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We address the problem of deterministic finite tree au-
tomata (DFTA) minimization. We describe a new al-
ternative to implement both standard and incremental 
tree automata minimization using a well-defined graph 
representing the automaton to be minimized. We show 
that the asymptotic complexity of the standard imple-
mentation is linearithmic and the incremental one is 
O(n3 log(n)) where n is the DFTA size.
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1. Introduction

Tree automata constitute a powerful theoretical 
tool for several real applications such as XML 
schemata [1], natural languages processing [2], 
verification techniques, program analysis etc. 
In this paper, we focus on the minimization of 
deterministic finite tree automata (DFTA). In 
the literature, all the minimization techniques 
[3], [4], [5] are largely inspired by finite string 
automata (FSA) minimization which was stu- 
died for the first time by Huffman and Moore 
[6]. Their algorithm was based on the definition 
of distinguishable pairs of states. At the end of 
the algorithm, all states judged undistinguish-
able were merged. Later, Hopcroft [7] defined a 
new algorithm which proceeds by refining the 
coarsest partition until no more refinements are 
possible.

Following the same steps, new minimization 
techniques for tree automata have emerged. 
Early in 1967, Brainerd [3] proposed the first 
DFTA minimization method which we call 
standard method. Since these several algo-
rithms and implementations have been created, 
but they all followed the same approach as 
Brainerd's algorithm like Arbib [4], Gésceg and 
Steinby [5] and Comon et al. [8].
After that, Watson [9] designed a new minimi-
zation method called incremental technique, in 
which they use a recursive function that decides 
if two states are equivalent. This method consti-
tutes the basics of many other techniques [10], 
[11].
Another particular case is the deterministic 
acyclic tree automata. It was first defined on 
strings [12]. Next, many other works proposed 
standard and incremental procedures for this 
case like in [13].
Concerning complexity, almost all the authors 
have dedicated large part to complexity study 
and in many cases. It was maintained by em-
piric tests and experimental evaluations. In 
cyclic case, Hopcroft minimization [14] re-
mains the most efficient algorithm known for 
solving this problem for cyclic automata, the 
worst-case complexity of this minimization is 
O(a⋅n⋅log(n)) where a is the size of the alphabet 
and n the number of the states of the automaton 
to be minimized. For acyclic automata, the mini- 
mization can be done in linear time (see [15], 
[16]).
However, in tree case, the complexity of stan-
dard minimization needs a quadratic time. 
Although the numbers of works and improve-
ments inspired by the standard method like the 
technique of Carrasco et al. [17], the whole 
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asymptotical complexity remains quadratic. 
But, Abdullah et al. [18] introduced a method 
in which they adapted Paige-Tarjan algorithm 
[19] to refine an equivalence relation in or-
der to minimize a non-deterministic automata 
(NFTA). Since the deterministic automata is a 
particular case of non-deterministic automata, 
the last approach works well for it and gives 
the best known complexity in tree case which is 
O(r⋅m⋅log(n)) where r is the maximum rank of 
the alphabet, m is the size of the automaton and 
n is the number of its states (see [20]).
In this paper, we present an efficient implemen-
tation of DFTA using usual graph properties. 
We give a general algorithm for the standard 
minimization and we show that the asymptotic 
complexity of this construction reaches the best 
known one which can be deduced by combi- 
ning Abdullah et al. [18] and Högberg et al. [20] 
works on NFTA. For the second, we extend ma-
terials presented in [21] and we detail a new in-
cremental DFTA minimization approach. Then 
we discuss its application in cyclic and acyclic 
automata. We show that this new algorithm im-
proves the complexity given by [10], [21] and 
gives a new complexity when dealing with the 
acyclic case.
The paper is organized as follows. In Section 2, 
we give some preliminaries and basic proper-
ties on DFTA. Afterward, we recall the standard 
algorithm of DFTA minimization in Section 3. 
Then, in Section 4 we present a graph view of 
a DFTA and introduce some usual properties. 
Moreover, we give a general algorithm for the 
standard minimization. Finally, Section 5 is al-
located to incremental minimization of DFTA. 
We conclude in Section 6.

2. Preliminaries

Given a set of symbols Σ called alphabet, the 
set of unranked ordered trees TΣ over Σ is de-
fined inductively as follows: Σ ⊂ TΣ and ∀ σ ∈ Σ, 
t1, …, tn ∈ TΣ, n ∈  : σ (t1, …, tn) ∈ TΣ.
An alphabet is ranked if there exists a map-
ping Arity: Σ →  which associates to each 
symbol an arity representing the "fixed" 
number of its children in a constructed tree. 
r ̂ (Σ) = maxσ∈Σ Arity (σ) is the maximum rank 
of the alphabet Σ (we use r ̂ if Σ is known). A 
tree set TΣ is called "ranked" if and only if: 
∀ σ (t1, …, tn) ∈ TΣ, n = arity (σ).

The subset of p-ary symbols of Σ is Σp =  
{σ ∈ Σ | Arity (σ) = p}. We use the notation 
σ, σ ( ), σ ( , ), …, σ ( , …, ) respectively for con-
stant, unary, binary, ..., p-ary symbols. The set 
of ranked ordered trees TΣ over a ranked alpha-
bet Σ is the smallest set satisfying: p ≥ 0, σ ∈ Σp 
and t1, t2, …, tp ∈ TΣ then σ (t1, t2, …, tp) ∈ TΣ. A 
tree language L is a subset of TΣ.
The set Sub (t) of all subtrees of the tree t = 
σ (s1, …, sn) is: Sub (t) = {t} ∪ 1

n
k= Sub (sk). 

The tree t (r ← s) is the tree in which every oc-
currence of r is substituted by the tree s. We 
define a new substitution as follows: every tree  
u ∈ t (r ⇐ s) is obtained by substituting just one 
occurrence of the tree r by s. We note that ⇐ 
defines a set of trees.
Example 1. Let t = f (a, g (b, a)) be a tree. 
t (a ← g (b)) = f (g (b), g (b, g (b))) but t (a ⇐ 
g (b)) = {f (g (b), g (b, a)), f (a, g (b, g (b)))}.
A bottom up finite tree automaton (FTA) over 
an alphabet Σ is a tuple A = (Q, Σ, Qf, Δ) where 
Q is a finite set of states (Q ∩ Σ = ∅), Qf ⊆ Q  
is the set of final states and Δ ⊂ 0n≥ Σ × Qn,  
n ∈  is a finite set of transitions. If Σ is 
ranked, then the transitions set is written as 
Δ ⊂ 0n≥ Σ × Q n+1, n ∈ .
In what follows, we consider only the ranked 
alphabet. The same results can be generalized 
to unranked tree automata by adding some re-
strictions.
The size of a transition ρ = (σ, q1,…, qn, q), 
σ ∈ Σn, q, q1, …, qn ∈ Q is |ρ| = n + 1. Then, the 
size of the automaton A is defined as

                          
ρ

ρ
∈∆

= ∑A                          (1)

We can bound the size of an automaton:

                            r̂≤ ∆A                            (2)

The transition function δ for a FTA is:

0
: 2n Q

n
n

Qδ
≥

∑ × →


( ) ( ){ }1 1| , ,..., ,, ,..., n nqq q q q qσδ σ = ∈∆

(σ, q1, …, qn) is called argument.
A FTA is a deterministic bottom-up finite tree au-
tomaton (DFTA) if ∀ ρ ∈ 0n≥

Σ × Qn : |δ (ρ)| ≤ 1. 
In other words, for every transition in Δ 
there is at most one possible output, that is, 

3. Tree Automata Minimization

A deterministic tree automaton can be mini-
mized by removing all its useless states and 
computing its Nerode equivalence relation [22]. 
Indeed, the Nerode equivalence reflects states 
having the same behaviour in terms of tree ac-
ceptance. In other words, two states p and q 
are equivalent w.r.t Nerode relation if and only 
if L↑ (p) = L↑ (q). Therefore, equivalent states 
can be safely merged without affecting the ac-
cepted language. The computation of this rela-
tion can be achieved by means of two different 
approaches. The first one that we call "standard 
approach" computes a series of equivalence re-
lations (or partitions) ≡0, ≡1, … . The relation 
≡0 is the coarsest one. At each step, the relation 
≡i+1 is obtained by splitting the relation ≡i while 
respecting that ≡i is coarser than ≡i+1. This ap-
proach seeks to reach a relation gathering all 
equivalent states that respect minimization in 
one partition.
The second one called "incremental approach" 
starts with a singleton partition for each state 
and iteratively merges partitions that are shown 
to be equivalent. The process stops when the 
greatest fixed-point is reached.
Let A = (Q, Σ, Qf, Δ) be a DFTA. ≡ over Q is 
an equivalence relation such that p ≡ q implies:
1. p ∈Qf ⇔ q ∈Qf  and,
2. for all ρ ∈ 1n≥ Σn × Q n

 : δ (ρp:i) ≡ δ (ρq:i) for  
all 1 ≤ i ≤ n.

Minimization for DFTA was first discussed in 
the late 1960s by Brainerd [3], and standardised 
in [8], [17]. It computes the equivalence rela-
tion ≡ by successive approximations (≡j)j ≥ 0:
1. p ≡0 q if and only if (p ∈Qf ⇔ q ∈Qf)
2. p ≡j+1 q if and only if p ≡j q and for all 

ρ ∈ 1n≥ Σn × Q 
n

 : δ (ρp:i) ≡j δ (ρq:i) for all  
1 ≤ i ≤ n.

The computation of the family (≡j)j ≥ 0 can then 
be done by successive approximations until 
reaching the stable point.
Lemma 1. For k ≥ |Q| − 2, we have ≡k+1 = ≡k.
To prove this lemma, one has to use the property 
that each cycle's length cannot exceed |Q| − 2 
(the number of nodes in one graph).

if (σ, q1, …,qn, p), (σ, q1, …, qn, q) ∈ Δ, then 
p = q. A non-deterministic FTA is denoted 
NFTA. We note that the function δ of a DFTA 
has at most one output, then it is defined on: 
δ : 0n≥

Σn × Q n → Q.
Let ρ = (σ, q1, …, qn) be an argument, then 
ρp:i = (σ, q1, …, qi−1, p, qi+1, …, qn) denotes the 
argument obtained by substituting qi by p at a 
precise place i in ρ.
For t ∈ TΣ, the output mA (t) is computed recur-
sively as follows: Let t = σ (t1, t2, …, tn) ∈TΣ. 
Then:

   1 2( ) ( , ( ), ( ))), , ( nm t m t m t m tδ σ= …A A A A    (3)

A tree t is accepted by A if and only if mA (t) ∈Qf.
The language accepted by A is: L (A) = {t ∈TΣ   
| mA (t) ∈Qf}.
In the same way, the accepted language (down 
language) of a state q is defined as follows: 
L↓ (q) = {t ∈TΣ | mA (t) = q}.
The residual (up) language of a state q is de-
fined as follows:

               ( ) ( )
( )
( )

( )

#

f

t T
s L q

m t Q

L q t s

↓

↑

∈ Σ

∈
∈

= ⇐


A

               (4)

Mind that # ∉Σ is a special symbol. Every tree 
from L↑

 (q) has a single leaf labeled #. Substi-
tuting this symbol by any tree from L↓

 (q) pro-
duces a tree that is accepted by the automaton 
in question. A DFTA A is acyclic (ADFTA) if 
and only if:

 ( ) ( ) ( ) { },q Q t L q Sub t L q t↑ ↓∀ ∈ ∈ ⇒ ∩ =   (5)

Recall that ADFTA satisfy some properties like 
the finiteness of the accepted languages, the ab-
sence of cycles (the output function m is non-re- 
cursive), etc.
A state q is accessible if L↓

 (q) ≠ ∅ and is co-ac-
cessible if L↑

 (q) ≠ ∅. A state is useless if it is 
neither accessible nor co-accessible. Useless 
states and the transitions including them can be 
safely removed from Q and Δ without affect-
ing L(A). We can remove all useless states in 
O(|A|) [17]. Thus, we suppose throughout this 
paper that every tree automaton is free from 
useless states.
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asymptotical complexity remains quadratic. 
But, Abdullah et al. [18] introduced a method 
in which they adapted Paige-Tarjan algorithm 
[19] to refine an equivalence relation in or-
der to minimize a non-deterministic automata 
(NFTA). Since the deterministic automata is a 
particular case of non-deterministic automata, 
the last approach works well for it and gives 
the best known complexity in tree case which is 
O(r⋅m⋅log(n)) where r is the maximum rank of 
the alphabet, m is the size of the automaton and 
n is the number of its states (see [20]).
In this paper, we present an efficient implemen-
tation of DFTA using usual graph properties. 
We give a general algorithm for the standard 
minimization and we show that the asymptotic 
complexity of this construction reaches the best 
known one which can be deduced by combi- 
ning Abdullah et al. [18] and Högberg et al. [20] 
works on NFTA. For the second, we extend ma-
terials presented in [21] and we detail a new in-
cremental DFTA minimization approach. Then 
we discuss its application in cyclic and acyclic 
automata. We show that this new algorithm im-
proves the complexity given by [10], [21] and 
gives a new complexity when dealing with the 
acyclic case.
The paper is organized as follows. In Section 2, 
we give some preliminaries and basic proper-
ties on DFTA. Afterward, we recall the standard 
algorithm of DFTA minimization in Section 3. 
Then, in Section 4 we present a graph view of 
a DFTA and introduce some usual properties. 
Moreover, we give a general algorithm for the 
standard minimization. Finally, Section 5 is al-
located to incremental minimization of DFTA. 
We conclude in Section 6.

2. Preliminaries

Given a set of symbols Σ called alphabet, the 
set of unranked ordered trees TΣ over Σ is de-
fined inductively as follows: Σ ⊂ TΣ and ∀ σ ∈ Σ, 
t1, …, tn ∈ TΣ, n ∈  : σ (t1, …, tn) ∈ TΣ.
An alphabet is ranked if there exists a map-
ping Arity: Σ →  which associates to each 
symbol an arity representing the "fixed" 
number of its children in a constructed tree. 
r ̂ (Σ) = maxσ∈Σ Arity (σ) is the maximum rank 
of the alphabet Σ (we use r ̂ if Σ is known). A 
tree set TΣ is called "ranked" if and only if: 
∀ σ (t1, …, tn) ∈ TΣ, n = arity (σ).

The subset of p-ary symbols of Σ is Σp =  
{σ ∈ Σ | Arity (σ) = p}. We use the notation 
σ, σ ( ), σ ( , ), …, σ ( , …, ) respectively for con-
stant, unary, binary, ..., p-ary symbols. The set 
of ranked ordered trees TΣ over a ranked alpha-
bet Σ is the smallest set satisfying: p ≥ 0, σ ∈ Σp 
and t1, t2, …, tp ∈ TΣ then σ (t1, t2, …, tp) ∈ TΣ. A 
tree language L is a subset of TΣ.
The set Sub (t) of all subtrees of the tree t = 
σ (s1, …, sn) is: Sub (t) = {t} ∪ 1

n
k= Sub (sk). 

The tree t (r ← s) is the tree in which every oc-
currence of r is substituted by the tree s. We 
define a new substitution as follows: every tree  
u ∈ t (r ⇐ s) is obtained by substituting just one 
occurrence of the tree r by s. We note that ⇐ 
defines a set of trees.
Example 1. Let t = f (a, g (b, a)) be a tree. 
t (a ← g (b)) = f (g (b), g (b, g (b))) but t (a ⇐ 
g (b)) = {f (g (b), g (b, a)), f (a, g (b, g (b)))}.
A bottom up finite tree automaton (FTA) over 
an alphabet Σ is a tuple A = (Q, Σ, Qf, Δ) where 
Q is a finite set of states (Q ∩ Σ = ∅), Qf ⊆ Q  
is the set of final states and Δ ⊂ 0n≥ Σ × Qn,  
n ∈  is a finite set of transitions. If Σ is 
ranked, then the transitions set is written as 
Δ ⊂ 0n≥ Σ × Q n+1, n ∈ .
In what follows, we consider only the ranked 
alphabet. The same results can be generalized 
to unranked tree automata by adding some re-
strictions.
The size of a transition ρ = (σ, q1,…, qn, q), 
σ ∈ Σn, q, q1, …, qn ∈ Q is |ρ| = n + 1. Then, the 
size of the automaton A is defined as

                          
ρ

ρ
∈∆

= ∑A                          (1)

We can bound the size of an automaton:

                            r̂≤ ∆A                            (2)

The transition function δ for a FTA is:

0
: 2n Q

n
n

Qδ
≥

∑ × →


( ) ( ){ }1 1| , ,..., ,, ,..., n nqq q q q qσδ σ = ∈∆

(σ, q1, …, qn) is called argument.
A FTA is a deterministic bottom-up finite tree au-
tomaton (DFTA) if ∀ ρ ∈ 0n≥

Σ × Qn : |δ (ρ)| ≤ 1. 
In other words, for every transition in Δ 
there is at most one possible output, that is, 

3. Tree Automata Minimization

A deterministic tree automaton can be mini-
mized by removing all its useless states and 
computing its Nerode equivalence relation [22]. 
Indeed, the Nerode equivalence reflects states 
having the same behaviour in terms of tree ac-
ceptance. In other words, two states p and q 
are equivalent w.r.t Nerode relation if and only 
if L↑ (p) = L↑ (q). Therefore, equivalent states 
can be safely merged without affecting the ac-
cepted language. The computation of this rela-
tion can be achieved by means of two different 
approaches. The first one that we call "standard 
approach" computes a series of equivalence re-
lations (or partitions) ≡0, ≡1, … . The relation 
≡0 is the coarsest one. At each step, the relation 
≡i+1 is obtained by splitting the relation ≡i while 
respecting that ≡i is coarser than ≡i+1. This ap-
proach seeks to reach a relation gathering all 
equivalent states that respect minimization in 
one partition.
The second one called "incremental approach" 
starts with a singleton partition for each state 
and iteratively merges partitions that are shown 
to be equivalent. The process stops when the 
greatest fixed-point is reached.
Let A = (Q, Σ, Qf, Δ) be a DFTA. ≡ over Q is 
an equivalence relation such that p ≡ q implies:
1. p ∈Qf ⇔ q ∈Qf  and,
2. for all ρ ∈ 1n≥ Σn × Q n

 : δ (ρp:i) ≡ δ (ρq:i) for  
all 1 ≤ i ≤ n.

Minimization for DFTA was first discussed in 
the late 1960s by Brainerd [3], and standardised 
in [8], [17]. It computes the equivalence rela-
tion ≡ by successive approximations (≡j)j ≥ 0:
1. p ≡0 q if and only if (p ∈Qf ⇔ q ∈Qf)
2. p ≡j+1 q if and only if p ≡j q and for all 

ρ ∈ 1n≥ Σn × Q 
n

 : δ (ρp:i) ≡j δ (ρq:i) for all  
1 ≤ i ≤ n.

The computation of the family (≡j)j ≥ 0 can then 
be done by successive approximations until 
reaching the stable point.
Lemma 1. For k ≥ |Q| − 2, we have ≡k+1 = ≡k.
To prove this lemma, one has to use the property 
that each cycle's length cannot exceed |Q| − 2 
(the number of nodes in one graph).

if (σ, q1, …,qn, p), (σ, q1, …, qn, q) ∈ Δ, then 
p = q. A non-deterministic FTA is denoted 
NFTA. We note that the function δ of a DFTA 
has at most one output, then it is defined on: 
δ : 0n≥

Σn × Q n → Q.
Let ρ = (σ, q1, …, qn) be an argument, then 
ρp:i = (σ, q1, …, qi−1, p, qi+1, …, qn) denotes the 
argument obtained by substituting qi by p at a 
precise place i in ρ.
For t ∈ TΣ, the output mA (t) is computed recur-
sively as follows: Let t = σ (t1, t2, …, tn) ∈TΣ. 
Then:

   1 2( ) ( , ( ), ( ))), , ( nm t m t m t m tδ σ= …A A A A    (3)

A tree t is accepted by A if and only if mA (t) ∈Qf.
The language accepted by A is: L (A) = {t ∈TΣ   
| mA (t) ∈Qf}.
In the same way, the accepted language (down 
language) of a state q is defined as follows: 
L↓ (q) = {t ∈TΣ | mA (t) = q}.
The residual (up) language of a state q is de-
fined as follows:

               ( ) ( )
( )
( )

( )

#
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t T
s L q
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               (4)

Mind that # ∉Σ is a special symbol. Every tree 
from L↑

 (q) has a single leaf labeled #. Substi-
tuting this symbol by any tree from L↓

 (q) pro-
duces a tree that is accepted by the automaton 
in question. A DFTA A is acyclic (ADFTA) if 
and only if:

 ( ) ( ) ( ) { },q Q t L q Sub t L q t↑ ↓∀ ∈ ∈ ⇒ ∩ =   (5)

Recall that ADFTA satisfy some properties like 
the finiteness of the accepted languages, the ab-
sence of cycles (the output function m is non-re- 
cursive), etc.
A state q is accessible if L↓

 (q) ≠ ∅ and is co-ac-
cessible if L↑

 (q) ≠ ∅. A state is useless if it is 
neither accessible nor co-accessible. Useless 
states and the transitions including them can be 
safely removed from Q and Δ without affect-
ing L(A). We can remove all useless states in 
O(|A|) [17]. Thus, we suppose throughout this 
paper that every tree automaton is free from 
useless states.
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Algorithm 1 describes in a general way the stan-
dard tree automata minimization. It iterates over 
a sequence of steps. First, the initial partition is 
set to {Q}, and the second one to {Qf, Q − Qf}. 
Next, at each iteration i, the current partition Pi 
is split by computing ≡i. [q] denotes the Nerode 
equivalence class of the state q.
Let us recall that this standard algorithm is qua-
dratic and needs O (|A|2) time. There exist few 
implementations of these standard algorithms 
like Carrasco et al. [17] which are quadratic too.
Concerning incremental technique for strings, 
Watson [9] introduced for the first time the 
incremental version for cyclic DFA. Af-
ter that, Almeida et al. [11] presented a new 
split-based incremental implementation using 
the union-find algorithm. Recently, Garcia et 
al. [23] proposed a new algorithm that outper-
forms that of Almeida et al. in some contexts.
However, in the tree case, Cleophas et al. [10] 
generalized the incremental approach to trees.
Here, the trick is to compute the equivalence 
between pairs of states separately instead of re-
fining states sets. This is based on the following 
idea.
Lemma 2. Let p, q ∈ Q. Then, p ≡ q ⇔ L↑(p) 
= L↑(q).
The equivalence between states can be com-
puted recursively using the following property 
[10].

: :
, 0

( , ) ( ( ), ( ))

(( ) ( ))

n
n

p i q i
Q i n

f f

equiv p q equiv

p Q q Q
ρ

δ ρ δ ρ
∈∑ × ≤ ≤

=

∧ ∈ ⇔ ∈

∧

Recall that in the presence of cycles, the re-
cursive call may be infinite. Thus, Cleophas 
et al. [10] used an extended recursive function 
equiv ( p, q, k) when k is initialized with |Q| − 2. 
At each step, k is decreased until it reaches 0.

4. Efficient Implementation of the 
Standard Minimization

In this section, we give an efficient data struc-
ture in favour of minimization and we introduce 
some useful properties. Next, we describe an 
n log n implementation of tree automata mini-
mization after discussing the standard case.
Any DFTA can be seen as a bipartite graph ac-
cording to the following definition.
Definition 1. The graph GA = (X, lab, A, γ) as-
sociated to a DFTA A = (Q, Σ, Qf, Δ) is defined 
as follows:

 ● The Σ-nodes set XΣ is any set, such that 
there exists a bijection XΣ → Δ.

 ● X = XΣQ is the nodes set. Q is the 
state-nodes set (every state is a node in the 
graph).

 ● lab: X → ΣQ is the labels function that 
returns the label of each node from X.

 ● A ⊆ (XΣ × Q) 


 (Q × XΣ) is the arcs set.
 ● γ : A →  is a function that affects a weight 

for each arc.
GA is built as follows: with each transition 
(σ, q1, …, qn, q), we associate a set of arcs 
{(q, xσ)} {(xσ, qi) | 0 ≤ i ≤ n}, such that:

 ● lab (xσ) = σ.
 ● ∀ qi, lab (qi) = qi, lab (q) = q.
 ● γ (q, xσ) = 0.
 ● γ (xσ, qi) = i, 1 ≤ i ≤ n.

Mind that we use a different Σ-node for each 
transition. Here we have |XΣ| = |Δ|. Indeed, 
Σ-nodes are labelled with the first symbol of 
a transition. For this reason, two Σ-nodes may 
have the same label.

4.1. Efficient Initialization

Obviously, we can meet only one equivalence 
class (if all states are final and share the same up 
language). Otherwise, this number can be equal 
at most to the number of states (if the processed 
automaton is already minimal). However, the 
number of equivalence classes can previously 
be bounded in order to accelerate the refine-
ment process. Here we introduce some proper-
ties necessary but not sufficient to decide if two 
states are equivalent or not.
But first, let us recall an interesting property de-
fined by Carrasco et al. [17].
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Here the symbol # is used to distinguish final 
states from non-final ones.
In fact, the signature sig (q) computes the sim-
ilarity of left and right sides between states' 
occurrences in the transitions set. We propose 
a "vertical" verification based on what we call 
states level.
Definition 2. The paths set of a state q, denoted  
  ̂q, is the set of all finite sequences q1, …, qn, q 

such that q1 ∈ Qf, q2, …, qn ∈ Q, n ≤ |Q| and for 
each qi − 1, qi there exists a Σ-node x such that 
(qi−1, x), (x, qi) ∈ A.
In other words, only arcs of non-null weight are 
considered in the path from a final state to the 
wanted one.
Definition 3. Let q ∈ Q be a state. Then the level 
of the state q is defined as ˆ( ) s qq min s∈=L . 
s  is the length of the sequence s.

Lemma 3. The levels of a DFTA states can be 
computed in linear time.
Obviously, the states level can be computed 
"on the fly" by executing a breadth-first search 
starting from final states. A special node may be 
added to give an entry to all final states nodes.
Consequently, the following property remains 
true.
Lemma 4. Let p, q ∈Q. Then, p ≡ q ⇒ (sig (p) 
= sig (q) ∧ L (p) = L (q)).
Proof. To prove this lemma, we need only to 
show that L (p) ≠ L (q) ⇒ p ≡/  q. See [17] for 
the second part. Let p, q ∈Q.
Assume that L (p) ≠ L (q). Then, the minimal 
path between p and one final state is different 
from the minimal path between q and another 
one. Resolving the two paths leads to this fact: 
there exists t1 ∈ p

↑L , t2 ∈ q
↑L  such that we find 

two branches in t1 and t2 of different sizes. We 
can directly conclude that p

↑L  ≠ q
↑L  and p ≡/  q.

4.2 Standard Implementation

By means of the associated graph proposed 
above, we see that the properties of equivalence 
can easily be extracted and checked. Thus, the 
representation promotes the minimization pro-
cess.
We define some properties simplifying the ver-
ification of possible equivalencies between the 
states.
Definition 4. Let q be a state-node such that 
(x, q) ∈ A. Then the neighbours set of q with 
respect to x ∈ XΣ is Nx (q) = {(p, γ (x, p)) | (x, p) 
∈ A, p ≠ q}.
Proposition 1. Let p, q ∈ Q. Then p ≡ q ⇒  
(∀ x ∈ XΣ, ∃ y ∈ XΣ : lab (x) = lab (y) ∧ Nx (p) = 
Ny (q)).

Algorithm 1.  Tree autoamata minimization.

function MinimizationDFTA   A = (Q, Σ, Qf, Δ)
P0 ← Q
P1 ← {Qf, Q − Qf }
  i ← 1
  repeat
     create Pi+1 by refining Pi so that p ≡i+1 q iff for all ρ ∈ 1n≥ Σn × Q n    δ (ρp:i) and δ (ρq:i) are in the 
     same partition in Pi
     i ← i + 1
  until (Pi = Pi−1)
     Qmin ← q Q∈ [q]
     Δmin ← {(σ, [q1], …, [qn]) | (σ, q1, …, qn) ∈ Δ}
     Qmin f ← {[q] | q ∈ Qf}
  return Amin = (Qmin, Σ, Qmin f, Δmin)
end function
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Algorithm 1 describes in a general way the stan-
dard tree automata minimization. It iterates over 
a sequence of steps. First, the initial partition is 
set to {Q}, and the second one to {Qf, Q − Qf}. 
Next, at each iteration i, the current partition Pi 
is split by computing ≡i. [q] denotes the Nerode 
equivalence class of the state q.
Let us recall that this standard algorithm is qua-
dratic and needs O (|A|2) time. There exist few 
implementations of these standard algorithms 
like Carrasco et al. [17] which are quadratic too.
Concerning incremental technique for strings, 
Watson [9] introduced for the first time the 
incremental version for cyclic DFA. Af-
ter that, Almeida et al. [11] presented a new 
split-based incremental implementation using 
the union-find algorithm. Recently, Garcia et 
al. [23] proposed a new algorithm that outper-
forms that of Almeida et al. in some contexts.
However, in the tree case, Cleophas et al. [10] 
generalized the incremental approach to trees.
Here, the trick is to compute the equivalence 
between pairs of states separately instead of re-
fining states sets. This is based on the following 
idea.
Lemma 2. Let p, q ∈ Q. Then, p ≡ q ⇔ L↑(p) 
= L↑(q).
The equivalence between states can be com-
puted recursively using the following property 
[10].
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Recall that in the presence of cycles, the re-
cursive call may be infinite. Thus, Cleophas 
et al. [10] used an extended recursive function 
equiv ( p, q, k) when k is initialized with |Q| − 2. 
At each step, k is decreased until it reaches 0.

4. Efficient Implementation of the 
Standard Minimization

In this section, we give an efficient data struc-
ture in favour of minimization and we introduce 
some useful properties. Next, we describe an 
n log n implementation of tree automata mini-
mization after discussing the standard case.
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returns the label of each node from X.

 ● A ⊆ (XΣ × Q) 


 (Q × XΣ) is the arcs set.
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Mind that we use a different Σ-node for each 
transition. Here we have |XΣ| = |Δ|. Indeed, 
Σ-nodes are labelled with the first symbol of 
a transition. For this reason, two Σ-nodes may 
have the same label.

4.1. Efficient Initialization

Obviously, we can meet only one equivalence 
class (if all states are final and share the same up 
language). Otherwise, this number can be equal 
at most to the number of states (if the processed 
automaton is already minimal). However, the 
number of equivalence classes can previously 
be bounded in order to accelerate the refine-
ment process. Here we introduce some proper-
ties necessary but not sufficient to decide if two 
states are equivalent or not.
But first, let us recall an interesting property de-
fined by Carrasco et al. [17].
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Here the symbol # is used to distinguish final 
states from non-final ones.
In fact, the signature sig (q) computes the sim-
ilarity of left and right sides between states' 
occurrences in the transitions set. We propose 
a "vertical" verification based on what we call 
states level.
Definition 2. The paths set of a state q, denoted  
  ̂q, is the set of all finite sequences q1, …, qn, q 

such that q1 ∈ Qf, q2, …, qn ∈ Q, n ≤ |Q| and for 
each qi − 1, qi there exists a Σ-node x such that 
(qi−1, x), (x, qi) ∈ A.
In other words, only arcs of non-null weight are 
considered in the path from a final state to the 
wanted one.
Definition 3. Let q ∈ Q be a state. Then the level 
of the state q is defined as ˆ( ) s qq min s∈=L . 
s  is the length of the sequence s.

Lemma 3. The levels of a DFTA states can be 
computed in linear time.
Obviously, the states level can be computed 
"on the fly" by executing a breadth-first search 
starting from final states. A special node may be 
added to give an entry to all final states nodes.
Consequently, the following property remains 
true.
Lemma 4. Let p, q ∈Q. Then, p ≡ q ⇒ (sig (p) 
= sig (q) ∧ L (p) = L (q)).
Proof. To prove this lemma, we need only to 
show that L (p) ≠ L (q) ⇒ p ≡/  q. See [17] for 
the second part. Let p, q ∈Q.
Assume that L (p) ≠ L (q). Then, the minimal 
path between p and one final state is different 
from the minimal path between q and another 
one. Resolving the two paths leads to this fact: 
there exists t1 ∈ p

↑L , t2 ∈ q
↑L  such that we find 

two branches in t1 and t2 of different sizes. We 
can directly conclude that p

↑L  ≠ q
↑L  and p ≡/  q.

4.2 Standard Implementation

By means of the associated graph proposed 
above, we see that the properties of equivalence 
can easily be extracted and checked. Thus, the 
representation promotes the minimization pro-
cess.
We define some properties simplifying the ver-
ification of possible equivalencies between the 
states.
Definition 4. Let q be a state-node such that 
(x, q) ∈ A. Then the neighbours set of q with 
respect to x ∈ XΣ is Nx (q) = {(p, γ (x, p)) | (x, p) 
∈ A, p ≠ q}.
Proposition 1. Let p, q ∈ Q. Then p ≡ q ⇒  
(∀ x ∈ XΣ, ∃ y ∈ XΣ : lab (x) = lab (y) ∧ Nx (p) = 
Ny (q)).

Algorithm 1.  Tree autoamata minimization.

function MinimizationDFTA   A = (Q, Σ, Qf, Δ)
P0 ← Q
P1 ← {Qf, Q − Qf }
  i ← 1
  repeat
     create Pi+1 by refining Pi so that p ≡i+1 q iff for all ρ ∈ 1n≥ Σn × Q n    δ (ρp:i) and δ (ρq:i) are in the 
     same partition in Pi
     i ← i + 1
  until (Pi = Pi−1)
     Qmin ← q Q∈ [q]
     Δmin ← {(σ, [q1], …, [qn]) | (σ, q1, …, qn) ∈ Δ}
     Qmin f ← {[q] | q ∈ Qf}
  return Amin = (Qmin, Σ, Qmin f, Δmin)
end function
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Proof. This case is trivial. Let p, q ∈ Q such that 
∃ x, y ∈ XΣ : lab (x) = lab (y) ∧ Nx (p) ≠ Ny (q) then 
using Definition 4 there exits (p',γ (x, p')) in Nx(p) 
which does not figure in Ny (q). This leads to the 
fact that the transition (lab (x), q1, …, qn) ∈ Δ 
such that p,q(γ (x, p')) ∈ q1, …, qn does not satisfy 
the defintion of ≡.
We put p ~ q ⇔ ∀ x ∈ XΣ, ∃ y ∈ XΣ : lab (x) = 
lab (y) ∧ Nx (p) = Ny (q). Thus, this equivalence 
can be used in an alternative implementation by 
refining the initial partition of the minimization 
process until reaching the fixed point.

4.3 An n logn Algorithm

Now, we adapt the smallest half processing 
strategy involved in DFA Hopcroft minimiza-
tion [7] to trees. Indeed, this strategy resolves 
effectively the problem of partition refinement. 
It consists of using a splitter (an argument in 
our case) to split a partition, while ensuring that 
pairs of states present in the new partition are 
necessarily inequivalent. Then, the smallest 
partition is chosen to continue the process.

Definition 5. Let x ∈ XΣ, then the predecessor 
pred (x) of x is pred (x) = q such that (q, x) ∈ A. 
The successors set succ (x) of x is succ (x) = 
{(q, γ (x, q)) | (x, q) ∈ A}.
Recall that the predecessor of a state-node 
represents the output of one transition that is 
unique (determinism).
To each symbol σ ∈ Σ a set of Σ-nodes denoted 
Fσ = {x | lab (x) = σ} is associated.
We give a general algorithm (Algorithm 2). The 
function initialize partitions the states set ac-
cording to Lemma 4. Concerning the function 
smallest, it returns the smallest partition in the 
set given as a parameter. The algorithm deals 
with a set of couples from P: 2Q × XΣ which is 
used by the function reset so that the equiva-
lence classes of a given iteration can be com-
puted.
Theorem 1. Algorithm 2 effectively minimizes 
an automaton A = (Q, Σ, Qf, Δ) in O (|A|log(|Q|)).
This result can be checked using the same 
steps as in [7] and then reaches O (|Q|log(|Q|)) 

time complexity. However, instead of using a 
symbol from the alphabet to split states sets 
– like in string case, one can use the property 
∃ x ∈ Fσ : Nx (q) = succ (x) − (q, i) ∧ pred (x) ∈ S. 
Then, due to the maximum rank of the alpha-
bet, and the size of XΣ = |Δ|, the complexity will 
be O (( ̂r |Δ| + |Q|) log (|Q|)) = O (|A| log (|Q|)). 
Mind that if |Σ| is not considered as constant, 
the whole complexity will be O (|Σ||A|log(|Q|)).

5. New Incremental Implementation

In this section, we present an efficient imple-
mentation of the incremental DFTA minimiza-
tion. It intends to reduce the asymptotic com-
plexity of that proposed by Cleophas et al. [10] 
and that mentioned in [21]. It improves the in-
cremental algorithm by means of the proposed 
associated graph introduced above. In what fol-
lows, we consider the DFTA A = (Q, Σ, Qf, Δ) 
and its associated graph GA = (X, lab, A, γ).
In fact, since the algorithm of Cleophas does not 
propose any storage technique, the worst-case 
complexity is O (|A||Q|−2|Q|2).
However, despite its high complexity, this al-
gorithm can be halted at any time resulting in a 
partially minimized automaton.
Reducing extra computations has been mas-
sively studied for FSA [24] and for DFTA [23]. 
One of the proposed improvements is the use of 
a particular set D representing distinguishabi- 
lity. However, the set D may be greedy in memo- 
ry, it is clear that the relation ≡/  is not an equiva-
lence or an order relation (≡/  is not reflexive and 
it is not transitive).
First, we define two particular sets: J for equi- 
valent states and D for distinguishable ones.

   J (p) = {q ∈ Q | p ≡ q} ∪ {p} 
   D (p) = {q ∈ Q | p ≡/  q}

Next, we can intuitively deduct the following 
properties:
Let p, q ∈ Q:

 (J (p) ∩ J (q) ≠ ∅) ⇒ p ≡ q 
(D (p) ∩ J (q) ≠ ∅) ⇒ p ≡/  q

Indeed, before verifying if two states are equi- 
valent, one can check these properties in order 

to decide if the recursive call has to be exe-
cuted. By implementing J and D as bit-vectors, 
we can get at most log(|Q|) verifications at each 
step.
We note that Lemma 4 can be used to initialize 
D with the states having different signatures.
By analogy to FSA [9], incremental technique 
may be very useful when dealing with both cy-
clic and acyclic cases. Thus, detecting cycles 
is useful in order to identify the nature of the 
DFTA to be minimized.
For this reason, we propose the following 
lemma which can be considered as a direct con-
sequence of the pumping lemma on trees (see 
[8]).
Lemma 5. Let q ∈ Q. Let t ∈ L↓(q), then if 
∃ q' ∈ Q, r ∈ Sub (t) : t (r ⇐ t) ∈ L↓(q') then q 
appears in a cycle and L↓(q) is infinite.
The proof of this lemma is simple. Knowing 
that the automaton is deterministic, if a tree be-
longing to a state's down language is a subtree 
of another tree accepted by the same state, this 
tree must be met more than once in one tra-
versal (path).
Consequently, if the DFTA is cyclic, then there 
exist some states in which computation of δ 
runs infinitely. In terms of graphs, this is ex-
pressed obviously through graph cycles. As a 
direct result of this lemma:
Corollary 1. The DFTA A is cyclic if and only 
if there exists q ∈ Q such that we can find a se-
quence q, q1, …, qn, q ∈ q ̂  , q1, …, qn ∈ Q.
However, cycles number in a graph can grow ex-
ponentially w.r.t arcs number [25]. Fortunately, 
some search algorithms can naturally detect sets 
of nodes participating in a cycle. One excellent 
solution is to compute the strongly connected 
graph. There exist several linear algorithms in 
literature that find strongly-connected compo-
nents of a graph in linear time like [26]. In our 
case, this step takes O (|Q|+|A|) (arcs number 
depends on transitions size).
Now, taking into account that the computation 
of strongly connected components gives a par-
tition of the graph nodes, we put ΠQ (GA) the 
cycle-states set partitioning of the DFTA which 
contains portions of Q. π(q) is the strongly 
connected component containing the state q. 
Therefore, we have:

Algorithm 2.  Half processing standard minimization.

P ← initialize(Q) 
S ← smallest(P) 
Treat ← ∅
for all σ ∈ Σ do
    Treat ← Treat 


 {(S, σ)}

end for
while Treat ≠ ∅ do
    let T = (S, σ) ∈ Treat
    Treat = Treat − T
    for all p ∈ P and σ ∈ Σ do
       let h ∈ p
       for i = 1..Arity(σ) do
          p1 ← {q | ∃ x ∈ Fσ : Nx (q) = succ (x) − (q, i) ∧ pred (x) ∈ S}
          p2 ← P − p1
       end for
       if ∃ y ∈ XΣ : (p, y) ∈ T
          replace (p, y) by (p1, y), (p2, y) in T
       else
          T ← T   smallest (p1, p2)
       end if
       reset(P) 
    end for
end while
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Proof. This case is trivial. Let p, q ∈ Q such that 
∃ x, y ∈ XΣ : lab (x) = lab (y) ∧ Nx (p) ≠ Ny (q) then 
using Definition 4 there exits (p',γ (x, p')) in Nx(p) 
which does not figure in Ny (q). This leads to the 
fact that the transition (lab (x), q1, …, qn) ∈ Δ 
such that p,q(γ (x, p')) ∈ q1, …, qn does not satisfy 
the defintion of ≡.
We put p ~ q ⇔ ∀ x ∈ XΣ, ∃ y ∈ XΣ : lab (x) = 
lab (y) ∧ Nx (p) = Ny (q). Thus, this equivalence 
can be used in an alternative implementation by 
refining the initial partition of the minimization 
process until reaching the fixed point.

4.3 An n logn Algorithm

Now, we adapt the smallest half processing 
strategy involved in DFA Hopcroft minimiza-
tion [7] to trees. Indeed, this strategy resolves 
effectively the problem of partition refinement. 
It consists of using a splitter (an argument in 
our case) to split a partition, while ensuring that 
pairs of states present in the new partition are 
necessarily inequivalent. Then, the smallest 
partition is chosen to continue the process.

Definition 5. Let x ∈ XΣ, then the predecessor 
pred (x) of x is pred (x) = q such that (q, x) ∈ A. 
The successors set succ (x) of x is succ (x) = 
{(q, γ (x, q)) | (x, q) ∈ A}.
Recall that the predecessor of a state-node 
represents the output of one transition that is 
unique (determinism).
To each symbol σ ∈ Σ a set of Σ-nodes denoted 
Fσ = {x | lab (x) = σ} is associated.
We give a general algorithm (Algorithm 2). The 
function initialize partitions the states set ac-
cording to Lemma 4. Concerning the function 
smallest, it returns the smallest partition in the 
set given as a parameter. The algorithm deals 
with a set of couples from P: 2Q × XΣ which is 
used by the function reset so that the equiva-
lence classes of a given iteration can be com-
puted.
Theorem 1. Algorithm 2 effectively minimizes 
an automaton A = (Q, Σ, Qf, Δ) in O (|A|log(|Q|)).
This result can be checked using the same 
steps as in [7] and then reaches O (|Q|log(|Q|)) 

time complexity. However, instead of using a 
symbol from the alphabet to split states sets 
– like in string case, one can use the property 
∃ x ∈ Fσ : Nx (q) = succ (x) − (q, i) ∧ pred (x) ∈ S. 
Then, due to the maximum rank of the alpha-
bet, and the size of XΣ = |Δ|, the complexity will 
be O (( ̂r |Δ| + |Q|) log (|Q|)) = O (|A| log (|Q|)). 
Mind that if |Σ| is not considered as constant, 
the whole complexity will be O (|Σ||A|log(|Q|)).

5. New Incremental Implementation

In this section, we present an efficient imple-
mentation of the incremental DFTA minimiza-
tion. It intends to reduce the asymptotic com-
plexity of that proposed by Cleophas et al. [10] 
and that mentioned in [21]. It improves the in-
cremental algorithm by means of the proposed 
associated graph introduced above. In what fol-
lows, we consider the DFTA A = (Q, Σ, Qf, Δ) 
and its associated graph GA = (X, lab, A, γ).
In fact, since the algorithm of Cleophas does not 
propose any storage technique, the worst-case 
complexity is O (|A||Q|−2|Q|2).
However, despite its high complexity, this al-
gorithm can be halted at any time resulting in a 
partially minimized automaton.
Reducing extra computations has been mas-
sively studied for FSA [24] and for DFTA [23]. 
One of the proposed improvements is the use of 
a particular set D representing distinguishabi- 
lity. However, the set D may be greedy in memo- 
ry, it is clear that the relation ≡/  is not an equiva-
lence or an order relation (≡/  is not reflexive and 
it is not transitive).
First, we define two particular sets: J for equi- 
valent states and D for distinguishable ones.

   J (p) = {q ∈ Q | p ≡ q} ∪ {p} 
   D (p) = {q ∈ Q | p ≡/  q}

Next, we can intuitively deduct the following 
properties:
Let p, q ∈ Q:

 (J (p) ∩ J (q) ≠ ∅) ⇒ p ≡ q 
(D (p) ∩ J (q) ≠ ∅) ⇒ p ≡/  q

Indeed, before verifying if two states are equi- 
valent, one can check these properties in order 

to decide if the recursive call has to be exe-
cuted. By implementing J and D as bit-vectors, 
we can get at most log(|Q|) verifications at each 
step.
We note that Lemma 4 can be used to initialize 
D with the states having different signatures.
By analogy to FSA [9], incremental technique 
may be very useful when dealing with both cy-
clic and acyclic cases. Thus, detecting cycles 
is useful in order to identify the nature of the 
DFTA to be minimized.
For this reason, we propose the following 
lemma which can be considered as a direct con-
sequence of the pumping lemma on trees (see 
[8]).
Lemma 5. Let q ∈ Q. Let t ∈ L↓(q), then if 
∃ q' ∈ Q, r ∈ Sub (t) : t (r ⇐ t) ∈ L↓(q') then q 
appears in a cycle and L↓(q) is infinite.
The proof of this lemma is simple. Knowing 
that the automaton is deterministic, if a tree be-
longing to a state's down language is a subtree 
of another tree accepted by the same state, this 
tree must be met more than once in one tra-
versal (path).
Consequently, if the DFTA is cyclic, then there 
exist some states in which computation of δ 
runs infinitely. In terms of graphs, this is ex-
pressed obviously through graph cycles. As a 
direct result of this lemma:
Corollary 1. The DFTA A is cyclic if and only 
if there exists q ∈ Q such that we can find a se-
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However, cycles number in a graph can grow ex-
ponentially w.r.t arcs number [25]. Fortunately, 
some search algorithms can naturally detect sets 
of nodes participating in a cycle. One excellent 
solution is to compute the strongly connected 
graph. There exist several linear algorithms in 
literature that find strongly-connected compo-
nents of a graph in linear time like [26]. In our 
case, this step takes O (|Q|+|A|) (arcs number 
depends on transitions size).
Now, taking into account that the computation 
of strongly connected components gives a par-
tition of the graph nodes, we put ΠQ (GA) the 
cycle-states set partitioning of the DFTA which 
contains portions of Q. π(q) is the strongly 
connected component containing the state q. 
Therefore, we have:

Algorithm 2.  Half processing standard minimization.

P ← initialize(Q) 
S ← smallest(P) 
Treat ← ∅
for all σ ∈ Σ do
    Treat ← Treat 


 {(S, σ)}

end for
while Treat ≠ ∅ do
    let T = (S, σ) ∈ Treat
    Treat = Treat − T
    for all p ∈ P and σ ∈ Σ do
       let h ∈ p
       for i = 1..Arity(σ) do
          p1 ← {q | ∃ x ∈ Fσ : Nx (q) = succ (x) − (q, i) ∧ pred (x) ∈ S}
          p2 ← P − p1
       end for
       if ∃ y ∈ XΣ : (p, y) ∈ T
          replace (p, y) by (p1, y), (p2, y) in T
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       end if
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318 319Y. Guellouma and H. Cherroun Efficient Implementation for Deterministic Finite Tree Automata Minimization

Lemma 6. Let ρ = (σ, q1, …, qn) be an argu-
ment. Let p, q ∈ Q such that δ (ρp:i) = p' and 
δ (ρq:i) = q'. Then if p' ∈ π (p) ∧ q' ∉ π (q) then 
p ≡/  q.
According to (≡j)j≥0, p' and q' should be equiva-
lent. However, there exists a cycle from p to p', 
but not from q to q'. By the same argument, p 
can be reached from p', but it is not the case for 
q and q'. Therefore, we can say that p and q can-
not be equivalent.
Corollary 2. The DFTA is acyclic if and only if 
∀ π ∈ Π, |π| = 1.
It is clear that no strongly connected component 
exists. Every partition contains only one state.
We extend the predecessor notion to state-nodes.
Definition 6. Let q ∈ Q be a state-node, then 
the predecessors set pred (q) of q is:

pred (q) = {x ∈ XΣ | (p, x) ∈ A}

However, despite the use of J and D, the global 

Algorithm 3.  New equivalence function.

function equiv(p,q,k)
if   k = 0 then
     eq ← ((p ∈ Qf) ∧ (q ∈ Qf))
else if   (J (p) ∩ J (q) ≠ ∅) or {p, q} ∈ S then
     eq ← true
else if  (D (p) ∩ J (q) ≠ ∅) then
     eq ← false
else
     S ← S 


 {{p, q}}

     eq ← ((p ∈ Qf) ∧ (q ∈ Qf))
     for x ∈ pred (p) do
        if ∃ y ∈ pred (q), lab (x) = lab (y) ∧ Nx (p) = Ny (q) ∧ |pred (p)| = |pred (q)| then
           eq ← eq ∧ equiv (pred (x), pred (y), k − 1)
        end if
        if eq then
          update (p, q, false)
          break;     # The loop is stopped here, {pred (x), pred (y)} must not be added to {p, q} in Trace.
        end if
        addNode ({p, q}, {pred (x), pred (y)})
    end for
    S ← S − {{p, q}}
end if
return (eq)
end function

complexity of the computation remains high 
(two states may be verified more than once).
To solve this problem, we define a special tree 
Trace storing for every inspected pair of states, 
the path of computation and the recursion 
depth. addNode (P, Q) is a function that adds 
the states pair Q to the pair P as a subtree in 
Trace. We use also a function subTree (node) to 
regroup all pairs figuring in the subtree of the 
node in Trace.
Trace is used afterwards to decide the equiv-
alence of states pairs invoked in the recursive 
call equiv.
We are now ready to give the improved equi- 
valence function presented by Algorithm 3. 
update ( p, q, B) is a function that updates the 
sets J and D for a pair ( p, q) of states according 
to the given boolean B. B is set to true when 
p and q are equivalent. This one represents the 
knowledge about equivalence relation between 
p and q deducted previously in the process.

When the function equiv is called, Trace is crea- 
ted, containing all tested pairs during recursive 
calls. To avoid the reuse of these states, we 
introduce a new algorithm (Algorithm 4) that 
treats Trace. Here, we meet three cases:
1. equiv returns true, then all pairs located in 

Trace will be equivalent,
2. equiv returns false (equiv meets a break) 

and the height of Trace is less than |Q| − 2, 
then all subtrees concerned by the break 
receive false. The remaining pairs receive 
true,

3. equiv returns false and the height of Trace 
is |Q| − 2, then all subtrees participating in 
cycles (ensured before this step by CCSC 
computation) and those concerned by the 
break are stored in a special matrice Stack. 
The remaining pairs receive true.

For implementation reasons, we can add a spe-
cial markup of Trace: the recursion depth (pa-
rameter k) is associated to each stored node.
We can restore every verified path from Stack 
through the algorithm CallStack (Algorithm 5).

Now, we propose a specific preorder to opti-
mize equiv calls.
Let p, q ∈ Q. Then we put ( ) ( ).p q p q⇔ ≤ L L  
It is clear that this preorder is total.
Corollary 3. There exists p ∈ Q such that 

: ( ) | |q Q q p p Q∀ ∈ ∧ ≤ L .
Here, we can see that the state's level is bounded 
by |Q|. This value comes from the longest path 
without cycles in a graph. Its value cannot ex-
ceed the number of its nodes.
Following this preorder, we give the general 
rules of the incremental minimization process:
1. Start with testing final states equivalences 

(∀ p, q ∈ Q: L (p) = L (q) = 0).
2. In each iteration, treat states leading to 

states already inspected during the previ-
ous steps. In other words, when an itera-
tion i is processed, treat states in the set 
{p, L (p) = i}.

Algorithm 6 represents the main function. The 
function CSCC (GA) computes the strongly 
connected components of the graph associated 

Algorithm 4.  Trace treatment.

function   Treat (Trace)
 if ∃ ⁄   node ∈ Trace marked |Q| − 2 then
  for all p, q ∈ subTree (Trace) do
  update (p, q, true)
  end for
   else
    for all p, q ∈ Subtree (Trace) do
      if ∃ subTree (p, q) marked |Q| − 2 then
             Stack (p, q) ← {(N, depth (N)) | N ∈ subTree (p, q)}
      else
          update (p, q, true)
      end if
    end for
 end if
end function

Algorithm 5.  Verify stack.

function CallStack ( p, q)
  for all  ((q1, q2), k)) ∈ Stack ( p, q) do
      eq ← eq ∧ equiv (q1, q2, k)
  end for
  return eq
end function
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Lemma 6. Let ρ = (σ, q1, …, qn) be an argu-
ment. Let p, q ∈ Q such that δ (ρp:i) = p' and 
δ (ρq:i) = q'. Then if p' ∈ π (p) ∧ q' ∉ π (q) then 
p ≡/  q.
According to (≡j)j≥0, p' and q' should be equiva-
lent. However, there exists a cycle from p to p', 
but not from q to q'. By the same argument, p 
can be reached from p', but it is not the case for 
q and q'. Therefore, we can say that p and q can-
not be equivalent.
Corollary 2. The DFTA is acyclic if and only if 
∀ π ∈ Π, |π| = 1.
It is clear that no strongly connected component 
exists. Every partition contains only one state.
We extend the predecessor notion to state-nodes.
Definition 6. Let q ∈ Q be a state-node, then 
the predecessors set pred (q) of q is:

pred (q) = {x ∈ XΣ | (p, x) ∈ A}

However, despite the use of J and D, the global 

Algorithm 3.  New equivalence function.

function equiv(p,q,k)
if   k = 0 then
     eq ← ((p ∈ Qf) ∧ (q ∈ Qf))
else if   (J (p) ∩ J (q) ≠ ∅) or {p, q} ∈ S then
     eq ← true
else if  (D (p) ∩ J (q) ≠ ∅) then
     eq ← false
else
     S ← S 


 {{p, q}}

     eq ← ((p ∈ Qf) ∧ (q ∈ Qf))
     for x ∈ pred (p) do
        if ∃ y ∈ pred (q), lab (x) = lab (y) ∧ Nx (p) = Ny (q) ∧ |pred (p)| = |pred (q)| then
           eq ← eq ∧ equiv (pred (x), pred (y), k − 1)
        end if
        if eq then
          update (p, q, false)
          break;     # The loop is stopped here, {pred (x), pred (y)} must not be added to {p, q} in Trace.
        end if
        addNode ({p, q}, {pred (x), pred (y)})
    end for
    S ← S − {{p, q}}
end if
return (eq)
end function

complexity of the computation remains high 
(two states may be verified more than once).
To solve this problem, we define a special tree 
Trace storing for every inspected pair of states, 
the path of computation and the recursion 
depth. addNode (P, Q) is a function that adds 
the states pair Q to the pair P as a subtree in 
Trace. We use also a function subTree (node) to 
regroup all pairs figuring in the subtree of the 
node in Trace.
Trace is used afterwards to decide the equiv-
alence of states pairs invoked in the recursive 
call equiv.
We are now ready to give the improved equi- 
valence function presented by Algorithm 3. 
update ( p, q, B) is a function that updates the 
sets J and D for a pair ( p, q) of states according 
to the given boolean B. B is set to true when 
p and q are equivalent. This one represents the 
knowledge about equivalence relation between 
p and q deducted previously in the process.

When the function equiv is called, Trace is crea- 
ted, containing all tested pairs during recursive 
calls. To avoid the reuse of these states, we 
introduce a new algorithm (Algorithm 4) that 
treats Trace. Here, we meet three cases:
1. equiv returns true, then all pairs located in 

Trace will be equivalent,
2. equiv returns false (equiv meets a break) 

and the height of Trace is less than |Q| − 2, 
then all subtrees concerned by the break 
receive false. The remaining pairs receive 
true,

3. equiv returns false and the height of Trace 
is |Q| − 2, then all subtrees participating in 
cycles (ensured before this step by CCSC 
computation) and those concerned by the 
break are stored in a special matrice Stack. 
The remaining pairs receive true.

For implementation reasons, we can add a spe-
cial markup of Trace: the recursion depth (pa-
rameter k) is associated to each stored node.
We can restore every verified path from Stack 
through the algorithm CallStack (Algorithm 5).

Now, we propose a specific preorder to opti-
mize equiv calls.
Let p, q ∈ Q. Then we put ( ) ( ).p q p q⇔ ≤ L L  
It is clear that this preorder is total.
Corollary 3. There exists p ∈ Q such that 

: ( ) | |q Q q p p Q∀ ∈ ∧ ≤ L .
Here, we can see that the state's level is bounded 
by |Q|. This value comes from the longest path 
without cycles in a graph. Its value cannot ex-
ceed the number of its nodes.
Following this preorder, we give the general 
rules of the incremental minimization process:
1. Start with testing final states equivalences 

(∀ p, q ∈ Q: L (p) = L (q) = 0).
2. In each iteration, treat states leading to 

states already inspected during the previ-
ous steps. In other words, when an itera-
tion i is processed, treat states in the set 
{p, L (p) = i}.

Algorithm 6 represents the main function. The 
function CSCC (GA) computes the strongly 
connected components of the graph associated 

Algorithm 4.  Trace treatment.

function   Treat (Trace)
 if ∃ ⁄   node ∈ Trace marked |Q| − 2 then
  for all p, q ∈ subTree (Trace) do
  update (p, q, true)
  end for
   else
    for all p, q ∈ Subtree (Trace) do
      if ∃ subTree (p, q) marked |Q| − 2 then
             Stack (p, q) ← {(N, depth (N)) | N ∈ subTree (p, q)}
      else
          update (p, q, true)
      end if
    end for
 end if
end function

Algorithm 5.  Verify stack.

function CallStack ( p, q)
  for all  ((q1, q2), k)) ∈ Stack ( p, q) do
      eq ← eq ∧ equiv (q1, q2, k)
  end for
  return eq
end function



320 321Y. Guellouma and H. Cherroun Efficient Implementation for Deterministic Finite Tree Automata Minimization

to the DFTA in question. Regarding the func-
tion InOut (p, q), it returns a boolean indicating 
if p and q are equivalent or not, according to 
lemma 4 and lemma 6.
The defined main function uses two sets: V for 
verified states and R for states concerned by the 
next step. First, R is initialized by final states 
couples Qf  (L (q ∈ Qf) = 0). Next, in each itera-
tion, couples from R2 are verified and stored in 
V. R is then updated to the next level. Finally, 
the algorithm ends when all possibilities are 
verified (V is stable). By verifying states in the 
indicated way, we can note that the main func-
tion can localize co-accessible states and then 
ignore useless states.
To accelerate the algorithm and avoid pairs 
double-checking, Stack can be verified before 
any call of equiv in the main function and in the 
equivalence function.

Theorem 2. A DFTA can be minimized using 
Algorithm 6 in O (r ̂   |A| + |Q|3 log (|Q|)).
The main function executes exactly |Q|×|Q − 1|/2 
calls. In each one, a |Q − 2| depth (ensured by 
k) new calls are made. Indeed, the predecessors 
and the neighbours' sets (~ computation) can be 
computed before the incremental process. Mind 
that this can be done in O (r ̂  |A|) because for 
every Σ-node, r̂ states can be connected and the 
size of the whole graph is |A|. Whereof, test-
ing of these sets (Algorithm 3) can be done in a 
constant time. Furthermore, all duplicated com-
putations can be avoided using Trace, Stack and 
the two guards D and J .
The following result is very important when 
dealing with the acyclic case.
Corollary 4. An ADFTA can be minimized in 
O (|A| log (|Q|)).

Indeed, it is not necessary to use Trace, Stack 
and the depth guard k in the acyclic case be-
cause no cycles are met. A native equivalence 
function equiv (p, q) can be used instead of 
the improved one. Detecting DFTA nature can 
be done instantly by analysing the result of 
CSCC (GA). Here, just J  and D computations 
are needed at each step.

6. Conclusion

In this work, we present an efficient implemen-
tation of DFTA minimization based on a simple 
graphic view of the automaton to be minimized. 
We show a general algorithm of the standard 
technique and we outline an adapted method 
based on the smallest half-strategy processing. 
The time complexity is O (|A| log (|Q|)).
The second part is dedicated to the incremental 
technique. We give an improved implementa-
tion based on graph properties and avoidance of 
some computations. The complexity of this al-
gorithm is O (|Q|3log (|Q|)). Moreover, we show 
that this technique minimizes an ADFTA in 
O (|A| log (|Q|)).
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