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Two-Phase Load Modelling in
Three-Phase Load Flow
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Currents and voltages of the power system are not only
dependent on the elements of the power system, but also
on the loads that are being connected onto the system.
The aim of this article is to present two-phase load mod-
elling and its implementation to the Newton-Raphson
method for calculation of the three-phase load flow. The
program, based on the method, had been made and was
tested in the Croatian power system where one of the
main causes of the asymmetry is the Electrical Traction
System with a two-phase connection onto the power
system through the transformer 110/25 kV.
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1. Introduction

In the calculation of the single-phase load flows
we are starting from the stand point of symmet-
rical conditions in the power system. In order to
achieve greater precision in the analysis of the
asymmetries in the power system, it is neces-
sary to introduce the three-phase modelling to
all elements of the system. The loads present a
special concern and have to be modelled, too.
In Croatia, a major problem occurs when the
Electrical Traction System (1 x 25 kV) is be-
ing connected onto the power system - Traction
Substations are mounted onto the power system
through the single-phase transformers between
two phases of the 110 kV network.

Decoupled Newton-Raphson method [1, 2] is
used for the calculation of the three-phase load
flow. The lines have a three-phase modelling
and are represented by the 3 x 3 matrices. In
the case of parallel lines, the influence that one
line has on the other is also considered. When
modelling a transformer, it is important to know

the type of the connection and the turn ratio.
Generator model is created with the help of the
positive, negative and zero sequence reactance,
having in mind the star grounding. Unlike stan-
dard methods for the three-phase load flow cal-
culation, this article emphasises the two-phase
load modelling. In the calculation, the loads
are presented in the form of constant two-phase
power. This comes from the Traction Vehi-
cle characteristics. Therefore, it is necessary
to make adjustments to the standard method by
including the two-phase modelling.

2. Power System Modelling for Three Phase
Load Flow

2.1. Transmission Line, Transformer and
Generator Models

Single-phase modelling of the elements in the
power system is used for the calculation of
the three-phase load flow in symmetrical con-
ditions. Three-phase modelling gives much
clearer and better picture of the current and volt-
age relations and conditions in the network be-
cause it takes into consideration the following
factors:

a) long untransposed lines
b) mutual influence of the parallel lines

¢) current and voltage shift due to the different
type of transformer connection

d) different types of transformer and generator
star grounding and

e) other unbalances of the power system ele-
ments.
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In case of single-phase models, all the power
system elements are modelled by the series
impedance and shunt susceptance. Three-phase
models are represented by the 3 x 3 matrices.

Transmission lines

In line modelling, Carson’s formulas are used to

find the self- and mutual-impedances and poten-

tial coefficients for self- and mutual-capacitances
[3, 4]. Basic matrix equation for the current and

voltage can be found based on the existing series

and shunt admittance matrix.

[ [166c] ] _ [V.] + -[—g"fl —[¥] . [ [Vee] }
aIN A Rl

where [Y,] and [Y,] represent the series admit-
tance matrix and the shunt admittance matrix,
respectively.

In the case of parallel lines with mutual electro-
magnetic coupling, connected onto the nodes i,
j and k, 1, the final matrix equation has a more
complex form:

i Vi
Ia ! ad Vﬂ C
[l,f‘;b’cl = [Yi,jfk,l] [Vf{'brcf (2)
7o ] [vie]
where the matrix [Y; j_x ;] is given by:
[Yu]i+[Y]1 - [Hi—aHhie —[Yuli—2
—=[¥ul1 AN —[Vuli—2  [Yali—aH{Vpli—2
Yuh_(+H¥om1  —[Yula— [Yul2+[Y}]2 —[Yu]2
—[Vulae1 [NV o —[ul (Yul2+[Y}]2
(3)

a,b,c and d, b, ¢’ represent phase conductors
between the node i, j and &, I. Submatrices with
indexes 1 and 2 represent the series impedance
and shunt susceptance values of the line 1 (be-
tween the 7, j node), and the line 2 (between the
k, I node). Submatrices with indexes 1 — 2 and
2 — 1 are created by the line’s mutual coupling.

Transformers

In the process of the transformer three-phase
modelling, the mutual influence of the trans-
former windings can be considered sufficiently
irrelevant and was therefore not considered.
That allows us to substitute three-phase trans-
former modelling with the combination of three

single-phase transformers, having in mind the
type of the transformer connection [5]. The fol-
lowing matrix equation represents a transformer
of the Yy-0 type with a grounded star:

i Ya 0 0 —ygg 0 0 7 [VA
P 0 ya 0 0 —ygs O VB
f _ | 0 0 yao 0 0 —ygp| |VC
Pl |-vyep 0 0 yg 0 O ve
i 0 —yap O 0 yg O Ve
i 0 0 —yep O 0 yp | Ve
(4)
A, B, C - transformer’s high voltage side phases
a,b,c - transformer’s low voltage side phases
yr :
Ya = v yr 18 leakage transformer
admittance
- « is high voltage side turn ratio
Yi . . .
Vg = i B is low voltage side turn ratio .
_yr
Yap = a_ﬁ'

For the transformer with the Yd-5 type of con-
nection with direct star grounding (the one often
found in the transmission networks) the follow-
ing matrix equation is given: (5)

P ya 0 0 yug 0 —yg e
® 0 Yo 0 —yup yap O Ve
It _ ] 0 0 ya O —yapyap | |V
L | yap —Yap O 25 —yp —¥p ¥
i 0 —yap—Yap =¥ 2vp —Vp ve
I —Yap 0 Yap —¥g —Vp g ve

(5)
Similar procedure is applied when dealing with
the transformer and the same type of connec-
tion, but with the grounding of the one or both
stars through the impedance or in the case of
isolated stars. The matrix order increases for
one or two, 1.e., the matrix becomes of the order
7x7or8x 8. Injected power in these additional
nodes is 0, so the nodes can be eliminated by
the block transformation method. The result is
a 6 x 6 matrix.

Generators

The generator is modelled by the symmetrical
three-phase voltage source connected between
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Fig. 1. Traction Substation Connection onto the Power System.

the star and internal busbars. Generator wind-
ing’s self and mutual impedances values are re-
lated with the following matrix equation:

[2%)gen
11 11[z; 0 o 1 1 1

=1 & q||0 z o| 1|1 a4 & (6)
1 a a 0 0 Z 3 1 & a

| #+zi+7 B+azi+dz zg+azzd+az;}

Zy+dZy+aZi  Zo+Zg+Zi Zo+aZg+dZ
Zo+aZy+ a7 Zo+a*Zy+aZi  Zo+Zy+Zi

where a = ¢'20° = —0.5 + j0.866
a2 = 20 = 0.5 — j0.866
Z,; = positive sequence impedance
Z; = negative sequence impedance
Zy = zero sequence impedance.

Generator’s star grounding impedance is to be
added to the zero sequence impedance. The
value of this impedance is O in the case of the
direct grounding, while in the case of isolated
star it becomes infinite.

2.2. Load Modelling

In the real power system unbalanced loads (trac-
tion motors, induction furnaces, etc.) are com-
monly found as well as symmetrical ones. The
biggest source of the asymmetry in the Croa-
tian power system are the Electrical Traction
Substations. The loads in the Electrical Trac-
tion System (Trains with thyristor and diode-
controlled AC locomotive) are characterised by
constant power. Due to the connection type of
the traction substations onto the power system
(Figure 1) the loads in the power system have to
be modelled by the constant two-phase power.

If the power losses in the single-phase trans-
former are considered irrelevant, then the two-
phase power S in the i-th node is:

S = (Vi = V) - I™. (7)

From the same equation, the current I can be
defined as:
Si2
e 8

We can obtain the equations for the per phase
powers by using the fact that I = —J°:

Sin

S=Vi-If :VF'W (9)
* S;
b 2
=V ==V ———
V=W (0
§¢ = 0. (11)

3. Newton-Raphson Method for Solving
Three-Phase Load Flow Problem

In the calculation for the three-phase load flow,
the following types of nodes exist:

- load busbar (P, Q)
- generator busbar (P, V)
- swing bus (V, §)

For load busbar the known values are the con-
stant load powers connected onto their busbars.
The value and the angle of the phase voltages
are, however, unknown and have to be found for
this type of node.

Generator busbar (P, V) is modelled for the load
flow calculation with the help of generator’s
terminal and internal busbars. Terminal bus-
bars are the real busbars in the network where
the generator is connected, while the internal
busbars are fictive and represent the point be-
tween the symmetrical voltage source and the
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generator positive sequence reactance with the
representative equations:

Vi=Vl =V =E (12
8f=120°+8°=—-120°4+6f=6;  (13)

where V&, VP V¢ are the voltage magnitudes
and &/ Sb of are their angles.

P y™ry

—

Synchronous generator’s excitement regulation
keeps the terminal busbar voltage at the constant
level. Active power which the generator nodes
put into the network is given on its internal bus-
bars and is equal to the per phase active power
sum.

Swing bus is modelled almost the same way as
the generator node. This type of node, on its
terminal busbars, is given by the voltage mag-
nitude and angle on the internal busbars.

It is necessary to add all the internal (fictive)
nodes of all the generators in the network to
the existing number of three-phase power sys-
tem nodes. If the number of all real nodes in
the network (made out of (P, Q) nodes, termi-
nal busbars (P, V) and reference node terminal
busbars) equals rnp,s, and the number of all the
internal busbars of the (P, V) nodes and the ref-
erence node equals 7g,, then the total number
of nodes equals: n = ny,; + Rgen.

For all the (P, Q), terminal (P, V) nodes and
the terminal busbars there is one basic power
equation:

SP—VPZZ (Y22 viy*

k=1 g=a
SN IC I Y
k=1 g=a (14)
where:
n - total number of nodes
S¥ - i-th node power at phase p
VP - i-th node complex voltage magnitude
at phase p

Y4! = GI7+jBL - system admittance matrix
element of the three-phase system

Separation of the active and reactive power in
the equation (3.3) yields the following:

PP=yr ZZVq (G sl 65"

k=1 g=a

+ Bb sin(847)) (15)
Q= VPZ Z - (GHsin(877)
k=1 g=a
— BBl cos(65)) (16)

To find the total active power, for the internal
busbars (P, V) the generator puts into the net-
work we have to add all the per phase active
powers. The same mathematic procedure as the
one for the previous node gives us:

Z Vint; Z Z Vi (

k=1 g=a
+ Bik sm(Sik ))
where j = (npus + 1), - ., (Mpus + Ngen — 1),

and Vi, is internal busbars voltage of the (P, V)
node.

Pgenj = I cos(677)

(17)

For the swing bus and all the generator busbars
some of the voltages of the terminal busbars
have to be kept at the constant level. Often it
is a voltage of one phase, so the equation looks
like this:

Vregj = Vterm; (18)

where j = (nbus = 1), s § Whggr Rgen.

Equations presented in the forms (15)-(18) are
the basis for the three-phase load flow prob-
lem solving by the Newton-Raphson method.
The following linear equation system is derived
from the equations mentioned above:

(P )SCHEDULED (Ptp)CALCUlATED
AQ; (Q SCHEDULED (Q?)CALCUMTED
APgen _ (Pgen )SCHE.DULED _ (Pgenj)CALCULATED
AV.”L’gJ (Vrerm )SCHEDULED _ (Vterm?)CALCULATED
(19)

The values that have to be determined by solv-
ing the equation system (19) are:

- voltages (magnitudes and angles) of all the
load nodes and generator terminal busbars
(including the reference node),

voltage magnitudes of all the generator inter-
nal busbars (incl. reference)
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- voltage angles of all the generator internal
busbars (except reference, its angle is sup-
posed to be 0).

While solving the equation system (19), the in-
crease in the voltage magnitude which depends
upon the active power increase is neglected, as
well as the increase in the voltage angles which
depend upon the reactive power increase. The
voltage is kept at the constant level only by its
magnitude and not by its angles, so their mu-
tual dependence can be neglected, too. This
allows the equation system to be broken into
two independent equation systems (decoupled
Newton-Raphson method).

3.1. Modified lterative Procedure for
Decoupled Newton-Raphson Method

Standard methods for three-phase load flow cal-
culation are based on the fact that all the phase
powers are constant, which is not always true.
With the connection of the traction substations
onto the power system we are facing the prob-
lem of loads with two- phase constant power
and we have to modify our standard calculation
methods [6]. The calculation itself is done in a
few steps:

STEP 1 - Declaration of the starting values for
the calculation

For nodes in the network, it is necessary to de-
clare the starting voltage magnitudes and angles.
Usual values are: 1 p.u. for magnitudes, and 0°
for angles. It should be kept in mind that the
angles at phases are rotated by 120°, and that
transformers cause rotation of the voltage an-
gles, depending on the type of connection. The
value of the internal busbars’ voltage angle at
the reference node is usually declared as 0.

STEP 2 - Standard methods’ modification

In standard methods, loads are given by the con-
stant per phase power, which is then compared
with calculated powers within each step of the
iteration. In order to include the two-phase load
into the standard calculation, per phase power
has to be found from the given two-phase power
of the load using the expressions (9)-(11). Un-
like the standard loads, phase powers are chang-
ing together with phase voltages. The derivates
of the loads with regard to voltages are taken
into the Jacobian matrix.

STEP 3 - Evaluation of the new voltage angles
values

Using the expression (15) the active powers at
the phases of all load nodes and terminal bus-
bars of the generator node can be calculated,
and then the difference between the calculated
and the given powers (APY) has to be found.
The active power, going into the network, for
the internal busbars of the generator nodes (ex-
cept reference) is calculated using the (17) and
the difference between the calculated and given
powers is APgen;. If the obtained values sat-
isfy the given precision limits, then the current
values for the voltage angles satisfy the given
active power precision limits. Iterative proce-
dure isn’t, however, finished because the volt-
ages have to satisfy the conditions stated in the
STEP 4.

If the requested precision isn’t fulfilled, then
the iterative procedure 1s continued by declar-
ing the new voltage angle values and going onto
the next STEP.

STEP 4 - Evaluation of the new voltage mag-
nitudes

Using the exp. (16) the reactive powers at the
phases of all load nodes and terminal busbars
of the generator node can be calculated, and
the difference between the calculated and the
given powers (AQY) has to be found. The dif-
ference between the phase a regulated voltages
on the generator node terminal busbars is de-
termined by the definition (18), and is equal to
the difference between the real and the given
voltage, respectively. Again these values are
compared with the requested precision and if
they fall within the approved interval, the cur-
rent voltage magnitudes satisfy the requested
precision of the reactive powers and regulated
voltages.

In case all the conditions in both steps are ful-
filled, the iterative procedure is completed, and
the current values are the equation solutions and
we go onto the next, STEP 5. If they aren’t, we
are returning onto the STEP 2.

STEP 5 - Evaluation of the load flows

When all the voltage values in the three-phase
network nodes are found, the iterative proce-
dure is completed and the calculation of branch
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Fig. 2. Test Network.
Terminal
Node TYPE | § - 3-phase load 2-phase load Generat. voltage
(kV) MW) (MVAr) MW) (MVAr (MW) (p-u)
1 PQ 220.0 .0 .0 .0 0 0 .000
2 PQ 220.0 -150.0 -50.0 .0 0 .0 .000
3 PQ 110.0 -85.0 -35.0 .0 0 .0 .000
4 PQ 220.0 -40.0 -25.0 .0 0 .0 .000
5 PQ 110.0 -95.0 -40.0 .0 0 .0 .000
6 PQ 110.0 0 .0 .0 0 .0 .000
7 PQ 110.0 -55.0 -25.0 .0 .0 .0 .000
8 PQ 110.0 .0 .0 0 0 .0 .000
9 PQ 220.0 0 0 .0 .0 .0 .000
10 PQ 110.0 .0 .0 .0 0 .0 .000
11 PQ 110.0 0 .0 -12.0 -9.0 .0 .000
12 PQ 110.0 .0 .0 -15.0 -10.0 .0 .000
13 PQ 110.0 .0 .0 -6.0 -2.0 .0 .000
14 PQ 110.0 0 .0 -6.0 -3.0 .0 .000
15 PQ 110.0 .0 .0 -8.0 -5.0 .0 .000
16 PV 20.0 .0 .0 .0 .0 200.0 1.040
17 PV 10.5 .0 .0 0 .0 35.0 1.030
18 PV 10.5 .0 .0 0 .0 80.0 1.010
19 PV 10.5 .0 .0 0 .0 70.0 1.050
20 SLACK 10.5 .0 .0 0 .0 .0 1.040

Table 1. Load and Generator Data.

currents and load flows may begin according to

the following expressions:

5] = (%] - (V%) = [VP%D) + [1,] - (V]

(20)

[125] = [¥u] - (V7%] = Vi%) + [¥] - [VF™]

(21)

4. Numerical Examples

There is a PC program that implements the de-
scribed algorithm. Part of Croatia’s power sys-
tem is used as a test network. In this network
there are a few traction substations in a rela-
tive small area (Figure 2). Data considering the
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; : CASE 1 CASE 2
iteration
Step max P max Q max P max Q
(p.u.) (p.u.) (p-u.) (p-u)
1 -.581436 -.186279 -497874 .068384
2 .099037 -.082430 084052 031822
3 -.055250 .042848 -.017492 014274
4 -.028725 .022741 -.009203 007654
5 -.014914 011961 -.004968 .004070
6 -.007910 .006308 002670 002108
7 -.004099 003297 .001471 001107
8 -.002273 001738 -.000751 .000669
9 -.001135 .000905 .000455 .000334

Table 2. Maximal Unbalanced Power after Each Iteration Step for Both Cases.

loads and the given production is presented in
Table 1.

Two situations have been analysed; CASE 1
where all the traction substations were con-
nected at the same phases, while in CASE 2
the phases were changed in the circular mo-
tion. Convergence behaviour is presented in
Table 2. The results for the current and voltage
unbalances at all nodes are listed in Table 3.
Examples of line currents and power flows are
given in Table 4a for CASE 1 and in Table 4b
for CASE 2.

5. Conclusions

Two-phase load modelling in three phase load
flow by Newton-Raphson method is a useful
tool when dealing with planning and analysis of

the Power system, with the Electrical traction
system - AC 25 kV, 50 Hz connected onto it.
The software package is used for generator pro-
tection devices and high voltage motors analysis
and adaptation. Negative current component in
the system causes excess loses in generators and
motors. The advantages and the benefits of this
method are shown in a numerical example in
the article. The analysis of the connection of
the Traction substations onto the Power system
can be performed based on this program, and
the best possible solution can be identified.
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CASE 1 CASE 2
Vpus vneg Ineg Viero vpos Vncg In:g Vaero
Qu) (@u) (%) (u) (@Eu) (@Euv) (%) (pu)
1 10171 0.0283 0.0000 0.9989 0.0093 0.0000
2 1.0143 0.0288 0.0000 0.9960 0.0095 0.0000
3 05918 0.0396 0.0000 0.9714 0.0130 0.0000
4 1.0067 0.0307 0.0000 0.5880 0.0101 0.0000
5 09909 0.0399 0.0000 0.9707 0.0132 0.0000
6 09939 0.0406 0.0000 0.9734 0.0141 0.0000
7 09846 0.0412 0.0000 0.9640 0.0127 0.0000
8 1.0028 0.0383 0.0000 0.9816 0.0130 0.0000
9 1.0362 0.0230 0.0000 1.0204 0.0076 0.0000
10 1.0405 0.0157 0.0000 1.0286 0.0051 0.0000
11 0.9891 0.0424 0.0000 0.9689 0.0139 0.0000
12 0.9917 0.0425 0.0000 0.9713 0.0156 0.0000
13 0.9870 0.0411 0.0000 09665 0.0123 0.0000
14 0.9888 0.0414 0.0000 0.9683 0.0134 0.0000
15 09941 0.0416 0.0000 0.9733 0.0148 0.0000
16 1.0536 0.0212 7.1 0.0000 1.0365 0.0070 2.3 0.0000
17 1.0487 0.0303 12.1 0.0000 1.0241 0.0106 4.2 0.0000
18 1.0275 0.0292 122 0.0000 1.0040 0.0099 4.1 0.0000
19 1.0612 0.0165 6.6 0.0000 1.0476 0.0054 2.2 0.0000
20 1.0477 0.0106 4.6 0.0000 1.0386 0.0035 1.5 0.0000

Table 3. Table of Voltages and Negative Sequence Currents.
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1 T Current Phiise Currer.lt Power
magn. (A) angle (°) real (A) imag(A) P MW) Q (MVAr)
Pos 622 1041 A 217 626 76.86 39.82
1 2 Neg 70 1606 B 611 -239 63.52 52.49
Zero 0 0.0 C -394 -387 59.62 41.29
Pos 625 2764 A 213 -631 -76.81 -40.27
2 1 Neg 70 -194 B -613 245 -63.47 -52.88
Zero 0 0.0 (& 400 386 -59.58 -41.86
Pos 336 1120 A -172 327 45.65 1534
2 4 Neg 49 1609 B 342 -95 37.03 24.48
Zero 0 00 C -170 -233 34.17 16.05
Pos 340 694 A 165 -334 -45.56 -15.86
4 2 Neg 49 -19.1 B -344 103 -36.94 -24.95
Zero 0 00 C 179 231 -34.11 -16.85

Table 4a. Example of Line Currents and Power Flows for CASE 1.

i § e Current Bie Current Power
magn. (A) angle (°) real (A) imag(A) P (MW) Q MVAr)
Pos 635 1034 A -162 600 67.11 42.85
1 2 Neg 23 2306 B 632 -185 69.36 45.90
Zero 0 00 C -470 415 63.53 47.20
Pos 639 -77.0 A 158 -605 -67.07 -43.31
2 1 Neg 23 506 B -633 191 -69.31 -46.30
Zero 0 00 C 476 414 -63.48 -47.63
Pos 345 1106 A -134 312 39.50 17.80
2 4 Neg 17 2231 B 357 -61 40.71 20.46
Zero 0 00 C -223 -251 36.72 20.81
Pos 349 2707 A 128 -318 -39.41 -18.38
4 2 Neg 17 431 B -359 70 -40.62 -20.93
Zero 0 0.0 C 232 249 -36.64 -21.37

Table 4b. Example of Line Currents and Power Flows for CASE 2.
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