) ≠ ∅ then V’(t’) = V(t')
 Else
 V'(t') = 0
 End if
 End for
 End for
End while.
For each (t ∈ TM / TF)
 t is dead. // the notion of transition death as explained in the fourth section.
End for___ ___

206 207A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

Table 1. Results of Algorithm 1.

Previous state Firable
transitions Next state

[(1,0,0,0,0,0,0,0),
(0,ω,ω,ω,ω,ω,ω)]

Receive visa
application

[(0,1,0,0,0,0,0,0),
(ω,0,ω,ω,ω,ω,ω)]

[(0,1,0,0,0,0,0,0),
(ω,0,ω,ω,ω,ω,ω)]

Scan
documents

[(0,0,1,0,0,0,0,0),
(ω,ω,0,0,ω,ω,ω)]

[(0,0,1,0,0,0,0,0),
(ω,ω,0,0,ω,ω,ω)]

Verify
 documents

& status

[(0,0,0,0,0,1,0,0),
(ω,ω,ω,ω,ω,0,ω)]

[(0,0,0,0,0,1,0,0),
(ω,ω,ω,ω,ω,0,ω)] Print visa [(0,0,0,0,0,0,1,0),

(ω,ω,ω,ω,ω,ω,0)]

[(0,0,0,0,0,0,1,0),
(ω,ω,ω,ω,ω,ω,0)]

Send
acceptance
notification

[(0,0,0,0,0,0,0,1),
(ω,ω,ω,ω,ω,ω,ω)]

In consequence, all transitions are firable, ex-
cept for “Notify refusal (timer)” and “Send
refusal notification” (dead transitions) as the
earliest firing time of refusal timer is 14. Regard-
ing reachability, the markings (0,0,0,1,0,0,0,0)
and (0,0,0,0,1,0,0,0) will never be reached.

6. Conclusion

In this paper, we proposed a formal analysis
of BPMN models based on Time Petri Nets.
The Mapping BPMN-TPN allows us to over-
come some problems found in BPMN (2.0)

(explained in the Section 3) and have a more
complete analysis that verifies the temporal
properties of the designed process. This anal-
ysis is significant because it reduces the cost
of software development by allowing business
analysts to detect some type of errors found in
business process models (modeling phase) be-
fore starting the development phase. The visa
application processing was taken as an example
to illustrate the advantages brought by the TPN
semantics.

In our future work, we intend to include the
data aspect in our analysis, using a more com-
plex semantics that is based on ITCPN (Interval
Timed Colored Petri Net). Contrary to previous
work [18] that dealt only with data dimension,
ITCPN will allow us to include Data and Time
in our verification, so we could have a more
complete analysis.

References

[1] M. Indulska et al., “Business Process Modeling:
Perceived Benefits”, in Proc. the 28th Int Conf
on Conceptual Modeling, Gramado, Brazil, 2009,
pp. 458–471.
http://dx.doi.org/10.1007/978-3-642-04840-1_34

[2] Business Process Modeling Notation (BPMN)
Specification, OMG, Needham, USA 2011.

[3] Web Services Business Process Execution Lan-
guage. OASIS., Burlington, USA, 2007.

[4] C. Ouyang et al., “Translating BPMN to BPEL”,
BPM Center Report, Brisbane, BPM-06-02, 2006.

[5] L. García-Bañuelos “Pattern Identification and
Classification in the Translation from BPMN
to BPEL”, in Proc. the Confederated Int. Conf.,
CoopIS, DOA, GADA, IS, and ODBASE, Monter-
rey, Mexico, 2008, pp. 436‒444.

[6] F. Kossak et al., A Rigorous Semantics for BPMN
2.0 Process Diagrams, Switzerland Springer Int
Pub, 2014.
http://dx.doi.org/10.1007/978-3-319-09931-6

[7] G. Aagesen and J. Krogstie, “BPMN 2.0 for Mod-
eling Business Processes” in Handbook on Busi-
ness Process Management, vol. 1, Berlin, Ger-
many, Springer, 2015, pp. 219‒250.

[8] M. Dijkman et al., “Formal semantics and analy-
sis of BPMN Process Models using Petri Nets”,
Brisbane, Tech. Univ. QLD, Technical Report
7115, 2007.

[9] A. En-Nouaary and R. Dssouli, “A Practical
Method for the Reachability Analysis of Real-
Time Systems Modelled as Timed Automata”, in
6th Int Conf on Software Engineering Advances,
Barcelona, Spain, 2011.

[10] P. Y. H. Wong and J. Gibbons, “A Process Seman-
tics for BPMN”, in the Proc. 10th Formal Engi-
neering Methods Int. Conf. ICFEM, Kitakyushu,
Japan, 2008, pp. 355‒374.
http://dx.doi.org/10.1007/978-3-540-88194-0_22

[11] J. Ye et al., “Transformation of BPMN to YAWL”,
in the Proc. Computer Science and Software En-
gineering Int. Conf, Washington, DC, USA, 2008,
pp. 354‒359.
http://dx.doi.org/10.1109/csse.2008.980

[12] C. Ouyang et al., “From Business Process Mod-
els to Process-Oriented Software Systems”, ACM
Trans. Software Engineering and Methodology,
vol. 19, pp. 1–37, Aug 2009.
http://dx.doi.org/10.1145/1555392.1555395

[13] Object Management Group. (2011, January).[On-
line]. Available: http://www.bpmn.org/

[14] D. Prandi et al., “Formal Analysis of BPMN via
a Translation into Cows”, in the Proc. 10th CO-
ORDINATION Int Conf ICFEM, Oslo, Norway,
2008, pp. 249‒263.
http://dx.doi.org/10.1007/978-3-540-68265-3_16

[15] C. A. Petri, “Kommunikation mit Automaten”,
Ph.D dissertation, Darmstadt Univ, 1962.

[16] J. Wang, “Petri Nets for Dynamic Event-Driven
System Modeling” in Handbook of Dynamic Sys-
tem Modeling, vol. 1, London, UK, Chapman and
Hall/CRC, 2007.

[17] L. Popova, “On Time Petri Net”, Journal of Infor-
mation Processing and Cybernetics EIK, vol. 27,
pp. 227–244, 1991.

[18] S. Stackelberg et al., “Detecting Data-Flow Er-
rors in BPMN 2.0”, Open Journal of Information
Systems, vol.1, pp. 1‒19, 2014.

Received: August, 2015
Revised: December, 2015

Accepted: December, 2015

Contact addresses:
Anass Rachdi

Institut National des Postes
et Télécommunications (INPT)

Rabat, 10112, Morocco
e-mail: anass.rach@gmail.com

Abdeslam En-Nouaary
Institut National des Postes

et Télécommunications (INPT)
Rabat, 10112, Morocco

e-mail: abdeslam@inpt.ac.ma

Mohamed Dahchour
Institut National des Postes

et Télécommunications (INPT)
Rabat, 10112, Morocco

e-mail: dahchour@inpt.ac.ma

AnAss RAchdi received his Diploma (engineer degree) in Telecommu-
nication Option Information Systems for Management from INPT “In-
stitut National des Postes et Télécommunication” Rabat, Morocco, in
2011. He is a PhD student in the doctoral center of INPT. His current
research topics are workflow management, process analysis, data and
privacy in workflows. He has a modest experience in project work, as
well as with industry.

AbdeslAm en-nouAARy received his engineer degree in Computer En-
gineering, Option Data Communication and Computer Networks, from
ENSIAS (École Nationale Supérieure d'Informatique et d'Analyse des
Systèmes), Rabat, Morocco, in 1996, the M. Sc. and Ph. D. degrees in
Computer Science from the University of Montreal in 1998 and 2001
respectively. Dr. En-Nouaary is currently an Associate Professor at
INPT (Institut National des Postes et Télécommunications), Rabat, Mo-
rocco. Before joining INPT in 2008, Dr. En-Nouaary has been an Asso-
ciate Professor at the Electrical and Computer Engineering Department
of Concordia University, Montreal, Canada, From 2001 to 2008. His
main research interest are modeling and validation of distributed, real-
time, and embedded systems.

mohAmed dAhchouR received the doctoral (2001) in Computer Science
from Ecole polytechnique de Louvain, Université catholique de Lou-
vain, Belgium. Currently, he is full professor of computer science at the
National Institute of Posts and Telecommunications (INPT), Morocco.
He is also the head of the Department of Mathematics and Informatics
at INPT and the leader of a research team on software systems engi-
neering and information systems management. His scientific interests
include software engineering, conceptual modeling, web semantic, dis-
tributed systems, and information systems management.

Figure 6. The TPN corresponding to the business process in Figure 2.

http://dx.doi.org/10.1007/978-3-642-04840-1_34

http://dx.doi.org/10.1007/978-3-319-09931-6

http://dx.doi.org/10.1007/978-3-540-88194-0_22

http://dx.doi.org/10.1109/csse.2008.980

http://dx.doi.org/10.1145/1555392.1555395

http://www.bpmn.org/
http://dx.doi.org/10.1007/978-3-540-68265-3_16

206 207A. Rachdi et al. Liveness and Reachability Analysis of BPMN Process Models

Table 1. Results of Algorithm 1.

Previous state Firable
transitions Next state

[(1,0,0,0,0,0,0,0),
(0,ω,ω,ω,ω,ω,ω)]

Receive visa
application

[(0,1,0,0,0,0,0,0),
(ω,0,ω,ω,ω,ω,ω)]

[(0,1,0,0,0,0,0,0),
(ω,0,ω,ω,ω,ω,ω)]

Scan
documents

[(0,0,1,0,0,0,0,0),
(ω,ω,0,0,ω,ω,ω)]

[(0,0,1,0,0,0,0,0),
(ω,ω,0,0,ω,ω,ω)]

Verify
 documents

& status

[(0,0,0,0,0,1,0,0),
(ω,ω,ω,ω,ω,0,ω)]

[(0,0,0,0,0,1,0,0),
(ω,ω,ω,ω,ω,0,ω)] Print visa [(0,0,0,0,0,0,1,0),

(ω,ω,ω,ω,ω,ω,0)]

[(0,0,0,0,0,0,1,0),
(ω,ω,ω,ω,ω,ω,0)]

Send
acceptance
notification

[(0,0,0,0,0,0,0,1),
(ω,ω,ω,ω,ω,ω,ω)]

In consequence, all transitions are firable, ex-
cept for “Notify refusal (timer)” and “Send
refusal notification” (dead transitions) as the
earliest firing time of refusal timer is 14. Regard-
ing reachability, the markings (0,0,0,1,0,0,0,0)
and (0,0,0,0,1,0,0,0) will never be reached.

6. Conclusion

In this paper, we proposed a formal analysis
of BPMN models based on Time Petri Nets.
The Mapping BPMN-TPN allows us to over-
come some problems found in BPMN (2.0)

(explained in the Section 3) and have a more
complete analysis that verifies the temporal
properties of the designed process. This anal-
ysis is significant because it reduces the cost
of software development by allowing business
analysts to detect some type of errors found in
business process models (modeling phase) be-
fore starting the development phase. The visa
application processing was taken as an example
to illustrate the advantages brought by the TPN
semantics.

In our future work, we intend to include the
data aspect in our analysis, using a more com-
plex semantics that is based on ITCPN (Interval
Timed Colored Petri Net). Contrary to previous
work [18] that dealt only with data dimension,
ITCPN will allow us to include Data and Time
in our verification, so we could have a more
complete analysis.

References

[1] M. Indulska et al., “Business Process Modeling:
Perceived Benefits”, in Proc. the 28th Int Conf
on Conceptual Modeling, Gramado, Brazil, 2009,
pp. 458–471.
http://dx.doi.org/10.1007/978-3-642-04840-1_34

[2] Business Process Modeling Notation (BPMN)
Specification, OMG, Needham, USA 2011.

[3] Web Services Business Process Execution Lan-
guage. OASIS., Burlington, USA, 2007.

[4] C. Ouyang et al., “Translating BPMN to BPEL”,
BPM Center Report, Brisbane, BPM-06-02, 2006.

[5] L. García-Bañuelos “Pattern Identification and
Classification in the Translation from BPMN
to BPEL”, in Proc. the Confederated Int. Conf.,
CoopIS, DOA, GADA, IS, and ODBASE, Monter-
rey, Mexico, 2008, pp. 436‒444.

[6] F. Kossak et al., A Rigorous Semantics for BPMN
2.0 Process Diagrams, Switzerland Springer Int
Pub, 2014.
http://dx.doi.org/10.1007/978-3-319-09931-6

[7] G. Aagesen and J. Krogstie, “BPMN 2.0 for Mod-
eling Business Processes” in Handbook on Busi-
ness Process Management, vol. 1, Berlin, Ger-
many, Springer, 2015, pp. 219‒250.

[8] M. Dijkman et al., “Formal semantics and analy-
sis of BPMN Process Models using Petri Nets”,
Brisbane, Tech. Univ. QLD, Technical Report
7115, 2007.

[9] A. En-Nouaary and R. Dssouli, “A Practical
Method for the Reachability Analysis of Real-
Time Systems Modelled as Timed Automata”, in
6th Int Conf on Software Engineering Advances,
Barcelona, Spain, 2011.

[10] P. Y. H. Wong and J. Gibbons, “A Process Seman-
tics for BPMN”, in the Proc. 10th Formal Engi-
neering Methods Int. Conf. ICFEM, Kitakyushu,
Japan, 2008, pp. 355‒374.
http://dx.doi.org/10.1007/978-3-540-88194-0_22

[11] J. Ye et al., “Transformation of BPMN to YAWL”,
in the Proc. Computer Science and Software En-
gineering Int. Conf, Washington, DC, USA, 2008,
pp. 354‒359.
http://dx.doi.org/10.1109/csse.2008.980

[12] C. Ouyang et al., “From Business Process Mod-
els to Process-Oriented Software Systems”, ACM
Trans. Software Engineering and Methodology,
vol. 19, pp. 1–37, Aug 2009.
http://dx.doi.org/10.1145/1555392.1555395

[13] Object Management Group. (2011, January).[On-
line]. Available: http://www.bpmn.org/

[14] D. Prandi et al., “Formal Analysis of BPMN via
a Translation into Cows”, in the Proc. 10th CO-
ORDINATION Int Conf ICFEM, Oslo, Norway,
2008, pp. 249‒263.
http://dx.doi.org/10.1007/978-3-540-68265-3_16

[15] C. A. Petri, “Kommunikation mit Automaten”,
Ph.D dissertation, Darmstadt Univ, 1962.

[16] J. Wang, “Petri Nets for Dynamic Event-Driven
System Modeling” in Handbook of Dynamic Sys-
tem Modeling, vol. 1, London, UK, Chapman and
Hall/CRC, 2007.

[17] L. Popova, “On Time Petri Net”, Journal of Infor-
mation Processing and Cybernetics EIK, vol. 27,
pp. 227–244, 1991.

[18] S. Stackelberg et al., “Detecting Data-Flow Er-
rors in BPMN 2.0”, Open Journal of Information
Systems, vol.1, pp. 1‒19, 2014.

Received: August, 2015
Revised: December, 2015

Accepted: December, 2015

Contact addresses:
Anass Rachdi

Institut National des Postes
et Télécommunications (INPT)

Rabat, 10112, Morocco
e-mail: anass.rach@gmail.com

Abdeslam En-Nouaary
Institut National des Postes

et Télécommunications (INPT)
Rabat, 10112, Morocco

e-mail: abdeslam@inpt.ac.ma

Mohamed Dahchour
Institut National des Postes

et Télécommunications (INPT)
Rabat, 10112, Morocco

e-mail: dahchour@inpt.ac.ma

AnAss RAchdi received his Diploma (engineer degree) in Telecommu-
nication Option Information Systems for Management from INPT “In-
stitut National des Postes et Télécommunication” Rabat, Morocco, in
2011. He is a PhD student in the doctoral center of INPT. His current
research topics are workflow management, process analysis, data and
privacy in workflows. He has a modest experience in project work, as
well as with industry.

AbdeslAm en-nouAARy received his engineer degree in Computer En-
gineering, Option Data Communication and Computer Networks, from
ENSIAS (École Nationale Supérieure d'Informatique et d'Analyse des
Systèmes), Rabat, Morocco, in 1996, the M. Sc. and Ph. D. degrees in
Computer Science from the University of Montreal in 1998 and 2001
respectively. Dr. En-Nouaary is currently an Associate Professor at
INPT (Institut National des Postes et Télécommunications), Rabat, Mo-
rocco. Before joining INPT in 2008, Dr. En-Nouaary has been an Asso-
ciate Professor at the Electrical and Computer Engineering Department
of Concordia University, Montreal, Canada, From 2001 to 2008. His
main research interest are modeling and validation of distributed, real-
time, and embedded systems.

mohAmed dAhchouR received the doctoral (2001) in Computer Science
from Ecole polytechnique de Louvain, Université catholique de Lou-
vain, Belgium. Currently, he is full professor of computer science at the
National Institute of Posts and Telecommunications (INPT), Morocco.
He is also the head of the Department of Mathematics and Informatics
at INPT and the leader of a research team on software systems engi-
neering and information systems management. His scientific interests
include software engineering, conceptual modeling, web semantic, dis-
tributed systems, and information systems management.

Figure 6. The TPN corresponding to the business process in Figure 2.

http://dx.doi.org/10.1007/978-3-642-04840-1_34

http://dx.doi.org/10.1007/978-3-319-09931-6

http://dx.doi.org/10.1007/978-3-540-88194-0_22

http://dx.doi.org/10.1109/csse.2008.980

http://dx.doi.org/10.1145/1555392.1555395

http://www.bpmn.org/
http://dx.doi.org/10.1007/978-3-540-68265-3_16

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20160712153051

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

