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Branching Process Analysis of Linear
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Selection in Genetic Algorithms:
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The present paper extends the branching process model
[4] to cover linear ranking selection and binary tour-
nament selection in genetic algorithms. Under certain
simplifying assumptions, we derive the probability that a
given class would vanish from the population by a given
generation. No crossover or mutation is considered.
Simulation results are presented.
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1. Introduction

Genetic algorithms (GAs) [13, 16] are a class of
computational models inspired by natural evo-
lution. These algorithms are most commonly
viewed as function optimizers (search heuris-
tics). Application areas of these algorithms
(and their many derivatives) include science,
engineering, business and many other fields
(see, for example, [6, 10, 11, 12, 21]).

Genetic algorithms start with a population of
randomly (or heuristically) generated candidate
points (trial solutions) in the search space. Each
candidate point is coded (following some prede-
termined encoding scheme) to represent some
underlying parameter set. The algorithm op-
erates in a number of iterations, in an attempt
to improve upon the trial solutions. In each
iteration (an iteration is called a "generation"
in the GA parlance), several probabilistic op-
erators are applied to the trial solutions with
a view to creating (possibly) better solutions.

The algorithm terminates when either an opti-
mal / near-optimal solution has been found or
a specified number of generations have been
completed. It is to be noted that the genetic al-
gorithm is a "weak" method, with no guarantee
of finding the optimum solution in a particular
run.

The outline of the simple genetic algorithm is
as follows:
t=20;
initialize population(t);
evaluate candidate points in population(t);
while predetermined termination condition not
satisfied
{
t=1t+1;
select population(t) from population(t—1);
apply recombination and mutation to candi-
date points in population(t);
evaluate candidate points in population(t),

}

For some recent advances in theoretical research
on genetic algorithms, see [5, 7, 8,9, 18, 19, 20,
22, 23].

Selection 1s a major component of the genetic
algorithm. In all variants of the GA some form
of the selection operator must be present. The
basic principle of selection is to allocate, in the
next generation, more copies to the fit individ-
uals and fewer copies to the poor ones. Selec-
tion pressure directly controls the exploitation
factor in the "exploitation-versus-exploration"

' An carlier version of this paper appeared in the Proceedings of the IEEE International Conference on Information,
Communications and Signal Processing, Singapore, September 1997.
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tradeoff that is believed to be critically impor-
tant in the working of the GA. A wide variety
of selection algorithms have been proposed in
the GA-literature. For an analysis of the effects
of various selection schemes, see [8].

Despite the existence of many experimental
studies and approximate, deterministic models
of linear ranking and binary tournament selec-
tion, there is a dearth of stochastic models of
these two selection algorithms. The present pa-
per seeks to fill this void. This paper extends
the branching process model [4] to linear rank-
ing selection and binary tournament selection.

2. The Branching Process

The branching process starts at time zero with
an initial set of individuals which constitute the
Oth generation. Each of these individuals, after
one unit of time, gives rise to a random num-
ber of offspring according to a pre-determined
probability distribution. The children of the Oth
generation constitute the first generation; their
children are the second generation, and so on.

We consider those individuals in the population
whose fitness values are worse than or equal
to a predetermined value. To investigate the
effect of the above-mentioned two types of se-
lection algorithms, we study the growth/decay
of individuals of this designated class in the
population.

Let X() be the random variable representing the
number of individuals in the designated class
at generation ¢. For the genetic algorithm, the
successive random variables X(0, x(1) x(2)
form a Markov chain. Let the non-negative
integer-valued discrete random variable Y rep-
resent the number of members of the designated
class that a single member (of this class) pro-
duces in the next generation, and let Prob(Y =
k) =pr,k=0,1,...and >, px = 1. Then the
probability generating function of Y is given by

G(z) =) pid". CY
k=0

We now compute py for the worst individual
in the population, and use that value as an ap-
proximation to the p; of any individual of the
designated class.

3. Linear Ranking

In ranking selection [1, 15], at each generation,
the individuals in the population are sorted ac-
cording to their fitness and each individual is
assigned a rank in the sorted population. The
worst individual gets the rank 1 while the best
receives the rank N (N = population size).
The selection probabilities of the individuals
xr (k= 1,...,N) are given by some function
(most commonly, linear) of their rank.

Let {xg’),lxg), . ..,x%)}l depote the population
at generation ¢#. Then in linear ranking selec-
tion the probability of selecting individual xj
(k= 152 .~y N) iz given by

(r)) 1 (min-l— (max—min)(rank(xi”)—l))

N N—1

where max +min = 2 and 1 < max < 2.
The { p(xg) ) } is a proper probability distribution
(Zg;l p(xg)) = 1 for each t), and sampling N
individuals according to this probability distri-
bution yields the next generation.

The selection probability, ps.;, of the worst in-
dividual (rank = 1) is then given by
_min
Psel = N

We then have

Pk — ( Akr ) (psel)k(l _psel)N_k- (2)

When N is large and p,,; is small and the product
Nps.; is of moderate magnitude, we can apply
the Poisson approximation:

e_prel (Npsel)k
k!
e—minmink

k!

Pk =

From eq. 1 we now have

_min~ (min.2)"
k=0

. pmin(1=2)

G(z)
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Let the iterates of the probability generating

function G be defined by:
Go(z) = gz
Gi(z) = Gla),
Eaile) = GGzl = 12, cuns

Let GU(z) denote the probability generating
function of X(), 1 = 0,1, ... . Letting m repre-
sent the number of members of the designated
class at the initial generation, we have the fol-
lowing theorem:

Theorem 1:

GOz = [G()[*,t=0,1,.... (3)

Proof: See [4].

Let py,ss(2) denote the probability that the des-
ignated class vanishes from the population by
generation ¢.

Theorem 2: We have

ploss(t) _ e—m.min.(lupiﬁ(z‘fl))

Proof:

Ploss(1)=[G(G;-1(0))]™
~[exp(—min(1 ~ Gr_1(0)))]"
=exp(—m.min.(1 — G,—1(0)))
=exp(—m.min(1 — {G¢~D(0)}1/m))

=exp(—m.min(1 — {pposs(t — 1)}'/™))

4. Binary Tournament

Although there are a number of variants, the ba-
sic mechanism of tournament selection (3, 14]
consists of

e Randomly choosing — with or without
replacement — a predetermined number
of individuals from the population, and
picking — probabilistically or determinis-
tically — the best from these individuals.

e Repeating the above step N times (N =
population size) to fill the next generation.

As in the case of ranking selection, here, too,
we compute py for the worst individual in the
population. Under binary tournament with re-
placement, in each tournament any one of the
following four mutually exclusive and exhaus-
tive events will occur:

1. The worst individual will be picked twice
(note that the picking is considered to have
been performed with replacement).

2. Neither of the two individuals picked is the
worst individual.

3. The first individual picked is the worst in-
dividual, but the second is not.

4. The second individual picked is the worst
individual, but the first is not.

It is easy to see that

Prob (event 1)

I
—
' Z[ -
~—_~
D
2|~

Prob (event 2) = (1 —

1
Prob (event 3) = (ﬁ) ; (1 - %

po o) = (1- 1). (1)

If p denotes the probability with which the bet-
ter of the two individuals is chosen in any single
tournament, then the probability that in any sin-
gle tournament the worst individual is picked is
given by

pa= (%) v (1-5)a-p, @

where 0.5 < p < 1.

Proceeding as in the case of linear ranking se-
lection, we can show that for binary tournament
selection we have the following theorem:

Theorem 3:
Ploss(t) = e'm'N-Psei-(l—p;o/ST(r—l))

where py,; is given by eq. 4.
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5. Expected Loss Time

Defining

ﬁoss(t) = ploss(t) - ploss(t - 1)

fort = 1,2,..., the expected (mean) loss time
is given by

> fuoss ()£
=0

6. Empirical Results

To obtain empirical support for the model, ex-
periments were conducted by running the ge-
netic algorithm on a simulation problem with
only two types of individuals. Each GA run
was continued until the better individual filled
the entire population. One hundred independent
runs — with as many different initial seeds for
the pseudo-random number generator — were
taken. All of these 100 runs were started with
the same initial population. For each run, the
generation number at which the worse individ-
ual vanished from the population was noted.
The loss probability was obtained from the re-
lation
n(?)

[)=——
ploss( ) 100’

where n(r) = total number of runs (out of 100)
in which the worse class vanished at or before
generation ¢.

The theoretical and empirical fj,; values are
compared in Tables 1 and 2 where the stan-
dard deviation and the 95% confidence interval
have also been presented (number of samples =
100; sample mean = relative frequency). The
empirical probabilities are not statistically sig-
nificantly different from the corresponding true
values at the 5% level of significance (i.e., with
95% confidence). Confidence intervals marked
"—"1in Tables 1 and 2 correspond to close-to-zero
values of fj,s; for which the product of the num-
ber of samples and the probability is less than 5.

Gen. | Theor. | Sample | Sample 95%
Mean | Mean | Std. Confid.
Dev. Interval
1 {0.007 0
2 [0.132| 0.13 | 0.336 [0.064,0.196
3 10.269| 0.31 | 0.462 |0.219,0.401
4 10.244| 0.17 | 0.376 [0.096,0.244
5 10.159| 0.16 | 0.367 |0.088,0.232
6 [0.090| 0.10 | 0.300 |0.041,0.159
7 10.049| 0.06 | 0.237 {0.013,0.107
8 10.025| 0.04 | 0.196 -
9 10.012 0 -
10 | 0.007 0 -
11 {0.003| 0.01 | 0.099 -
12 {0.001 | 0.02 | 0.140 -
13 | 0.001 0 -
14 |0.001 0 -
15 | 0.000 0 -

Table 1. Theoretical and experimental fi,s; values in
linear ranking selection (N = 100, max = 1.5, m = 10).

Gen. | Theor. | Sample | Sample 95%
Mean | Mean | Std. Confid.
Deyv. Interval
1 [0.017| 0.02 | 0.140 -
2 10241 0.22 | 0.414 [0.139,0.301
3 10340 | 040 | 0.490 |0.304, 0.496
4 10218 0.20 | 0.400 |0.122,0.278
5 10.106| 0.12 | 0.325 {0.056, 0.184
6 |0.046| 0.02 | 0.140 -
7 10.019| 0.02 | 0.140 -
8 10.008 0 -
9 10.003 0 -
10 [ 0.001 0 -
11 |0.001 0 —
12 1 0.000 0 —
13 | 0.000 0 -

Table 2. Theoretical and experimental f,s; values in
binary tournament selection (N = 100, p = 0.8, m = 10).

In these cases the normal distribution approx-
imation (to the binomial distribution) underly-
ing the confidence interval calculation process
is not applicable [2, 17].

Some representative cases showing theoretical
and experimental mean loss times are shown in
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Tables 3 and 4. The results are averages of 100
runs.

Parameter | Theor. | Empir. | Emp. | 95%
Values | Mean | Mean | Std. | Conf.
Loss Dev. | Int.
Time
N=100 | 4.18 | 445 | 1.74 | 4.11,
m= 10 4.79
max = 1.5
N =300 | 5.68 | 597 | 1.53 | 5.67,
m =30 6.27
max = 1.5
N =300 | 32.72 | 34.65 [11.01|32.49,
m =90 36.81
max = 1.1

Table 3. Linear ranking selection: comparison of
theoretical and empirical mean loss times.

Parameter | Theor. | Empir. | Emp. | 95%
Values | Mean | Mean | Std. | Conf.
Loss Dev. | Int.
Time
N =100 | 344 | 3.51 | 1.28 | 3.26,
m=10 3.76
p=028
N =300 457 | 473 | 1.28 | 4.48,
m = 30 4.98
p=0.8
N =300 | 18.35]19.70 | 4.61 | 18.80,
m =90 20.60
p=20.6

Table 4. Binary tournament selection: comparison of
theoretical and empirical mean loss times.

7. Comparison

The present analysis allows us to compare and
contrast the two selection algorithms. Theo-
rems 2 and 3 describe the selection algorithms’
behavior. Tables 5 and 6 show how the se-
lection pressure changes with changes in the
algorithm paprameter’s value. The data show
that for max = 2p the two loss times are almost
identical. This corroborates a similar observa-
tion in [8, p. 161]. In the case of no selection
pressure (p = 0.5 and min = max = 1), psa
becomes 1/N for both the algorithms, and the
equations in Theorems 2 and 3 become exactly
identical. That the loss time corresponding to

the maximum selection pressure in tournament
selection (the last row in Table 6) is greater than
1 can be seen from equation 4 where, for p = 1,
Psel becomes 1 /Nz, not zero. Thus the selection
pressure is marginally lower in tournament than
in ranking.

min | Mean Loss Time
0.8 9.26
0.6 5.22
0.4 3.40
0.2 2.26
0 1

Table 5. Change of the (theoretical) mean loss time with
min in ranking selection (N = 100, m = 10).

p | Mean Loss Time
0.6 933
0.7 527
0.8 3.44
0.9 2.30
1.0 1.09

Table 6. Change of the (theoretical) mean loss time with
p in tournament selection (N = 100, m = 10).

8. Conclusion

By building on earlier work, this paper has pro-
vided a theoretical analysis of two of the most
important selection strategies in genetic algo-
rithms. The analysis enables us to compute
the probability that, under selection alone, in-
dividuals of a given class (i.e., individuals with
fitness worse than or equal to a certain value)
would be lost from the population by a given
generation. We have used the analysis to com-
pare the selection pressures of the two schemes.
The results of this paper sharpen our insight into
the working of ranking and tournament selec-
tion. It should be noted that the present model is
an approximate one. This model assumes that
Ploss(o0) = 1, but strictly speaking, this is less
than unity. In other words, for an exact model
(e.g., Chakraborty et al. [8]), > 2 fioss (1) < 1.
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