Journal of Computing and Information Technology - CIT 7, 1999, 3, 237-243

237

Experimental Evaluation
of a Parallel Max-Flow Algorithm

Goranka Nogo and Robert Manger

Department of Mathematics, University of Zagreb, Bijenicka 30, 10000 Zagreb, Croatia

The maximum flow problem has been studied for over
forty years. One of the methods for solving this problem
is the generic push-relabel algorithm. In this paper we
develop a parallel version of this sequential algorithm.
Our assumed model of computation is a shared-memory
multiprocessor. We describe a concrete implementation
of the algorithm based on the PVM package, and present
the obtained numerical results.

Keywords: network, maximum flow problem, parallel
algorithm, PVM, experiment

1. Introduction

To introduce the maximum flow problem, we
need the following definitions. A network is a
directed graph G = (V, E) with a non-negative
capacity function u : E — R. We assume that
G has no multiple arcs. A flow network is a net-
work with two distinguished nodes, the source
s and the sink t.

A pseudoflow is a function f : E — R that sat-
isfies the following constraints:

1. f(v,w) < u(v,w), ¥(v,w) € E (capacity
constraint),

2. flvy,w) = —f(w,v),V(v,w) € E (flow anti-
symmetry constraint).

We define the excess function ef : V — R by
ef(v) :== > f(w,v), the net flow into v. We
weV

will say that a node v has an excess if ef(v) is
positive. For a node v, we define the conserva-
tion constraint by ef(v) = 0.

Given a pseudoflow f, the residual capacity
function uf : E — R is defined by us(v, w) :=
u(v,w) — f(v,w). The residual graph with

respect to a pseudoflow f is given by Gy =
(V, Ef), where Ef := {(v,w) € E : us(v,w) >
0}.

A preflow 1s a pseudoflow f such that the excess
function is non- negative for all nodes other than
sand t. A flow f on G is a pseudoflow satis-
fying the conservation constraints for all nodes
except s and #. The value |f| of a flow f is the
net flow into sink ef(t). A maximum flow is a
flow of maximum value. The maximum flow
problem is that of finding maximum flow in a
given network.

As a measure of the network size, we use n to
denote the number of nodes, and m to denote
the number of arcs. The network density is the
ratio nﬂ?

2. Generic Algorithm

In this section we describe the generic algorithm
developed by Goldberg and Tarjan (Goldberg et
al., 1988). First, however, we need the follow-
ing definitions, in addition to the definitions of
the previous section. Consider a flow network

(G, u,s,t). Define E to be the set obtained by

reversing the arcs on E. The arcs from E per-
form the excess return to the source. For a given
preflow f, a distance labelling is a function d
from the nodes to the non-negative integers such
that d(t) = 0, d(s) = n, and d(v) < d(w) + 1
for all residual arcs (v, w). We say that a node
v is active if v &€ {s,t} and ef(v) > 0. Note
that a preflow f is a flow if and only if there are
no active nodes. An arc (v, w) is admissible if
(v,w) € Ef and d(v) = d(w) + 1. We assume

238

Parallel Max-Flow Algorithm

that the network capacities are integers. The al-
gorithm begins with a preflow f that is equal to
the arc capacity on each arc leaving the source,
and zero on all arcs not incident to the source,
and with some initial labelling d. The simplest
choice is d(s) = nand d(v) = 0, Vv # 5. The
algorithm then repetitively performs, in any or-
der, the update operations, push and relabel,
described in Fig. 2. When there are no active
nodes, the algorithm terminates. A summary of
the algorithm appears in Fig. 1.

procedure generic(V, E, u)
(*initialisation*)
for (v, w) € E do begin
flv,w) < 0;
if v = s then f(v, w) «— u(v, w);
if w = s then f(v, w) — —u(w, v);
end;
for w € V do begin
ef(w) = Z(vjw)EEf(v? W),
if w = s then d(w) «— nelse d(w) — 0;
end;
(*main loop*)
while 3 an active node do

select an update operation and apply it;
return(f);
end.

Fig. 1. The generic maximum flow algorithm

procedure push(v, w)

if v is active and (v, w) admissible then
send min{es(v), ug(v, w)} units of flow from
v io w,

end.

procedure relabel(v)

if ur(v,w) = 0,V(v,w) € E then
d(v) «— min(vjw)eErf{d(w)} + 15

else if d(w) > d(v), V(v, w) € E then
d(V) - min(v,w)EEf{d(w)} + 1

end.

Fig. 2 The update operations

The following theorem gives a bound of the
number of update operations.

Theorem 1. (Korte et al., 1990) The generic

algorithm terminates after O(mn?) update op-
erations.

Let us note that Theorem 1 holds for any choice
of an active node and any choice of an admissi-

ble arc. An actual implementation should spec-
ify these details.

3. Parallel Version

We now describe a parallel version of the generic
algorithm. Our assumed model of computa-
tion is a shared-memory multiprocessor where
no two processors are allowed to write into the
same location simultaneously (Chrislow, 1997).
The first step toward an efficient parallel imple-
mentation is to find a way of choosing admis-
sible arcs. We need some data structures to
represent the network and the flow. To each
node v, a list of the incident nodes:

list(v) :=

list_of _successors U list_of _predecessors,

is attached in fixed but arbitrary order.

The procedure pass_list() is applicable to an ac-
tive node v. It processes the list(v). We have
two passes through the lis?(v) starting from the
first node w in the list(v). If a pushing opera-
tion is applicable to the arc (v, w), the procedure
pass_list pushes the excess of v through the arc
(v, w). If not, w is replaced with the next node in
the list(v) or, if w is the last node, the procedure
relabels v. After relabelling, starting again from
the first node, the procedure pushes the excess
at v. The procedure stops after the second pass,
or when es(v) = 0.

Let /; be a list consisting of all active nodes with
labels j sorted by decreasing value of ef. The set
of active nodes is alist £L:= ; Ul;_jU...Ulpin
fixed order (some lists may be empty). The pro-
cedure remove_node(v) removes the first node v
from L, and calls the procedure pass_list. Let p
be the number of processors, | £| the length of £,
and {vy, ..., v} the first k elements (nodes) of £,
where k = min{p, |£|}. The algorithm begins
just like the generic algorithm with a preflow
f, and with some initial labelling d. The list £
contains all nodes incident to the source. The
parallel algorithm is described in Fig. 3.

procedure parallel_max_flow_algorithm(V, E, u)
(*initialisation*)
initialisation of f;
initialisation of ey and d,
initialisation of L;

Parallel Max-Flow Algorithm

239

(*main loop*)

while £ # 0 do begin
evaluation of k and {vy, ..., v¢}:
(*main parallel loop*);
forj € {1, ..., k} do in parallel

remove_node(vj);

parallel update of ef and d;
parallel update of £;

end;

return(f);

end.

Fig. 3. The parallel max-flow algorithm

Parallel update of ef, d and £ can be done in
many different ways. One possibility is simply
to distribute update operations among parallel
processes and to rely on proper synchronisation
(mutual exclusion) of any two operations that
would try to access the same structure at the
same time. An actual implementation of the
algorithm should provide appropriate synchro-
nisation mechanisms.

Results regarding the correctness and complex-
ity of the considered parallel max-flow algo-
rithm have been stated and proved in (Nogo,
1998). The following two theorems, which give
bounds on time and space complexity, have been
obtained.

Theorem 2. Let p = [™]. Our parallel al-

gorithm solves the max-flow problem in O(n’)
time using O(m) memory per processor.

Theorem 3. Supposethat p > n. Our parallel
generic algorithm solves the max-flow problem
in O(n?) time using O(m) memory per processor.

According to the theoretical estimates quoted
above, our parallel algorithm uses less memory
than the Shiloach-Vishkin and Goldberg algo-
rithms respectively (Shiloah ez al., 1982; Gold-
berg, 1985). Also, our algorithm should run
faster in all situations, except for high-density
networks. For more details, see (Nogo, 1998).

4. An Example

To illustrate our parallel algorithm, let us con-
sider the network in Fig. 4. Capacities u(v, w)
and initial pseudoflows f(v, w) are given as arc
labels. The initial values of the excess function
ey and of the labelling function d are specified
in a table below the graph.

Suppose that our parallel machine has p = 2
processors. Assume also that in the first pass
of the while loop the nodes vi = 3 and vy = 2
have been chosen as active nodes and processed
in parallel. Then, after the first pass, the situa-
tion looks as shown in Fig. 5.

The next Fig. 6. describes the situation after
the second pass of the while loop. Now the
nodes v; = 4 and v5 = 5 have been chosen and
processed in parallel.

(20,0) @

(25,0)

(7, (8,0) ®

100) (16,0)
L [1][2]3[4]5]6]
le| - [10[15[0]0[0]
(4] 6]0[0[0]O0[O]

Fig. 4. A sample network given as input to our algorithm

240

Parallel Max-Flow Algorithm

L [1[2[3[4[5]6]

e —[0]O[17]8]0]

(4 6[T]I]0J0[O]

Fig. 5. The sample network after the first pass of the algorithm

(20,10)

(4

L [1]2]3[4][5]6]
e —[0[0]0]0]25]
[6 [LI[II]TI] O]

Fig. 6. The sample network after the second pass of the algorithm

Since all nodes except s = 1 and t = 6 are now
inactive, the algorithm terminates. The flow f
given by Fig. 6. is a maximum flow.

5. PVM Implementation

The PVM software enables a collection of het-
erogeneous computer systems to be viewed as
a single parallel virtual machine. In order to
implement our parallel algorithm, we used the
master-slave (or host-node) model of compu-
tation and data parallelism. According to this
model a separate control program, termed the

master, is responsible for process spawning, ini-
tialisation, collection and display of results. The
slave programs receive initial data sets, do the
actual computation, and send the resulting par-
tial solution back to the master process. After
sending the 1nitial data, the master process sim-
ply waits for the results. When the results arrive,
they are integrated into the solution arrays. Data
parallelism means that all the slave processes are
the same. The master-slave model described
above involves no communication among the
slaves. The problems like simultaneous writing
into the same location, or simultaneous writing
and reading from the same location, were solved
using the local synchronisation method (Geist

Parallel Max-Flow Algorithm

241

et al., 1994). The master and slave programs

were written in the C language. Test data were

pseudo-random flow networks created in Math-

ematica (Wolfram, 1996). The network capac-

ities were pseudo-random integers between 1

and 100. The network, the capacities and the

flow were represented as one-dimensional ar-

rays just like ef, d and L.

For experimental evaluation of our parallel al-

gorithm, we used the following computers:

e Sun Ultra Enterprise 3000 server with two
processors (master and first two slaves);

e HP 9000/ESS server (third slave);

e HP 9000/845SE server (fourth slave) and,

e HP Apollo9000/712 workstation (fifth slave).

In addition to our parallel algorithm, we also
implemented the original generic sequential al-
gorithm. It was executed on the Sun Ultra En-
terprise 3000 server.

6. Numerical Results

First we describe few concepts that are some-
times useful in comparing sequential and par-
allel algorithms. Suppose that we have a par-
allel algorithm that uses p processors. Let T

number of | network number of slave processes
nodes density 1 2 3 4 5
10 10% 0.50 0.50 1.00 1.00 1.00
20% 1.00 1.00 2.00 2.00 2.00
40% 0.86 1.17 1.17 117 1
60% 0.86 1.00 1.00 1.20 1.20
80% 0.88 1.17 1.40 1.40 1.40
20 10% 0.50 0.50 1.00 1.00 1.00
20% 0.83 1.25 2.50 2.50 2.50
40% 0.70 1.17 1.17 1.17 1.75
60% 0.93 1.25 1.25 1.50 1.50
80% 0.92 1.22 1.83 2.20 2.20
50 10% 0.91 1.28 1.67 2.00 2.00
20% 1.00 1.42 1.89 2.43 2.43
40% 0.95 1.33 2.00 2.50 2.86
60% 0.91 1,33 1.82 2.22 2.50
80% 0.85 1.34 | £ 2.44 2.7
100 10% 0.83 1.36 1.86 2.14 2.14
20% 0.86 1.50 2.00 2.0 3.40
40% 0.92 1:62 2:12 2.61 3.09
60% 1.00 1.65 2.11 271 3.45
80% 0.87 1.38 2.00 2.67 3:.33
150 10% 0.83 1.13 1.40 1.84 2.06
20% 1.00 1.43 1.85 2.38 2.94
40% 0.93 1.27 1.73 2.08 2.12
60% 0.94 1-31 2.00 2.28 2.56
80% 0.95 1.32 1.94 2.26 2.41
200 10% 0.97 1.45 2.04 2.43 2.57
20% 0.93 1.39 1.92 2.49 2.63
40% 0.96 1.35 2.30 2.40 2.92
60% 0.98 139 2,17 2:39 2.85
80% 0.98 1.48 2.24 287 2.80

Table 1. Speedups obtained by the PV implementation of our parallel algorithm

242

Parallel Max-Flow Algorithm

number of | network number of slave processes
nodes density 1 2 3 4 S

10 10% 0.02 0.02 0.01 0.01 0.01
20% 0.02 0.02 0.01 0.01 0.01

40% 0.04 0.03 0.03 0.03 0.02

60% 0.07 0.06 0.06 0.05 0.05

80% 0.08 0.06 0.05 0.05 0.05

20 10% 0.02 0.02 0.01 0.01 0.01
20% 0.03 0.02 0.01 0.01 0.01

40% 0.05 0.03 0.03 0.03 0.02

60% 0.08 0.06 0.06 0.05 0.05

80%)12 0.09 0.06 0.05 0.05

50 10% .11 0.08 0.06 0.05 0.05
20% 0.17 0.12 0.09 0.07 0.07

40% .21 0.15 0.10 0.08 0.07

60% 022 0.15 0.11 0.09 0.08

80% 0.26 0.16 0.13 0.09 0.08

100 10% 0.18 0.11 0.08 0.07 0.07
20% 0.28 0.16 0.12 0.09 0.07

40% 0.37 0.21 0.16 0.13 0.11

60% 0.38 0.23 0.18 0.14 0.11

80% 0.46 0.29 0.20 0.15 0.12

150 10% 0.42 0.31 0.25 (.19 0.17
20% 0.50 0.35 0.27 0.21 0.17

40% 0.56 0.41 0.30 0.25 0.24

60% 0.68 0.49 0.32 0.28 0.25

80% 0.74 053 0.36 (131 0.29

200 10% 0.93 0.62 0.44 0:37 0.35
20% 0.99 0.66 0.48 0.37 0.35

40% 1.12 0.80 0.47 0.45 0.37

60% 1.8 0.84 0.54 0.49 0.41

80% 1.25 0.83 0.55 0.52 0.44

Table 2. Actual computing times in seconds

be the time required for the sequential algo-
rithm and T, the time required for the paralleI

algorithm using p processors. The ratio T 1s

called the speedup of the algorithm, and de-
scribes the speed advantage of the parallel al-
gorithm, compared to the sequential algorithm.
For a fixed number of nodes and fixed network
density, Mathematica created 10 networks. The
corresponding T, was taken as the average com-
puting time. Some of the obtained speedups are
given in Table 1. Note that the average speedup
ranges from 1.26 (using two slave processes)
to 2.34 (using five processes). The maximal
speedup obtained is 3.45. Actual computing
times (in seconds) are given in Table 2.

7. Conclusion

Most of the parallel max-flow algorithms found
in literature are based on expressing the original
problem as a linear program, and on solving that
linear program in parallel. Our algorithm uses
a different approach: it directly solves the orig-
inal network problem in parallel. The obtained
experimental results clearly show that the used
approach is successful. Our algorithm achieves
a satisfactory speedup and can be recommended
for networks which have more then 50 nodes
and which are not too dense. Our future plan is

Parallel Max-Flow Algorithm

243

to make a more detailed evaluation with a large
number of comparably fast processors.

References

J. M. CHRICHLOW, An Introduction to Distributed and
Parallel Programming, Prentice Hall, Englewood
Cliffs NJ, 1997.

A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG,
R. MANCHEK, V. SUNDERAM, PVM: Parallel Vir-
tual Machine - A Users’ Guide and Tutorial for
Networked Parallel Computing, The MIT Press,
Cambridge MA, 1994.

A. V. GOLDBERG, A new max-flow algorithm , M.LT.,
Technical Report MIT/LCS/ TM-291, Cambridge
MA, 1985.

A. V. GOLDBERG, R. E-TARJAN, A new approach to the
maximum flow problem, Journal of ACM, 35
(1988), 921-940.

B. KORTE, L. LovAsz, H. J. PROMEL, A. SCHRUVER,
Paths, Flows, and VLSI-Layout, Springer-Verlag,
New York, 1990.

G. NoGo, Parallel algorithms for network flow prob-
lems, PhD. Thesis (in Croatian), University of
Zagreb, Zagreb, 1998.

L. PADBERG, T. Y. SUNG, An analytic symmetrization
of max flow - min cut, Discrete Mathematics,
165/166 (1997), 531-545.

Y. SHILOACH, U. VISHKIN, An O(n?logn) parallel max-
flow algorithm, Journal of Algorithms, 3 (1982),
128-146.

WOLFRAM RESEARCH., Mathematica 3.0 Standard Add-
on Packages, Cambridge University Press, Cam-
bridge UK, 1996.

Received: December, 1998
Accepted: April, 1999

Contact address:

Goranka Nogo

Department of Mathematics
University of Zagreb
Bijenicka 30

10000 Zagreb

Croatia

e-mail: nogo@math.hr

Robert Manger

Department of Mathematics
University of Zagreb
Bijenicka 30

10000 Zagreb

Croatia

e-mail: manger@nath.hr

GORANKA NOGO received the BSc (1981), MSe (1985), and PhD
(1998) degrees in mathematics, all from the University of Zagreb. She
has been with the Department of Mathematics at the University of Za-
greb since 1983 where she is presently a teaching assistant. During
last years her work is centered around the theory of complexity, parallel
algorithms and network flow problems. She has practical experience
in programming and computing. Dr Nogo is a member of the Croatian
Mathematical Society and the Mathematica Reference Center.

ROBERT MANGER received the BSc (1979), MSc (1982), and PhD
(1990) degrees in mathematics, all from the University of Zagreb, For
more than ten years he worked in industry, where he obtained practi-
cal experience in programming, computing, and designing information
systems. Dr Manger is presently a lecturer in the Department of Mathe-
matics at the University of Zagreb. His current research interests include
parallel algorithms and neural networks, Dr Manger is a member of
the Croatian Mathematical Society, Croatian Society for Operations
Research and IEEE Computer Society.

